PROBLEM SET 1 Due: Friday, March 7, 4 p.m. at the ITO

- 1. Recall the randomized min-cut algorithm discussed in the first lecture (see Section 1.4 of the textbook). There may be several different min-cut sets in a graph. Using the analysis of the randomized min-cut algorithm, prove that there can be at most n(n-1)/2 distinct min-cut sets.
- 2. Let $X_1, X_2, \ldots, X_n, \ldots$ be an infinite sequence of independent, identically distributed (i.i.d.) random variables. (For example, each of the X_i 's might be the outcome of rolling some die once.) Suppose the X_i 's have expectation μ and (finite) standard deviation σ . Use Chebyshev's inequality to prove that, for any fixed $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr\left[\left| \frac{\sum_{i=1}^{n} X_i}{n} - \mu \right| \ge \epsilon \right] = 0.$$

- 3. Let a_1, \ldots, a_n be a list of n distinct numbers. We say that a_i and a_j are inverted if i < j but $a_i > a_j$. The *Bubblesort* sorting algorithm swaps pairwise adjacent inverted numbers in the list until there are no more inversions, so the list is in sorted order. Suppose that the input to Bubblesort is a random permutation, equally likely to be any of the n! permutations of n distinct numbers. Determine the expected number of inversions that need to be corrected by Bubblesort.
- 4. The standard proof of the Chernoff bound showing concentration for a sum $X = \sum_{i=1}^{n} X_i$ assumed that the variables X_i are independent. In this problem you are asked to prove a variant of the Chernoff bound that does *not* assume independence.

Suppose we have a set of $\{0,1\}$ -random variables X_i , $i \in [n]$, that satisfy the following "negative correlation" property:

For any $I \subseteq [n]$, it holds $\mathbf{Pr}[\bigcap_{i \in I} (X_i = 1)] \leq \prod_{i \in I} \mathbf{Pr}[X_i = 1]$.

(a) Suppose \hat{X}_i is a random variable with the same distribution as X_i , but the \hat{X}_i 's are all independent of each other. Let $\hat{X} = \sum_{i=1}^n \hat{X}_i$. Prove that for any $I \subseteq [n]$ it holds

$$\mathbf{E}\left[\prod_{i\in I} X_i\right] \leq \mathbf{E}\left[\prod_{i\in I} \hat{X}_i\right].$$

As a consequence of the above, show that $\mathbf{E}[e^{tX}] \leq \mathbf{E}[e^{t\hat{X}}]$ for any $t \geq 0$.

(b) Read the proof of the Chernoff bound in the textbook (also given in class), and show how to prove the following variant: for $\{0, 1\}$ -random variables X_i , $i \in [n]$, that satisfy the "negative correlation" property and $\delta > 0$ it holds

$$\Pr\left[X \ge \mathbf{E}[X] + n\delta\right] \le e^{-2\delta^2 n}.$$

Can you see where the proof breaks down if we want to prove the bound on the lower tail? Can you suggest a property similar to negative correlation that suffices to prove the bound on the lower tail?

5. In this problem, we will analyze a simple algorithm to learn an unknown probability distribution from samples.

A discrete probability distribution over the set $[n] = \{1, \ldots, n\}$ can be viewed as a function $p : [n] \to [0, 1]$. The number p(i) represents "the probability the distribution p assigns to point i." Hence, we have that $p(i) \ge 0$ for all $i \in [n]$, and $\sum_{i=1}^{n} p(i) = 1$. For two distributions p, q over [n] the total variation distance between p and q is the quantity $d_{TV}(p,q) := \sum_{i=1}^{n} |p(i) - q(i)|$. $(d_{TV}(p,q)$ represents a measure of the "closeness" between p and q.)

In many scenarios we are interested in *learning* an *unknown* probability distribution from samples. In more detail, a *learning algorithm* is given access to a sampling oracle for p, i.e., a "black-box" with the following property: Every invocation of the oracle (query) yields an output $s \in [n]$ that is a random variable distributed according to p (i.e., $\mathbf{Pr}[s = j] = p(j)$ for all $j \in [n]$) and is independent of all previous outputs. For a given error parameter $0 < \epsilon < 1$, the goal of the learning algorithm is to output a hypothesis distribution h over [n] such that with probability at least 2/3 (over the samples obtained from the oracle) the following condition is satisfied: $d_{TV}(p, h) \leq \epsilon$.

Given m independent samples s_1, \ldots, s_m , drawn from distribution $p: [n] \to [0, 1]$, the *empirical distribution* $\hat{p}_m: [n] \to [0, 1]$ is defined as follows: for all $i \in [n]$,

$$\widehat{p}_m(i) = \frac{|\{j \in [m] \mid s_j = i\}|}{m}.$$

Consider the following algorithm:

"Draw m samples from the oracle for p and output the distribution $h = \hat{p}_m$."

- (a) For $i \in [n]$, let $N_i = |\{j \in [m] \mid s_j = i\}|$ denote the number of samples that "land" on point *i*. Show that $\operatorname{Var}[N_i] = mp(i)(1-p(i))$.
- (b) Show that $\mathbf{E}[|p(i) \hat{p}_m(i)|] \leq \sqrt{\frac{p(i)}{m}}$. Deduce as a consequence that

$$\mathbf{E}\left[\mathrm{d}_{\mathrm{TV}}(p,\widehat{p}_m)\right] \le \sqrt{\frac{n}{m}}.$$

(Hint: Use (a) along with Jensen's inequality.)

(c) Show that there exists a constant C > 0 such that if $m \ge Cn/\epsilon^2$ the above described algorithm satisfies $d_{TV}(p,h) \le \epsilon$ with probability at least 9/10.