
Reinforcement Learning

Lecture 10

Gillian Hayes

8th February 2007

Gillian Hayes RL Lecture 10 8th February 2007

1

Algorithms for Solving RL: Temporal Difference
Learning (TD)

• Incremental Monte Carlo Algorithm

• TD Prediction

• TD vs MC vs DP

• TD for control: SARSA and Q-learning

Gillian Hayes RL Lecture 10 8th February 2007

2

Incremental Monte Carlo Algorithm
Our first-visit MC algorithm had the steps:

R is the return following our first visit to s

Append R to Returns(s)
V (s) = average(Returns(s))

We can implement this incrementally:

V (s) = V (s) + 1
n(s)[R − V (s)]

where n(s) is the number of first visits to s

Gillian Hayes RL Lecture 10 8th February 2007

Incremental Monte Carlo Algorithm 3

We can also formulate a constant-α Monte Carlo update:

V (s) = V (s) + α[R − V (s)]

useful when tracking a non-stationary problem (why?).

Gillian Hayes RL Lecture 10 8th February 2007

4

Model-Based vs Model-Free Learning
• In RL we’re generally trying to learn an optimal policy

• If a model is available, P a

ss′
, Ra

ss′
, we can calculate optimal policy via dynamic

programming

• If no model, either:

learn model and then derive optimal policy
(model-based methods) or

learn optimal policy without learning model
(model-free methods)

• Temporal difference (TD) learning is a model-free, bootstrapping method based
on sampling the state-action space

Gillian Hayes RL Lecture 10 8th February 2007

5

Temporal Difference Prediction
Policy Evaluation is often referred to as the Prediction Problem: we are trying to
predict how much return we’ll get from being in state s and following policy π by
learning the state-value function V π.

Monte-Carlo update:

V (st) → V (st) + α[Rt − V (st)]

Target: actual return from st to end of episode

Simplest temporal difference update TD(0):

V (st) → V (st) + α[rt+1 + γV (st+1) − V (st)]

Target: estimate of the return

Both have the same form

Gillian Hayes RL Lecture 10 8th February 2007

6

Temporal Difference Learning
• Doesn’t need a model P a

ss′
, Ra

ss′

• Learns directly from experience

• Updates estimates of V (s) based on what happens after visiting state s

��
��
��

��
��
��

st

a

s
t+1

r
t+1

∆ V (s) = α [r
t+1

+ Vγ
ttt

s
t+1

() V
t
(s

t
)]−

V
t+1

(s
t

) − V
t

(s
t

)

Step size
e.g. 10−1

Actual reward for
one step

Discounted estimate
of future reward

Initial estimate
of future reward

Better estimate than.....................................this

Backup diagram

Gillian Hayes RL Lecture 10 8th February 2007

Temporal Difference Learning 7

TD(0) update:

V (st) → V (st) + α[rt+1 + γV (st+1) − V (st)]

cf Dynamic Programming update:

V π(s) = Eπ{rt+1 + γV π(st+1) | st = s}

=
∑

a

π(s, a,)
∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

Gillian Hayes RL Lecture 10 8th February 2007

8

Advantages of TD Learning Methods

• Don’t need a model of the environment

• On-line and incremental so can be fast
don’t need to wait till the end of the episode so need less
memory, computation

• Updates are based on actual experience (rt+1)

• Converges to V π(s) – but must decrease step size α as learning continues

• Compare backup diagrams of TD, MC and DP

Gillian Hayes RL Lecture 10 8th February 2007

9

Bootstrapping, Sampling
TD bootstraps: it updates its estimates of V based on other estimates of V

DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of
the episode

TD samples: its updates are based on one path through the state space

MC also samples

DP does not sample: its updates are based on all actions and all states that can
be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2

MC vs TD updating: see e.g. S+B sect. 6.3

Gillian Hayes RL Lecture 10 8th February 2007

10

Difference Between TD and MC Estimates

See S+B Example 6.4:

Suppose you observe the following 8 episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

First episode starts in state A, transitions to B getting a reward of 0, and
terminates with a reward of 0. Second episode starts in state B and terminates
with a reward of 1, etc.

What are the best values for the estimates V(A) and V(B)?

Gillian Hayes RL Lecture 10 8th February 2007

11

Modelling the Underlying Markov Process

75%

25%
r=0

r=1

r=0

100%
A B

V(A) = ?

Gillian Hayes RL Lecture 10 8th February 2007

12

TD and MC Estimates

• Batch Monte Carlo (updating after all these episodes are done) gets V(A) =
0.

– This best matches the training data
– It minimises the mean-square error on the training set

• Consider sequentiality, i.e. A goes to B goes to terminating state; then V(A)
= 0.75.

– This is what TD(0) gets
– Expect that this will produce better estimate of future data even though

MC gives the best estimate on the present data

Gillian Hayes RL Lecture 10 8th February 2007

13

– Is correct for the maximum-likelihood estimate of the model of the Markov
process that generates the data, i.e. the best-fit Markov model based on
the observed transitions

– Assume this model is correct; estimate the value function – “certainty-
equivalence estimate”

TD(0) tends to converge faster because it’s moving towards a “better” estimate.

Gillian Hayes RL Lecture 10 8th February 2007

14

TD for Control: Learning Q-Values
Learn action values Qπ(s, a) for the policy π

st
st+1

rt+1
st a

t

rt+2

st+1 at+1

st+2

st
a

t
st+1 at+1

st+2 at+2
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������������������

etc

Q() Q(), ,

,, ,

SARSA update rule:

∆Qt(st, at) = α[rt+1 + γQt(st+1, at+1) − Qt(st, at)]

Gillian Hayes RL Lecture 10 8th February 2007

TD for Control: Learning Q-Values 15

• Choose a behaviour policy π and estimate the Q-values (Qπ) using the SARSA
update rule. Change π towards greediness wrt Qπ.

• Use ǫ-greedy or ǫ-soft policies.

• Converges with probability 1 to optimal policy and Q-values if visit all state-
action pairs infinitely many times and policy converges to greedy policy, e.g. by
arranging for ǫ to tend towards 0.

Remember: learning optimal Q-values is useful since it tells us immediately
which is(are) the optimal action(s) – have the highest Q-value

Gillian Hayes RL Lecture 10 8th February 2007

16

SARSA Algorithm
• Initialise Q(s, a)

• Repeat many times

– Pick s, a

– Repeat each step to goal

∗ Do a, observe r, s′

∗ Choose a′ based on Q(s′, a′) ǫ-greedy

∗ Q(s, a) = Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)]
∗ s = s′, a = a′

– Until s terminal (where Q(s′, a′) = 0)

Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of Q

Example: windy gridworld, S+B sect. 6.4

Gillian Hayes RL Lecture 10 8th February 2007

17

Q-Learning
SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning

Update rule:

∆Qt(st, at) = α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)]

Always update using maximum Q value available from next state: then Q ⇒ Q∗,
optimal action-value function

Gillian Hayes RL Lecture 10 8th February 2007

18

Q-Learning Algorithm

• Initialise Q(s, a)

• Repeat many times

– Pick s start state

– Repeat each step to goal

∗ Choose a based on Q(s, a) ǫ-greedy

∗ Do a, observe r, s′

∗ Q(s, a) = Q(s, a) + α[r + γ maxa′ Q(s′, a′) − Q(s, a)]
∗ s = s′

– Until s terminal

Gillian Hayes RL Lecture 10 8th February 2007

19

Backup Diagrams for SARSA and Q-Learning

��
��
��

��
��
��

��
��
��

��
��
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
� s a Q(s,a)

r

a’

s’

Q(s’,a’)

SARSA

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

s a

s’

Q(s,a)

Q(s’,a’)

r

a’

a’ a’*

MAX
Q−LEARNING

SARSA backs up using the action a′ actually chosen by the behaviour policy.

Q-LEARNING backs up using the Q-value of the action a′∗ that is the best next
action, i.e. the one with the highest Q value, Q(s′, a′∗). The action actually
chosen by the behaviour policy and followed is not necessarily a′∗

Example: The cliff S+B sect. 6.5

Gillian Hayes RL Lecture 10 8th February 2007

20

Q-Learning vs SARSA
QL: Q(s, a) = Q(s, a) + α[r + γ maxa′ Q(s′, a′) − Q(s, a)] off-policy

SARSA: Q(s, a) = Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)] on-policy

In the cliff-walking task:

QL: learns optimal policy along edge

SARSA: learns a safe non-optimal policy away from edge

ǫ-greedy algorithm

For ǫ 6= 0 SARSA performs better online. Why?

For ǫ → 0 gradually, both converge to optimal.

Gillian Hayes RL Lecture 10 8th February 2007

