
Randomness and Computation 2018/19
Coursework 1 (formative)

Issue date: Thursday, 31st January, 2019

The deadline for this coursework is 4pm on Thursday, 14th February 2019 (Thursday of week 5).
Please submit your solutions either electronically via submit or by hand to the ITO in Forrest Hill.
Remember to check the School’s policy on late coursework.

This coursework should be your own individual work. You may discuss understanding of the
questions with your classmates, but may not share solutions, or give strong hints. If you use any
resources apart from the course slides/notes, you must cite these in detail (on a per-question basis.)

This is a formative coursework for RC, and the mark you obtain will not be included in the
calculation of your grade for this course. However, our feedback will help you prepare a better
submission for your second coursework, which does contribute to your course grade.

1. Imagine that we have a fair coin and want to generate a stream of (uniform) random bits.
Instead of using the natural process for generating (say) the N needed bits (flip the coin N
times), we have decided we will attempt to “reuse” the randomness and generate the N bits
using only n = d2

√
Ne random flips.

To do this, we first generate n = d2
√
Ne fair random bits Z1, . . . , Zd2

√
Ne with the fair coin.

Next, we consider the index set of pairs P = {{i, j} : 1 ≤ i < j ≤ n} and for every p ∈ P we
define Yp as the exclusive-or Zi ⊕ Zj of the particular variables of the pair p = {i, j} (⊕ being
the exclusive-or operator).

This will give rise to |P| different Yp random variables.

We will also consider the “total” random variable Y =
∑|P|
p=1 Yp.

(a) Show that for every p ∈ P, Yp is 0 with probability 1/2 and 1 with probability 1/2. [4 marks]

So despite the unusual definition with ⊕, each Yi,j is a fair coin flip.

(b) Show that the number of different Yp variables (the cardinality of the set P) will be [4 marks]

greater than N.

(c) Show that every pair of the Yp variables satisfy the definition of pairwise independence, [4 marks]

and hence that E[YpYq] = E[Yp]E[Yq].

(you will need to consider 2 cases to show this)

(d) Show that the collection of {Yp : p ∈ P} variables do not satisfy the definition of mutual [4 marks]

independence.

(e) What is the expected value E[Y]? [4 marks]

(f) It is well-known that if we have a collection of random variables {Xi : 1 ≤ i ≤ k} such [4 marks]

that the Xi are pairwise independent, that Var[
∑k
i=1 Xi] =

∑k
i=1 Var[Xi].

Use this fact to calculate Var[Y] for Y =
∑|P|
p=1 Yp.

(g) Using Chebyshev’s inequality, prove an upper bound on Pr[|Y − E[Y]| ≥ n]. [6 marks]
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2. Consider a variation on the coupon collector problem where the pupils aim to fill a sticker [10 marks]

book (with different footballers), but the book only has space for n/2 players. How many
cereal packets would we expect pupils to buy before they fill their sticker book?

3. Consider a function F : {0, 1, . . . , n − 1} → {0, 1, . . . ,m − 1} and suppose we know that for
0 ≤ x, y ≤ n − 1, F((x + y) mod n) = (F(x) + F(y)) mod m. The only way we know to
evaluate F(·) is to examine the values in an array where the F(·) values have been stored
(with entry i holding the value of F(i)). Unfortunately, a system failure has corrupted up to
a 1/5-fraction of the entries of the array, so we no longer have reliable values in all positions.

Describe a simple randomized algorithm that, given an input z ∈ {0, . . . , n − 1}, outputs a [10 marks]

value that equals F(z) with probability at least 1/2. Your algorithm should guarantee this 1/2
probability of being correct for every value of z, regardless of which specific array entries were
corrupted. Your algorithm should use as few lookups and as little computation as possible.
Justify the 1/2 correctness guarantee.

Suppose you are allowed to repeat your initial algorithm three times before you return a [5 marks]

result. What should you do in this case? Justify your answer.

4. Recall our analysis of the simple “Max-Cut” (or |E|
2 -cut) algorithm in Lecture 6, and remember

we chose to place each v ∈ V into S or V \ S with even (and independent) probabilities 1/2;
recall also that this generation of S could be considered as choosing a random subset of V
(with every individual subset having the probability 2−n, regardless of its size). We showed

that when we generate S this way, the expected size of the cut (S, V \ S) is exactly |E|
2 .

Come up with a different algorithm to generate (S, V \ S) in such a way that the expected [20 marks]

size of the cut will be the slightly larger value |E|
|V |

2|V |−1 (hence showing that there is at least

one cut of this size).

Note - there will be two slightly different cases, for odd n and even n, and the factors for
these will be different (but at least |E|

|V |
2|V |−1 in each case).

5. (a) Suppose that we can obtain independent samples X1, ..., Xm of a random variable X [10 marks]

supported in [0, 1]. We want to use these samples to estimate E[X] to within an additive
error of ε with failure probability at most δ, for δ, ε ∈ (0, 1). Give an algorithm for this
problem and analyze its performance. What is the number of samples m used by your
algorithm?

(b) Given an undirected graph G = (V, E), where |V | = n, we want to assign labels to each
vertex such that the sum of the labels of each vertex and its neighbours modulo n + 1
is nonzero.

Consider the following randomized algorithm for this problem: a label in the range [15 marks]

{0, 1, 2, . . . , n} to each vertex independently and uniformly at random. If the random
labelling does not satisfy the required property try again. Show that this algorithm will
find a correct labelling with expected time that is polynomial in n.

Mary Cryan, 31st January 2019
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