
Randomness and Computation Edinburgh INFR11089, Spring 2015

Problem Set 1
Due: Friday, February 27, 4p.m. at the ITO

1. (a) Suppose you are given a coin for which the probability of HEADS, say p, is unknown.
How can you use this coin to generate unbiased (i.e., Pr[HEADS] = Pr[TAILS] = 1/2)
coin-flips? Give an algorithm for which the expected number of flips of the biased coin
for extracting one unbiased coin-flip is no more than 1/[p(1− p)].

(b) Let a1, . . . , an be a list of n distinct numbers. We say that ai and aj are inverted if i < j
but ai > aj . The Bubblesort sorting algorithm swaps pairwise adjacent inverted numbers
in the list until there are no more inversions, so the list is in sorted order. Suppose that
the input to Bubblesort is a random permutation, equally likely to be any of the n!
permutations of n distinct numbers. Determine the expected number of inversions that
need to be corrected by Bubblesort.

2. (a) Consider the following balls-and-bin game. We start with one black ball and one white
ball in a bin. We repeatedly do the following: choose one ball from the bin uniformly at
random, and then put the ball back in the bin with another ball of the same color. We
repeat until there are n balls in the bin. Show that the number of white balls is equally
likely to be any number between 1 and n− 1.

(b) Let Y be a nonnegative integer-valued random variable with positive expectation. Prove
that

(E[Y ])2

E[Y 2]
≤ Pr[Y 6= 0] ≤ E[Y ].

3. A permutation on the numbers [n] = {1, . . . , n} can be represented as a function π : [n]→ [n],
where π(i) is the position of i in the ordering given by the permutation. A fixed point of a
permutation π : [n] → [n] is a value for which π(x) = x. Consider the following random
experiment: We pick a permutation uniformly at random from the set of all permutations
from [n] to [n]. Let F be the random variable representing the number of fixed points of a
permutation chosen uniformly at random.

(a) Find the expectation of F .

(b) Find the variance of F .

4. We have a function F : {0, 1, . . . , n−1} → {0, 1, . . . ,m−1}. We know that, for 0 ≤ x, y ≤ n−1,
F ((x + y) mod n) = (F (x) + F (y)) mod m. The only way we have for evaluating F is to
use a lookup table that stores the values of F . Unfortunately, an Evil Adversary has changed
the value of 1/5 of the table entries when we were not looking.

Describe a simple randomized algorithm that, given an input z, outputs a value that equals
F (z) with probability at least 1/2. Your algorithm should work for every value of z, regardless
of what values the Adversary changed. Your algorithm should use as few lookups and as little
computation as possible. Suppose you are allowed to repeat your initial algorithm three times.
What should you do in this case? Justify your answer.
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5. In this problem, we will analyze a simple algorithm to learn an unknown probability distri-
bution from samples.

A discrete probability distribution over the set [n] = {1, . . . , n} can be viewed as a function p :
[n]→ [0, 1]. The number p(i) represents “the probability the distribution p assigns to point i.”
Hence, we have that p(i) ≥ 0 for all i ∈ [n], and

∑n
i=1 p(i) = 1. For two distributions p, q over

[n] the total variation distance between p and q is the quantity dTV(p, q) :=
∑n

i=1 |p(i)−q(i)|.
(dTV(p, q) represents a measure of the “closeness” between p and q.)

In many scenarios we are interested in learning an unknown probability distribution from
samples. In more detail, a learning algorithm is given access to a sampling oracle for p, i.e.,
a “black-box” with the following property: Every invocation of the oracle (query) yields an
output s ∈ [n] that is a random variable distributed according to p (i.e., Pr[s = j] = p(j)
for all j ∈ [n]) and is independent of all previous outputs. For a given error parameter
0 < ε < 1, the goal of the learning algorithm is to output a hypothesis distribution h over
[n] such that with probability at least 2/3 (over the samples obtained from the oracle) the
following condition is satisfied: dTV(p, h) ≤ ε.
Given m independent samples s1, . . . , sm, drawn from distribution p : [n]→ [0, 1], the empir-
ical distribution p̂m : [n]→ [0, 1] is defined as follows: for all i ∈ [n],

p̂m(i) =
|{j ∈ [m] | sj = i}|

m
.

Consider the following algorithm:

“Draw m samples from the oracle for p and output the distribution h = p̂m.”

(a) For i ∈ [n], let Ni = |{j ∈ [m] | sj = i}| denote the number of samples that “land” on
point i. Show that Var[Ni] = mp(i) (1− p(i)) .

(b) Show that E [|p(i)− p̂m(i)|] ≤
√

p(i)
m . Deduce as a consequence that

E [dTV(p, p̂m)] ≤
√
n

m
.

(Hint: Use (a) along with Jensen’s inequality.)

(c) Show that there exists a constant C > 0 such that if m ≥ Cn/ε2 the above described
algorithm satisfies dTV(p, h) ≤ ε with probability at least 9/10.
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