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Algorithms for Solving RL: Temporal Difference
Learning (TD)

• Incremental Monte Carlo Algorithm

• TD Prediction

• TD vs MC vs DP

• TD for control: SARSA and Q-learning
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Incremental Monte Carlo Algorithm
Our first-visit MC algorithm had the steps:

R is the return following our first visit to s

Append R to Returns(s)
V (s) = average(Returns(s))

We can implement this incrementally:

V (s) = V (s) + 1
n(s)[R − V (s)]

where n(s) is the number of first visits to s
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We can also formulate a constant-α Monte Carlo update:

V (s) = V (s) + α[R − V (s)]

useful when tracking a non-stationary problem (why?).
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Model-Based vs Model-Free Learning
• In RL we’re generally trying to learn an optimal policy

• If a model is available, P a

ss′
, Ra

ss′
, we can calculate optimal policy via dynamic

programming

• If no model, either:

learn model and then derive optimal policy
(model-based methods) or

learn optimal policy without learning model
(model-free methods)

• Temporal difference (TD) learning is a model-free, bootstrapping method based
on sampling the state-action space
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Temporal Difference Prediction
Policy Evaluation is often referred to as the Prediction Problem: we are trying to
predict how much return we’ll get from being in state s and following policy π by
learning the state-value function V π.

Monte-Carlo update:

V (st) → V (st) + α[Rt − V (st)]

Target: actual return from st to end of episode

Simplest temporal difference update TD(0):

V (st) → V (st) + α[rt+1 + γV (st+1) − V (st)]

Target: estimate of the return

Both have the same form
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Temporal Difference Learning
• Doesn’t need a model P a

ss′
, Ra

ss′

• Learns directly from experience

• Updates estimates of V (s) based on what happens after visiting state s
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TD(0) update:

V (st) → V (st) + α[rt+1 + γV (st+1) − V (st)]

cf Dynamic Programming update:

V π(s) = Eπ{rt+1 + γV π(st+1) | st = s}

=
∑

a

π(s, a, )
∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]
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Advantages of TD Learning Methods

• Don’t need a model of the environment

• On-line and incremental so can be fast
don’t need to wait till the end of the episode so need less
memory, computation

• Updates are based on actual experience (rt+1)

• Converges to V π(s) – but must decrease step size α as learning continues

• Compare backup diagrams of TD, MC and DP
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Bootstrapping, Sampling
TD bootstraps: it updates its estimates of V based on other estimates of V

DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of
the episode

TD samples: its updates are based on one path through the state space

MC also samples

DP does not sample: its updates are based on all actions and all states that can
be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2

MC vs TD updating: see e.g. S+B sect. 6.3
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Difference Between TD and MC Estimates

See S+B Example 6.4:

Suppose you observe the following 8 episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

First episode starts in state A, transitions to B getting a reward of 0, and
terminates with a reward of 0. Second episode starts in state B and terminates
with a reward of 1, etc.

What are the best values for the estimates V(A) and V(B)?
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Modelling the Underlying Markov Process
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V(A) = ?
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TD and MC Estimates

• Batch Monte Carlo (updating after all these episodes are done) gets V(A) =
0.

– This best matches the training data
– It minimises the mean-square error on the training set

• Consider sequentiality, i.e. A goes to B goes to terminating state; then V(A)
= 0.75.

– This is what TD(0) gets
– Expect that this will produce better estimate of future data even though

MC gives the best estimate on the present data
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– Is correct for the maximum-likelihood estimate of the model of the Markov
process that generates the data, i.e. the best-fit Markov model based on
the observed transitions

– Assume this model is correct; estimate the value function – “certainty-
equivalence estimate”

TD(0) tends to converge faster because it’s moving towards a “better” estimate.
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TD for Control: Learning Q-Values
Learn action values Qπ(s, a) for the policy π
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SARSA update rule:

∆Qt(st, at) = α[rt+1 + γQt(st+1, at+1) − Qt(st, at)]

Gillian Hayes RL Lecture 10 8th February 2007

TD for Control: Learning Q-Values 15

• Choose a behaviour policy π and estimate the Q-values (Qπ) using the SARSA
update rule. Change π towards greediness wrt Qπ.

• Use ǫ-greedy or ǫ-soft policies.

• Converges with probability 1 to optimal policy and Q-values if visit all state-
action pairs infinitely many times and policy converges to greedy policy, e.g. by
arranging for ǫ to tend towards 0.

Remember: learning optimal Q-values is useful since it tells us immediately
which is(are) the optimal action(s) – have the highest Q-value
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SARSA Algorithm
• Initialise Q(s, a)

• Repeat many times

– Pick s, a

– Repeat each step to goal

∗ Do a, observe r, s′

∗ Choose a′ based on Q(s′, a′) ǫ-greedy

∗ Q(s, a) = Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)]
∗ s = s′, a = a′

– Until s terminal (where Q(s′, a′) = 0)

Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of Q

Example: windy gridworld, S+B sect. 6.4
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Q-Learning
SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning

Update rule:

∆Qt(st, at) = α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)]

Always update using maximum Q value available from next state: then Q ⇒ Q∗,
optimal action-value function
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Q-Learning Algorithm

• Initialise Q(s, a)

• Repeat many times

– Pick s start state

– Repeat each step to goal

∗ Choose a based on Q(s, a) ǫ-greedy

∗ Do a, observe r, s′

∗ Q(s, a) = Q(s, a) + α[r + γ maxa′ Q(s′, a′) − Q(s, a)]
∗ s = s′

– Until s terminal
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Backup Diagrams for SARSA and Q-Learning
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SARSA backs up using the action a′ actually chosen by the behaviour policy.

Q-LEARNING backs up using the Q-value of the action a′∗ that is the best next
action, i.e. the one with the highest Q value, Q(s′, a′∗). The action actually
chosen by the behaviour policy and followed is not necessarily a′∗

Example: The cliff S+B sect. 6.5
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Q-Learning vs SARSA
QL: Q(s, a) = Q(s, a) + α[r + γ maxa′ Q(s′, a′) − Q(s, a)] off-policy

SARSA: Q(s, a) = Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)] on-policy

In the cliff-walking task:

QL: learns optimal policy along edge

SARSA: learns a safe non-optimal policy away from edge

ǫ-greedy algorithm

For ǫ 6= 0 SARSA performs better online. Why?

For ǫ → 0 gradually, both converge to optimal.
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