Randomness and Computation 2018/19 Week 8 tutorial sheet (12-1pm, Tues 12th, Wed 13th March)

1. We are given an undirected graph G = (V, E) where each $v \in V$ is associated with a set of 8r colours S(v), for some $r \ge 1$.

The $S(\nu)$ sets may overlap or in some cases be identical, or anything in between; however we have the guarantee that for every $\nu \in V$ and every $k \in S(\nu)$, there are at most r neighbours $u \in Nbd(\nu)$ that also have $k \in S(u)$.

Prove that there is a proper (vertex) colouring which assigns a colour from S(v) to each $v \in V$ such that for every $e = (u, v) \in E$, u and v get different colours.

(in solving this, it may be helpful to define a collection of events $\{A_{u,v,k}\}$, with $A_{u,v,k}$ representing the event that both u and v get the colour k)

- 2. (Exercise 6.14) Consider the $G_{n,p}$ model for $p = p(n) = \frac{c \ln(n)}{n}$. Use the second moment method (or the conditional expectation inequality of Thm 6.10 from the book) to show that if c < 1 then for any constant $\epsilon > 0$ and for n sufficiently large, the graph has isolated vertices (vertices with no neighbours) with probability $\geq (1 \epsilon)$.
- 3. Consider the two-state Markov chain with the following transition matrix, assuming the states are named 0 and 1:

$$\mathbf{P} = \begin{bmatrix} \mathbf{p} & 1 - \mathbf{p} \\ 1 - \mathbf{p} & \mathbf{p} \end{bmatrix}$$

Find a simple expression for $P_{0,1}^t$ for general t.

4. In this question we consider a *Markov chain* on the set of *contingency tables*. A collection of *contingency tables* is defined in terms of two lists $\mathbf{r} = (\mathbf{r}_1, \ldots, \mathbf{r}_m)$ and $\mathbf{c} = (\mathbf{c}_1, \ldots, \mathbf{c}_n)$ of positive integer values. These lists are considered to be the *row sums* (the \mathbf{r}_i s) and *column sums* (the \mathbf{c}_j s) of hypothetical $\mathbf{m} \times \mathbf{n}$ tables of non-negative integers. For the given lists \mathbf{r}, \mathbf{c} , the *set of contingency tables* $\Sigma_{\mathbf{r},\mathbf{c}}$ is defined as the set of all $X \in \mathbb{N}_0^{mn}$ that satisfy the following conditions:

$$X_{i,j} \geq 0 \quad \mathrm{for \ all} \ i \in [m], j \in [n] \tag{1}$$

$$\sum_{i=1}^{n} X_{i,j} = r_i \qquad \text{for all } i \in [\mathfrak{m}]$$
(2)

$$\sum_{i=1}^{m} X_{i,j} = c_i \qquad \text{for all } j \in [n]$$
(3)

In diagrammatic form, we are interested in all the $m \times n$ tables $X \in \mathbb{N}_0^{mn}$ that have the given row runs r_1, \ldots, r_m and given column sums c_1, \ldots, c_n :

X _{1,1}	X _{1,2}	X _{1,3}	•••	X _{1,n}	r ₁
X _{2,1}	X _{2,2}	X _{2,3}	• • •	X _{2,n}	r_2
:	:	÷	:	:	:
X _{m,1}	X _{m,2}	X _{m,3}	•••	X _{m,n}	r _m
c ₁	c ₂	c ₃	•••	c _n	

Note that our given row and column sums *must* satisfy $\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} c_j$, otherwise we have $\Sigma_{r,c} = \emptyset$ (no feasible solutions).

Above is the description of the set of contingency tables $\Sigma_{r,c}$. We now define our Markov chain on the elements of $\Sigma_{r,c}$. We name the chain M, and for every two contingency tables $X, Y \in \Sigma_{r,c}$, there will be some probability M[X,Y] (maybe 0) that we move from table X to table Y in a single transition.

The transitions (single-step moves) of the Markov chain are a result of the following process: we choose two rows $i, i', i \neq i'$ from [m] independently at random, and two columns $j, j', j \neq j'$ from [n] independently at random. This random draw identifies a "mini-table" of dimensions 2×2 (note i, i' don't have to be adjacent, and neither do j, j'):

$X_{1,1}$	•••		•••			X _{1,n}	r ₁
:	:	:	:	:	:	÷	:
•••	•••	$\mathbf{X}_{i,j}$	•••	$\mathbf{X}_{i,j'}$	•••	•••	ri
:	:	:	:	:	:	:	:
•••		$\mathbf{X}_{\mathfrak{i}',\mathfrak{j}}$	•••	$\mathbf{X}_{\mathfrak{i}',\mathfrak{j}'}$	•••	•••	r _{i′}
•	÷	÷	:	:	:	÷	:
$X_{m,1}$	•••	•••	•••	•••	•••	X _{m,n}	r _m
c ₁	•••	cj	•••	c _{j'}		cn	

This 2×2 "mini-table" can be visualised independently of the remainder of that table. It will have some individual small row and column sums (depending on the current X, of course):

Claim: Focusing on the 2×2 table mapped out by i, i' and j, j', the set of all 2×2 tables with row sums a_1, a_2 , and column sums b_1, b_2 is

$$\Sigma_{\mathfrak{a},\mathfrak{b}} = \left\{ \begin{bmatrix} \mathfrak{i} & (\mathfrak{a}_1 - \mathfrak{i}) \\ (\mathfrak{b}_1 - \mathfrak{i}) & \mathfrak{i} + (\mathfrak{b}_2 - \mathfrak{a}_1) \end{bmatrix} : \max\{0, \mathfrak{a}_1 - \mathfrak{b}_2\} \le \mathfrak{i} \le \min\{\mathfrak{a}_1, \mathfrak{b}_1\} \right\}.$$

Transitions: Conditional on having already chosen i, i', j, j' as our "rows and columns", we replace the 2×2 "mini-table" by a uniform random element of $\Sigma_{a,b}$.

The Markov chain M on $\Sigma_{r,c}$: We will have M[X,Y] > 0 for any X, Y such that the non-0 entries of X - Y (the differing entries of X versus Y) lie in some 2×2 sub-matrix. Note this includes the possibility of X = Y. Note that for any such pair X, Y that satisfies this condition, the probability M[X,Y] will be $\frac{2}{m(m-1)} \frac{2}{n(n-1)}$, multiplied by $\frac{1}{|\Sigma_{\alpha,b}|}$ for the specific a_1, a_2, b_1, b_2 of that 2×2 subtable.

If the non-zero values of X - Y don't fit into a 2×2 mini-table, then M[X, Y] = 0.

(a) "warm up" for Coursework 2: Consider an example of contingency tables where we have $\mathbf{r} = (2, 2, 4), \mathbf{c} = (2, 3, 3)$. Suppose that we take the following *state* as our starting state X:

Work out the subset of contingency tables which can be reached from X in *one transition* of the Markov chain. Also work out the probability of each such transition.

Mary Cryan, 7th March