
Dish Stacking with Reinforcement Learning 

Solution Sheet 

 

1. 

 

a0 = Grab s0 = No Plate Held 

a1 = Dry  s1 = Wet Plate Held 

a2 = Store s2 = Dry Plate Held 

  s3 = Finished 

 

Reward Function 

 a0 a1 a2 
s0 0 0 0 
s1 -20 Pf(-20) + ~pf(0) = -2 5 
s2 -20 Pf(-20) + ~pf(0) = -2 10 
s3 0 0 0 

 

 

 

 

 

 

 



Transition Function 

a0 s0 s1 s2 s3 
s0 0 1 0 0 
s1 0 1 0 0 
s2 0 1 0 0 
s3 0 0 0 1 

 

 

a1 s0 s1 s2 s3 
s0 1 0 0 0 
s1 0 Pf = 0.1 ~pf = 0.9 0 
s2 0 Pf = 0.1 ~pf = 0.9 0 
s3 0 0 0 1 

 

a2 s0 s1 s2 s3 
s0 0 0 0 1 
s1 0 0 0 1 
s2 0 0 0 1 
s3 0 0 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. A)Example Solution: This MDP is episodic and has a terminating state “finished”. Therefore we can 
set γ=1. 

Set a deterministic policy, I chose to always grab. As finished is the terminal state its action does not 
matter.  

Policy     

s0 a0 
s1 a0 
s2 a0 

 

First I do a policy Evaluation to find Vpolicy 

 

 

Now for a policy improvement step. First I need to determine Q(s,a) 

s0 

a0 -20 

a1 0 

a2 0 
 

I now set the policy to greedily choose the highest value action (random if there’s a tie) 

Policy        

s0 a1 
s1 a2 
s2 a2 

 

The policy has changes so I must do the loop again. Policy evaluation 2: 

Vpolicy 

 

 

Policy Improvement 2: 

Q(s,a) 

s0 

a0 5 

a1 0 

a2 0 
 

 

 

s0 0 
s1 -20 
s2 -20 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(-20) 

= -2 -18 = -20 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(-20) 

= -2 -18 = -20 
a2 5 

s0 0 
s1 5 
s2 10 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 5 



Policy        

s0 a0 
s1 a1 
s2 a2 

 

Policy Evaluation 2: 

Vpolicy 

 

 

 

Policy Improvement 2: 

Q(s,a) 

 

s0 

a0 7 

a1 0 

a2 0 
 

Policy        

s0 a0 
s1 a1 
s2 a2 

 

The policy didn’t change so the algorithm is complete. 

 

 

 

 

 

 

 

 

 

 

s0 5 
s1 7 
s2 10 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 5 



2B) To do a value iteration, I don’t choose an original policy and set the initial values to the highest 
possible reward from possible actions 

 

Value 

 

 

Recalculate Q 

 

s0 

a0 5 

a1 0 

a2 0 
 

Recalculate V 

 

 

 

 

 

Recalculate Q 

 

s0 

a0 7 

a1 0 

a2 0 
 

Recalculate V 

 

 

 

 

 

 

 

s0 0 
s1 5 
s2 10 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 5 

s0 5 
s1 7 
s2 10 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 5 

s0 7 
s1 7 
s2 10 



Recalculate Q 

s0 

a0 7 

a1 0 

a2 0 
 

Recalculate V 

 

 

 

It hasn’t changed so the iteration is complete and now we choose the policy based on the maximum 
Q values 

Policy       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 10 

s1 

a0 -20 

a1 
Pf(-20) + ~pf(10) = 

-2 + 9 = 7 
a2 5 

s0 7 
s1 7 
s2 10 

s0 a0 
s1 a1 
s2 a2 



2C) I will use ε-greedy exploration, so a policy will not always choose the maximum Q. I also need to 
define a limit to the number actions before the episode terminates, I’ll choose 3. I will set γ=1. 

First-visit MC (I only consider the reward of the first time I explore a state-action pair each episode): 

1st “random” policy. 

 

 

1st Episode (random start) 

s2 –(0)-> s2 –(-20)-> s1-(0)-> s1 

 

Estimate Q 

 

s0 

a0 0 

a1 0 

a2 0 
 

2nd policy chosen based on Q with some error. 

 

 

 

2nd Episode  

s1 –(5)-> s3 

 

Estimate Q 

 

s0 

a0 0 

a1 0 

a2 0 
 

3rd Policy. 

 

 

 

s0 a1 
s1 a2 
s2 a1 

s2 
a0 0 
a1 0 
a2 0 

s1 
a0 0 
a1 0 
a2 0 

s0 a0 
s1 a2 
s2 a0 

s2 
a0 0 
a1 0 
a2 0 

s1 
a0 0 
a1 0 
a2 5 

s0 a0 
s1 a2 
s2 a1 



3rd Episode  

s0 –(0)-> s1 –(5)-> s3 

Estimate Q 

 

 

 

 

Etc… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2 
a0 0 
a1 0 
a2 0 

s0 

a0 0.5*5 = 2.5 

a1 0 

a2 0 
s1 

a0 0 
a1 0 
a2 5 



2D) Every-visit MC (I average the rewards that I receive from multiple explorations of a state-action 
pair each episode): 

1st “random” policy. 

 

 

1st Episode (random start) 

s2 –(0)-> s2 –(-20)-> s1-(0)-> s1 

 

Estimate Q 

 

s0 

a0 0 

a1 0 

a2 0 
 

2nd policy chosen based on Q with some error. 

 

 

 

2nd Episode  

s1 –(5)-> s3 

 

Estimate Q 

 

s0 

a0 0 

a1 0 

a2 0 
 

3rd Policy. 

 

 

3rd Episode  

s0 –(0)-> s1 –(5)-> s3 

s0 a1 
s1 a2 
s2 a1 

s2 
a0 0 
a1 (0-20)/2 = -10 
a2 0 

s1 
a0 0 
a1 0 
a2 0 

s0 a0 
s1 a2 
s2 a1 

s2 
a0 0 
a1 -10 
a2 0 

s1 
a0 0 
a1 0 
a2 5 

s0 a0 
s1 a2 
s2 a1 



Estimate Q 

 

 

 

 

Etc… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2 
a0 0 
a1 -10 
a2 0 

s0 

a0 0.5*5 = 2.5 

a1 0 

a2 0 
s1 

a0 0 
a1 0 
a2 5 



2E) I will use the same set up as in Monte Carlo but without a maximum length for each episode and 
with α=0.7. 

Update Q values after each step and choose action based on Q each step (with error). For SARSA 

the update to a Q value uses the formula: 

Q(s,a) = Q(s,a) + α(r+ γQ(s’,a’)-Q(s,a))  

Where s’ is the next state and a’ is the action you will take in that state based on your policy. 

Start episode at s2 

s2-(10)-> s3 

Update Q(s2, a2) 

 

 

Start new episode at s1 

s1-(0)-> s2 

a2 selected as a’. Update Q(s1, a1) using value for Q(s2, a2) 

 

 

s2-(10)-> s3 

Update Q(s2, a2) 

 

 

Start new episode at s2 

At this point the ε-greedy algorithm chooses a1 for a’ rather than the action with maximum Q. The 
plate then breaks while trying to dry it. 

s2-(-20)-> s1 

At this point the ε-greedy algorithm chooses a2 for a’ rather than the action with maximum Q. 

Update Q(s2, a1) using value for Q(s1, a2) 

 

 

 

 

 

s2 
a0 0 
a1 0 
a2 O+0.7(10+ (0.5*0)-0) = 7 

s1 
a0 0 
a1 0 + 0.7(0+ (0.5*7)-0) = 2.45 
a2 0 

s2 
a0 0 
a1 0 
a2 7+0.7(10+ (0.5*0)-7) = 9.1 

s2 
a0 0 
a1 0 + 0.7(-20+(0.5*0)-0) = -15 
a2 9.1 



2F) I will use the same set up as in Monte Carlo but without a maximum length for each episode and 
with α=0.7. 

For Q-Learning the update to Q(s,a) uses the formula: 

Q(s,a) = Q(s,a) + α(r+ γmaxa’Q(s’,a’)-Q(s,a))  

Where s’ is the next state and a’ is chosen to maximise Q(s’,a’). 

Start episode at s2 

s2-(10)-> s3 

Update Q(s2, a2) 

 

 

Start new episode at s1 

s1-(0)-> s2 

a2 selected as a’. Update Q(s1, a1) using value for Q(s2, a2) as this is maxa’Q(s’,a’). 

 

 

s2-(10)-> s3 

Update Q(s2, a2) 

 

 

Start new episode at s2 

At this point the ε-greedy algorithm chooses a1 for a’ rather than the action with maximum Q. The 
plate then breaks while trying to dry it. 

s2-(-20)-> s1 

At this point the ε-greedy algorithm chooses a2 for a’ rather than the action with maximum Q. 

Update Q(s2, a1) using value for Q(s1, a1) as this is maxa’Q(s’,a’). 

 

 

 

 

 

 

s2 
a0 0 
a1 0 
a2 O+0.7(10+ (0.5*0)-0) = 7 

s1 
a0 0 
a1 0 + 0.7(0+ (0.5*7)-0) = 2.45 
a2 0 

s2 
a0 0 
a1 0 
a2 7+0.7(10+ (0.5*0)-7) = 9.1 

s2 
a0 0 
a1 0 + 0.7(-20+(0.5*2.45)-0) = -13.14 
a2 9.1 



5. You need to use Monte Carlo or Temporal Difference Learning as the others rely on a complete 
model. 

6. Increasing the ε value in an ε-greedy algorithm causes it to become more explorative rather than 
exploitative. This means the learning algorithm will examine more possible actions and state pairs 
while looking for an optimal policy. Setting this value too small can hinder finding the optimal policy 
as the algorithm may not explore enough and never find it. On the other hand, a higher ε value can 
also increase the time taken to find an optimal policy due to the increased time exploring the rest of 
the state space. 


