
Randomness and Computation Edinburgh INFR11089, Spring 2014

Problem Set 1
Due: Friday, March 7, 4 p.m. at the ITO

1. Recall the randomized min-cut algorithm discussed in the first lecture (see Section 1.4 of the
textbook). There may be several different min-cut sets in a graph. Using the analysis of the
randomized min-cut algorithm, prove that there can be at most n(n− 1)/2 distinct min-cut
sets.

2. Let X1, X2, . . . , Xn, . . . be an infinite sequence of independent, identically distributed (i.i.d.)
random variables. (For example, each of the Xi’s might be the outcome of rolling some
die once.) Suppose the Xi’s have expectation µ and (finite) standard deviation σ. Use
Chebyshev’s inequality to prove that, for any fixed ε > 0,

lim
n→∞

Pr

[∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ ≥ ε] = 0.

3. Let a1, . . . , an be a list of n distinct numbers. We say that ai and aj are inverted if i < j but
ai > aj . The Bubblesort sorting algorithm swaps pairwise adjacent inverted numbers in the
list until there are no more inversions, so the list is in sorted order. Suppose that the input
to Bubblesort is a random permutation, equally likely to be any of the n! permutations of n
distinct numbers. Determine the expected number of inversions that need to be corrected by
Bubblesort.

4. The standard proof of the Chernoff bound showing concentration for a sum X =
∑n

i=1Xi

assumed that the variables Xi are independent. In this problem you are asked to prove a
variant of the Chernoff bound that does not assume independence.

Suppose we have a set of {0, 1}–random variables Xi, i ∈ [n], that satisfy the following
“negative correlation” property:

For any I ⊆ [n], it holds Pr[∩i∈I(Xi = 1)] ≤
∏
i∈I Pr[Xi = 1].

(a) Suppose X̂i is a random variable with the same distribution as Xi, but the X̂i’s are all
independent of each other. Let X̂ =

∑n
i=1 X̂i. Prove that for any I ⊆ [n] it holds

E

[∏
i∈I

Xi

]
≤ E

[∏
i∈I

X̂i

]
.

As a consequence of the above, show that E[etX ] ≤ E[etX̂ ] for any t ≥ 0.

(b) Read the proof of the Chernoff bound in the textbook (also given in class), and show
how to prove the following variant: for {0, 1}–random variables Xi, i ∈ [n], that satisfy
the “negative correlation” property and δ > 0 it holds

Pr [X ≥ E[X] + nδ] ≤ e−2δ2n.

Can you see where the proof breaks down if we want to prove the bound on the lower
tail? Can you suggest a property similar to negative correlation that suffices to prove
the bound on the lower tail?
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5. In this problem, we will analyze a simple algorithm to learn an unknown probability distri-
bution from samples.

A discrete probability distribution over the set [n] = {1, . . . , n} can be viewed as a function p :
[n]→ [0, 1]. The number p(i) represents “the probability the distribution p assigns to point i.”
Hence, we have that p(i) ≥ 0 for all i ∈ [n], and

∑n
i=1 p(i) = 1. For two distributions p, q over

[n] the total variation distance between p and q is the quantity dTV(p, q) :=
∑n

i=1 |p(i)−q(i)|.
(dTV(p, q) represents a measure of the “closeness” between p and q.)

In many scenarios we are interested in learning an unknown probability distribution from
samples. In more detail, a learning algorithm is given access to a sampling oracle for p, i.e.,
a “black-box” with the following property: Every invocation of the oracle (query) yields an
output s ∈ [n] that is a random variable distributed according to p (i.e., Pr[s = j] = p(j)
for all j ∈ [n]) and is independent of all previous outputs. For a given error parameter
0 < ε < 1, the goal of the learning algorithm is to output a hypothesis distribution h over
[n] such that with probability at least 2/3 (over the samples obtained from the oracle) the
following condition is satisfied: dTV(p, h) ≤ ε.
Given m independent samples s1, . . . , sm, drawn from distribution p : [n]→ [0, 1], the empir-
ical distribution p̂m : [n]→ [0, 1] is defined as follows: for all i ∈ [n],

p̂m(i) =
|{j ∈ [m] | sj = i}|

m
.

Consider the following algorithm:

“Draw m samples from the oracle for p and output the distribution h = p̂m.”

(a) For i ∈ [n], let Ni = |{j ∈ [m] | sj = i}| denote the number of samples that “land” on
point i. Show that Var[Ni] = mp(i) (1− p(i)) .

(b) Show that E [|p(i)− p̂m(i)|] ≤
√

p(i)
m . Deduce as a consequence that

E [dTV(p, p̂m)] ≤
√
n

m
.

(Hint: Use (a) along with Jensen’s inequality.)

(c) Show that there exists a constant C > 0 such that if m ≥ Cn/ε2 the above described
algorithm satisfies dTV(p, h) ≤ ε with probability at least 9/10.
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