
Randomness and Computation 2018/19
Week 10 tutorial sheet (12-1pm, Tues 26th, Wed 27th March)

1. For this one, we need to examine the equations we used to analyse the time to reach a satisfying
2SAT assignment (when one exists). If you remember, in lecture 14, we derived a system of
equations characterising “hitting times” (expected time to hit state n, thus satisfying all
clauses) from state j, 0 ≤ j ≤ n− 1.

We were able to show hn = 0 and h0 = h1 + 1 for the end cases.

For all the in-between states j = 1, . . . , n− 1, we had the relationship hj =
1
2(hj+1+hj−1+ 1).

Further workings allowed us to show that

hk = hk+1 + (2k+ 1),

this also revealing that the largest hitting times were from the lowest-valued states k. We
then went on to derive the bound on hitting time from 0.

If our algorithm changes to start from a uniform random assignment, then we don’t expect
to start at k = 0. In fact, the expected number of correctly assigned variables from this
assignment will be exactly n

2 . Also we’ll be able to show that the number of assignments with
score j away from n/2 decreases exponentially as j increases. the probability that we get an
assignment with exactly n/2 variables “correct” (wrt the hidden perfect assignment) is

n · . . . · (n/2+ 1)
(n/2)!2n

,

whereas the probability of getting an assignment with only n/4 variables correct (with the
same result if we ask for 3n/4 variables correct) is much lower at

n · . . . · (3n/4+ 1)
(n/4)!2n

.

Suppose we consider for now, the expected hitting time from k = n/2. Then applying
hk = hk+1 + (2k+ 1) repeatedly, we will obtain the result that

hn/2 =

n−1∑
k=n/2

(2k+ 1) = (n/2)+ 2[

n−1∑
k=1

−

n/2∑
k=1

) = (n/2)+ 2[
n(n− 1)

2
−
n(n/2+ 1)

4
] =

3n2

4
.

Note that this is not a huge amount better than the result we got for starting at h0 (that was
n2).

We didn’t do the analysis of the weighted value of the expected k (after having the assignment)
but the majority of the probability distribution on {0, . . . , n} (after having drawn a random
assignment and checked number of variables wrong) will be strongly concentrated around
n/2, so this result is meaningful.

Overall, the answer is “not a lot” (in answer to how this would affect the running time to a
satisfying assignment).
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2. Question about vertex colourings.

(a) We have a 3-colourable graph (can have its vertices properly coloured with 3 colours)
and we are asked to create a 2-colourings where there is no triangle ({u, v,w} with all
edges present) which is “all one colour”.

Ok, as suggested by the hint, we start with the given 3-colouring. Choose any of the
three colours to eliminate - say “green” - and decide to re-colour all of the previously
green vemrtices with “blue”. This leaves a graph in which every veortex is “blue” or
“red”, so 2-coloured. Now we must prove that we have no monochromatic triangle. Well
if there was some all-“red” triangle in the graph, this would have been all-“rerd” in the
original 3-colouring (we did not add any extra red vertices), and very definitely would
not have been a 3-colouring originally. So this isn’t possible. Alternatively suppose we
had triangle all-“blue” come about as a consequence of the re-coouring of some greens.
Well, then that tells us that we only had “blue” and “green” in that triangle, before
we coloured. However, the triangle has 3 vertices, and all are connected, so two colours
could not have been enough to colour it. So again, even in the re-colouring, it can’t be
all-“blue”.

Hence no triangles are monochromatic in the re-colouring.

(b) We are asked now to consider starting with an arbitrary 2-colouring of G (which is
still a 3-colourable graph) which might have some monochromatic triangles. We are
asked to consider the random process where we choose a monochromatic triangle (from
whichever appear/remain in G) and flip the colour of any of the three vertices (each has
1/3 chance of being flipped). Our goal is to bound the number of flips needed to achieve
a 2-colouring where no triangle is monochrome.

The analysis of this process should be viewed in a similar way to that of the 2SAT
problem, in relation to some underlying 2-colouring which contains no monochromatic
triangles (since we believe such a 2-colouring does exist). However, the details are
harder/messier than for 2DNF. We start with an initial colouring c : V → {blue, red}

and we consider the evolution of c0 = c, c1, . . . , ct, . . . until we have a 2-colouring with
no monochromatic triangles.

A key statistic of the current colouring will be Yt, the number of vertices in ct with
colours different to the target. We are going to use the trick suggested in the problem
statement - instead of measuring “similarity” between ct and some hidden monochro-
matic 2-colouring, we will compare ct to a hidden proper 3-colouring of G (which we
know exists). Our measure of closeness will use the trick suggested in the hint; for every
v ∈ V
• If v has a “red” colour in our 3-coloured target, we will omit to check a match with

the underlying red v colour, we just skip-over this vertex.

• However, if v is “green”/“blue” in the hidden proper 3-colouring, then our mea-
sure Yt adds 1 if the label assigned in ct is the same, 0 otherwise.

Note we have three vertices in every triangle, and one of these will definitely be “red”
in the hidden 3-colouring, so this means we “ignore” one of the triangle’s vertices in
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our scoring - this will actually help our analysis. Note also that when we achieve a 2-
colouring which matches all “non-red” vertices of the proper 3-colouring, this 2-colouring
is guaranteed to be without monochromatic triangles. So it is enough to show our process
eventually satisfies a match in the modified scoring. For formality, for any integer value k
that Yt might take with the “check matches with all non-red vertices of the 3-colouring”
measure of similarity, we will consider the random variable Zk, this being the “number
of steps” needed to reach the target 3-colouring (ignoring red vertices) from a colouring
where Yt equals k.

We define hk = E[Zk] for k = 0, . . . , all where all is the maximum value Yt can take
(the number of non-red vertices of the hidden 3-colouring). We know all < n but the
specific value will depend on the graph and the hidden 3-colouring.

Now we consider the options when we choose a monochromatic triangle {u, v,w} in our
current colouring ct, and randomly flip one of the colours. We know that in our current
colouring ct, all of {u, v,w} are “blue”, or alternatively all of {u, v,w} are “green”. Let’s
assume all are currently “blue” without loss of generality. We also know that in our
target 3-colouring, each of {u, v,w} has a different colour, one red, one green, one blue.
With probability 1/3 we will flip the vertex whose hidden colour is “red”, this does
not change Yt or Zt at all (Yt+1 = Yt and the difference is still k). Alternatively, with
probability 1/3 we will flip the vertex with hidden colour “green”, and this will create
an extra match (as we have done “blue” → “green”) so we move from Zk to Zk+1 in
this case. In the other case, we end up flipping a blue vertex which should be blue, so
with probability 1/3 we move from Zk to Zk−1. Hence we can follow the structure of our
2SAT argument and write

E[Zj] =
1

3
(E[Zj+1] + 1) +

1

3
(E[Zj−1] + 1) +

1

3
(E[Zj] + 1),

for j = 1, . . . , all− 1.

We have omitted j = all from our list of indices as when j = all, then we have no
mono-chromatic triangle and Zall = 0.

However, by the structure of the “monochromaticity” condition, if all non-red vertices of
the graph clash with the hidden 3-colouring, then we also are in the situation where all
triangle are non-monochromatic. Hence Z0 = 0 also. This will mean that the structure
of our system of equations is slightly different to that for the 2DNF (apart from constants
being different).

This allows us to write the following system:

hj =

{
0 j = all or j = 0

1
2(hj−1 + hj+1) +

3
2 for j = 1, . . . , all− 1

(1)

We can now solve for solutions to the linear system in two directions, first working from
index 0 and upwards, then working from index all − 1 and downwards. We will prove
two relationships. First we will show that for i = 1, . . . , all− 1, we have:

hi = i
i+1hi+1 + i ·

3
2 .
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Then we will show that for all j = all− 1, . . . , 1, that

hj = all−j
all−(j−1)hj−1 + (all− j) · 32 .

As an example, consider the system (2). For the base case i = 1, note that equation (1)
tells us that h1 =

1
2(h0 + h2) +

3
2 . By h0 = 0, this is equal to h2

2 + 1 · 32 , as required.

Then for the inductive step, assume that the claim holds for some k − 1 < all − 1 and
consider i = k. By equation (1) we have hk = hk−1+hk+1

2 + 3
2 . Now using the (IH)

for i = k− 1, we can rewrite this as

hk = k−1
2k hk + (k− 1) · 34 +

hk+1

2 + 3
2

This is equivalent to

k+1
2k hk = (k− 1) · 34 +

hk+1

2 + 3
2

and multiplying across and simplifying, equivalent to

hk = 2k(k−1)
(k+1) ·

3
4 +

khk+1

(k+1) + 3k
k+1

= k
(k+1)hk+1 +

k
(k+1)((k− 1) ·

3
2 + 3)

= k
(k+1)hk+1 + k

3
2 ,

which is equation (2) for i = k. Hence by induction we have (2) for all the specified
indices. The proof of the system (3) is similar.

Now consider any specific indices m,m + 1 that are neither 0 nor all. With i = m

equation (2) gives

hm = m
m+1hm+1 +m · 32 .

With j = m+ 1, equation (3) gives

hm+1 = all−(m+1)
all−m hm + (all−m) · 32 .

We can multiply this by m
m+1 to have

m
m+1hm+1 = m(all−(m+1))

(m+1)(all−m)hm + (all−m) · m
m+1

3
2 .

Then substituting into our expression for hm above we get

hm = m(all−(m+1))
(m+1)(all−m)hm + (all−m) · m

m+1
3
2 +m ·

3
2 .

We next subtract the rhs hm from the left to get(
1− m(all−(m+1))

(m+1)(all−m)

)
hm = (all−m) · m

m+1
3
2 +m ·

3
2 ,
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which simplifies to

all
(m+1)(all−m)hm = (all−m) · m

m+1
3
2 +m ·

3
2 ,

and multiplying across by (all−m)(m+ 1),

all · hm = (all−m)(m+ 1) ·
(
(all−m) · m

m+1
3
2 +m ·

3
2

)
= 3

2m
(
(all−m)2 + (m+ 1)(all−m)

)
= 3

2m(all−m)(all+ 1).

Hence hm = m(all−m)(all+1)
all

3
2 ≤ (all+1)(m+1) 32 for all m lying between 2 and (all−2).

This is Θ(all2) = Θ(n2) (note the worst case is when m is about midway between 0
and all).

note: I know I’ve skipped over the m = 1,m = all− 1 corner cases but equation (2) or
equation (3) can be applied to these to get the answer in terms of m = 2,m = all− 2.

3. (a) If we have an input a1, . . . , an;b, let us note that |Ω|
2n is the probability that a single

random trial (where the xi are chosen uar from {0, 1}) belongs to the set of knapsack
solutions. IfΩ’s cardinality (which depends on the specific values of a1, . . . , an in relation
to b) is too small in relation to 2n, then even taking a polynomial number (eg, n, or
n2, or 6n4 . . .) of random trials, we will probably never generate an element inside Ω (a
vector x̄ ∈ {0, 1}n which satisfies the knapsack condition wrt a1, . . . , an;b). And hence
the scaled estimate will return 0, which is a very poor estimate for |Ω|.

To be specific, consider the case where b =
√
b and all ai are exactly 1. Then the

probability that a random sample from {0, 1}n is a knapsack solution (ie, has no more
than

√
n 1s) is at most(

n

b
√
nc

)
· 1

2n−
√
n
≤ n . . . (n− b

√
nc)

b
√
nc!

· 1

2n−
√
n
≤ n

√
n · 1

2n−
√
n
,

and by n = 2lg(n), we know

n
√
n · 1

2n−
√
n

=
2lg(n)·

√
n

2n−
√
n

=

(
2lg(n)

2
√
n−1

)√n
.

However, for n ≥ 16, we have lg(n) ≤
√
n, and for n “sufficiently large” (n ≥ 512 will

do), we have
√
n/2 − 1 ≥ lg(n), and then for this “n sufficiently large” the probability

above will be smaller than (2−
√
n/2)

√
n, ie, smaller than 2−n/2.

Clearly, we could never detect a success of probability ≤ 2−n/2 by taking polynomially-
many samples.

(b) Now we consider the Markov chain.
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i. To show that the chain is irreducible, we need to show that for every pair of two fea-
sible knapsack solutions x̄, z̄, there is a sequence of intermediate knapsack solutions
ȳ(0) = x̄, ȳ(1), . . . , ȳ(`) = z̄ such that M[ȳ(i), ȳ(i+ 1)] > 0 for every i, 0 ≤ i ≤ `−1.
This is simpler to show for knapsack solutions than it was for contingency tables:
define D =def {i : xi = 1 and zi = 0}, and define A =def {i : xi = 0 and zi = 1}.
Now order the indices in D as i1, . . . , i|D| (in arbitrary fashion) and for j = 1, . . . , |D|,
define ȳ(j) to be the knapsack solution ȳ(j − 1) with the ijth index now switched
from 1 to 0.
Note that by definition of ȳ(j + 1), it contains one less 1 than ȳ(j), and hence is a
feasible solution if ȳ(j) was feasible. We started at ȳ(0) =def x̄ which was feasible,
hence each of ȳ(1), . . . , ȳ(|D|) will be feasible knapsack solutions belonging to Ω (as
with each transition we have a knapsack with one fewer item). Also, by definition,
each ȳ(j) and ȳ(j + 1) differ by a single index ij and hence are connected by a
transition satisfying M[ȳ(j), ȳ(j+ 1)] > 0.
By definition, D is the set of indices which were set to 1 in x̄ but missing in z̄. Hence
by definition ȳ(|D|) is the knapsack solution which contains a 1-index in the position
which are 1 in both x̄ and z̄. Hence ȳ(|D|) is essentially the “intersection” of x̄ and z̄.
Now order the indices in A as k1, . . . , k|A| (in arbitrary fashion) and for h = 1, . . . , |A|,
define ȳ(|D| + h) to be the knapsack solution ȳ(|D| + h − 1) with the ih-th index
now switched from 0 to 1.
Note that by definition of the ȳ(|D|+h), each such vector contains a 1 for each of the
“intersection” indices plus also the indices j|D|+1, . . . , j|D|+h which belonged to z̄ but
not to x̄. Note this implies that the 1-indices of each ȳ(|D|+h) are a subset of z̄’s 1s,
and hence each ȳ(|D|+ h) is a feasible solution. Also, by definition, each ȳ(|D|+ h)
and ȳ(|D|+h+1) differ by a single index ih and hence are connected by a transition
satisfying M[ȳ(|D|+ h), ȳ(|D|+ h+ 1)] > 0.
By construction we have shown there is a path between x̄ and z̄, for arbitrary feasible
solutions x̄, z̄.
(this would have been neater had I phrased the knapsack solutions as “subsets of
[n]” rather than in the 0/1 vector form, as I could have used set operations to define
the details. Sorry about that)

ii. We now need to show that the chain is aperiodic.
For every pair of solutions x̄, z̄ we have a connecting path of length exactly |D|+ |A|,
as shown in i.. Also we know that at any step of this path which is not the all-1s
state, that we can add two transitions by “adding index i, dropping index i” for a
non-zero index. Hence a connecting path of length |D|+ |A|+ 2 is possible (it is also
possible to addd/delete a few items to add 4, 6, 8, . . . to the length of the path). The
gcd of path lengths is at most 2 (and if |A|+ |D| was odd, it is 1).
This is still not enough to be aperiodic if |D| + |A| was even. We need one extra
condition to show aperiodicity - that

∑n
i=1 ai > b (all items will not fit in the

knapsack). With this assumption, we can take any solution along the path, and
attempt “add index i” in succession for all indices which are initially 0 - at some
point we will reach full capacity and the attempted addition will fail (since we
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cannot fit all n items). On this last attempt we will have the same state/solution
appear again without any change (in other words, at this stage there is a positive
probability of transitioning to the same state). We can then remove all the extra
items one-by-one to return to our original point on the original (x̄, z̄)-path, but this
time we have added an odd number of steps to the path to obtain a (x̄, z̄)-path of
odd length overall, and hence the gcd of all such paths must be 1.

iii. Since the chain has been shown to be ergodic, we know the stationary distribution
must be unique. We consider π(·) where π(x̄) = 1

|Ω|
for every feasible knapsack x̄.

If this is to be the stationary distribution, it must be that case that π ·M = π, in
other words we must have

π(x̄) =
∑
ȳ∈Ω

π(ȳ)M[ȳ, x̄]

for every x̄ ∈ Ω. Since π(·) is uniform, this will hold if and only if∑
ȳ∈Ω

M[ȳ, x̄] = 1.

However, note that for any x̄, ȳ which are connected by a non-zero transition are
both feasible, and are different in at most one index. Because both are feasible, we
know that M[x̄, ȳ] =M[ȳ, x̄] = 1

n . Hence∑
ȳ∈Ω

M[ȳ, x̄] =
∑
ȳ∈Ω

M[x̄, ȳ],

and this latter sum is equal to 1 by the properties of a transition matrix (all rows
sum to 1).

Mary Cryan, polished 19th April
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