
Dish Stacking with Reinforcement Learning

Solution Sheet

1.

a0 = Grab s0 = No Plate Held

a1 = Dry s1 = Wet Plate Held

a2 = Store s2 = Dry Plate Held

 s3 = Finished

Reward Function

 a0 a1 a2
s0 0 0 0
s1 -20 Pf(-20) + ~pf(0) = -2 5
s2 -20 Pf(-20) + ~pf(0) = -2 10
s3 0 0 0

Transition Function

a0 s0 s1 s2 s3
s0 0 1 0 0
s1 0 1 0 0
s2 0 1 0 0
s3 0 0 0 1

a1 s0 s1 s2 s3
s0 1 0 0 0
s1 0 Pf = 0.1 ~pf = 0.9 0
s2 0 Pf = 0.1 ~pf = 0.9 0
s3 0 0 0 1

a2 s0 s1 s2 s3
s0 0 0 0 1
s1 0 0 0 1
s2 0 0 0 1
s3 0 0 0 1

2. A)Example Solution: This MDP is episodic and has a terminating state “finished”. Therefore we can
set γ=1.

Set a deterministic policy, I chose to always grab. As finished is the terminal state its action does not
matter.

Policy

s0 a0
s1 a0
s2 a0

First I do a policy Evaluation to find Vpolicy

Now for a policy improvement step. First I need to determine Q(s,a)

s0

a0 -20

a1 0

a2 0

I now set the policy to greedily choose the highest value action (random if there’s a tie)

Policy

s0 a1
s1 a2
s2 a2

The policy has changes so I must do the loop again. Policy evaluation 2:

Vpolicy

Policy Improvement 2:

Q(s,a)

s0

a0 5

a1 0

a2 0

s0 0
s1 -20
s2 -20

s2

a0 -20

a1
Pf(-20) + ~pf(-20)

= -2 -18 = -20
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(-20)

= -2 -18 = -20
a2 5

s0 0
s1 5
s2 10

s2

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 5

Policy

s0 a0
s1 a1
s2 a2

Policy Evaluation 2:

Vpolicy

Policy Improvement 2:

Q(s,a)

s0

a0 7

a1 0

a2 0

Policy

s0 a0
s1 a1
s2 a2

The policy didn’t change so the algorithm is complete.

s0 5
s1 7
s2 10

s2

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 5

2B) To do a value iteration, I don’t choose an original policy and set the initial values to the highest
possible reward from possible actions

Value

Recalculate Q

s0

a0 5

a1 0

a2 0

Recalculate V

Recalculate Q

s0

a0 7

a1 0

a2 0

Recalculate V

s0 0
s1 5
s2 10

s2

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 5

s0 5
s1 7
s2 10

s2

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 5

s0 7
s1 7
s2 10

Recalculate Q

s0

a0 7

a1 0

a2 0

Recalculate V

It hasn’t changed so the iteration is complete and now we choose the policy based on the maximum
Q values

Policy

s2

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 10

s1

a0 -20

a1
Pf(-20) + ~pf(10) =

-2 + 9 = 7
a2 5

s0 7
s1 7
s2 10

s0 a0
s1 a1
s2 a2

2C) I will use ε-greedy exploration, so a policy will not always choose the maximum Q. I also need to
define a limit to the number actions before the episode terminates, I’ll choose 3. I will set γ=1.

First-visit MC (I only consider the reward of the first time I explore a state-action pair each episode):

1st “random” policy.

1st Episode (random start)

s2 –(0)-> s2 –(-20)-> s1-(0)-> s1

Estimate Q

s0

a0 0

a1 0

a2 0

2nd policy chosen based on Q with some error.

2nd Episode

s1 –(5)-> s3

Estimate Q

s0

a0 0

a1 0

a2 0

3rd Policy.

s0 a1
s1 a2
s2 a1

s2
a0 0
a1 0
a2 0

s1
a0 0
a1 0
a2 0

s0 a0
s1 a2
s2 a0

s2
a0 0
a1 0
a2 0

s1
a0 0
a1 0
a2 5

s0 a0
s1 a2
s2 a1

3rd Episode

s0 –(0)-> s1 –(5)-> s3

Estimate Q

Etc…

s2
a0 0
a1 0
a2 0

s0

a0 0.5*5 = 2.5

a1 0

a2 0
s1

a0 0
a1 0
a2 5

2D) Every-visit MC (I average the rewards that I receive from multiple explorations of a state-action
pair each episode):

1st “random” policy.

1st Episode (random start)

s2 –(0)-> s2 –(-20)-> s1-(0)-> s1

Estimate Q

s0

a0 0

a1 0

a2 0

2nd policy chosen based on Q with some error.

2nd Episode

s1 –(5)-> s3

Estimate Q

s0

a0 0

a1 0

a2 0

3rd Policy.

3rd Episode

s0 –(0)-> s1 –(5)-> s3

s0 a1
s1 a2
s2 a1

s2
a0 0
a1 (0-20)/2 = -10
a2 0

s1
a0 0
a1 0
a2 0

s0 a0
s1 a2
s2 a1

s2
a0 0
a1 -10
a2 0

s1
a0 0
a1 0
a2 5

s0 a0
s1 a2
s2 a1

Estimate Q

Etc…

s2
a0 0
a1 -10
a2 0

s0

a0 0.5*5 = 2.5

a1 0

a2 0
s1

a0 0
a1 0
a2 5

2E) I will use the same set up as in Monte Carlo but without a maximum length for each episode and
with α=0.7.

Update Q values after each step and choose action based on Q each step (with error). For SARSA

the update to a Q value uses the formula:

Q(s,a) = Q(s,a) + α(r+ γQ(s’,a’)-Q(s,a))

Where s’ is the next state and a’ is the action you will take in that state based on your policy.

Start episode at s2

s2-(10)-> s3

Update Q(s2, a2)

Start new episode at s1

s1-(0)-> s2

a2 selected as a’. Update Q(s1, a1) using value for Q(s2, a2)

s2-(10)-> s3

Update Q(s2, a2)

Start new episode at s2

At this point the ε-greedy algorithm chooses a1 for a’ rather than the action with maximum Q. The
plate then breaks while trying to dry it.

s2-(-20)-> s1

At this point the ε-greedy algorithm chooses a2 for a’ rather than the action with maximum Q.

Update Q(s2, a1) using value for Q(s1, a2)

s2
a0 0
a1 0
a2 O+0.7(10+ (0.5*0)-0) = 7

s1
a0 0
a1 0 + 0.7(0+ (0.5*7)-0) = 2.45
a2 0

s2
a0 0
a1 0
a2 7+0.7(10+ (0.5*0)-7) = 9.1

s2
a0 0
a1 0 + 0.7(-20+(0.5*0)-0) = -15
a2 9.1

2F) I will use the same set up as in Monte Carlo but without a maximum length for each episode and
with α=0.7.

For Q-Learning the update to Q(s,a) uses the formula:

Q(s,a) = Q(s,a) + α(r+ γmaxa’Q(s’,a’)-Q(s,a))

Where s’ is the next state and a’ is chosen to maximise Q(s’,a’).

Start episode at s2

s2-(10)-> s3

Update Q(s2, a2)

Start new episode at s1

s1-(0)-> s2

a2 selected as a’. Update Q(s1, a1) using value for Q(s2, a2) as this is maxa’Q(s’,a’).

s2-(10)-> s3

Update Q(s2, a2)

Start new episode at s2

At this point the ε-greedy algorithm chooses a1 for a’ rather than the action with maximum Q. The
plate then breaks while trying to dry it.

s2-(-20)-> s1

At this point the ε-greedy algorithm chooses a2 for a’ rather than the action with maximum Q.

Update Q(s2, a1) using value for Q(s1, a1) as this is maxa’Q(s’,a’).

s2
a0 0
a1 0
a2 O+0.7(10+ (0.5*0)-0) = 7

s1
a0 0
a1 0 + 0.7(0+ (0.5*7)-0) = 2.45
a2 0

s2
a0 0
a1 0
a2 7+0.7(10+ (0.5*0)-7) = 9.1

s2
a0 0
a1 0 + 0.7(-20+(0.5*2.45)-0) = -13.14
a2 9.1

5. You need to use Monte Carlo or Temporal Difference Learning as the others rely on a complete
model.

6. Increasing the ε value in an ε-greedy algorithm causes it to become more explorative rather than
exploitative. This means the learning algorithm will examine more possible actions and state pairs
while looking for an optimal policy. Setting this value too small can hinder finding the optimal policy
as the algorithm may not explore enough and never find it. On the other hand, a higher ε value can
also increase the time taken to find an optimal policy due to the increased time exploring the rest of
the state space.

