Randomness and Computation or, "Randomized Algorithms"

Heng Guo (Based on slides by M. Cryan)

30 people in a room. What is the probability they share a birthday?

- Assume everyone is equally likely to be born any day (*uniform at ran-dom*). Exclude Feb 29 for neatness.
- Also assume that the birthdays are mutually independent. (E.g. no twins)

Probability p_{30diff} that all birthdays are *different* can be directly calculated

 $\frac{30!\binom{365}{30}}{365^{30}}.$

Alternatively, we can also use the principle of deferred decision. "Generate" the birthdays one by one

$$p_{30diff} = \prod_{i=1}^{30} rac{365 - (i-1)}{365} = \prod_{i=1}^{30} \left(1 - rac{(i-1)}{365}
ight) = \prod_{j=1}^{29} \left(1 - rac{j}{365}
ight).$$

Alternatively, we can also use the principle of deferred decision. "Generate" the birthdays one by one

$$p_{30diff} = \prod_{i=1}^{30} \frac{365 - (i-1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{(i-1)}{365}\right) = \prod_{j=1}^{29} \left(1 - \frac{j}{365}\right).$$

Recall that $1 + x < e^x$ for all $x \in \mathbb{R}$. Hence $(1 - \frac{j}{365}) < e^{-j/365}$ for any *j*.

$$p_{30diff} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j}\right)^{\frac{1}{365}} = \left(e^{-\sum_{j=1}^{29} j}\right)^{\frac{1}{365}} = \left(e^{-435}\right)^{\frac{1}{365}},$$

where the last step used $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$.

So far we have

$$p_{30diff} < \left(e^{-435}\right)^{\frac{1}{365}} < e^{-1.19} \approx 0.3042.$$

This approximation is pretty close, as $p_{30diff} \approx 0.2937$.

So far we have

$$p_{30diff} < \left(e^{-435}\right)^{\frac{1}{365}} < e^{-1.19} \approx 0.3042.$$

This approximation is pretty close, as $p_{30diff} \approx 0.2937$.

With probability of at least 0.7, two people at the party share a birthday.

More general framework: *n* birthday options, *m* persons

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

Continuing,

$$p_{all-m-diff} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j}\right)^{\frac{1}{n}} = \left(e^{-\sum_{j=1}^{m-1} j}\right)^{\frac{1}{n}} = e^{-\frac{(m-1)m}{2n}},$$

approximately $e^{-m^2/2n}$.

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

Continuing,

$$p_{all-m-diff} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j}\right)^{\frac{1}{n}} = \left(e^{-\sum_{j=1}^{m-1} j}\right)^{\frac{1}{n}} = e^{-\frac{(m-1)m}{2n}},$$

approximately $e^{-m^2/2n}$. Suppose we set $m = \lfloor \sqrt{n} \rfloor$, then $e^{-m^2/2n}$ becomes $\sim e^{-0.5} \sim 0.6$.

The paradox

n birthday options, *m* persons

Deterministically, there is guaranteed to have a collision (two persons sharing the same birthday) if and only if $m \ge n + 1$.

Randomly, with $m = \Omega(\sqrt{n})$, the probability of a collision is very high.

For example, if n = 365 and m = 57, $p_{diff} < 1\%$.

Balls into Bins

- m balls, n bins, and balls thrown uniformly at random and independently into bins (usually one at a time).
- Magic bins with no upper limit on capacity.
- Can be viewed as a random function $[m] \rightarrow [n]$.
- Common model of random allocations and their effects on overall *load* and *load balance*, typical *distribution* in the system.

Balls into Bins

- m balls, n bins, and balls thrown uniformly at random and independently into bins (usually one at a time).
- Magic bins with no upper limit on capacity.
- Can be viewed as a random function $[m] \rightarrow [n]$.
- Common model of random allocations and their effects on overall *load* and *load balance*, typical *distribution* in the system.

Many related questions:

- How many balls do we need to cover all bins? (Coupon collector, surjective mapping)
- How many balls will lead to a collision?
 (Birthday paradox, injective mapping)
- What is the maximum load of each bin? (Load balancing)

Load balancing

Load balancing is a very important problem, especially for networks. "Balls into Bins" is a simplified model for hashing.

A success story worth mentioning: Akamai

Consistent Hashing and Random Trees, *STOC* 1997 Karger, Lehman, Leighton, Levine, Lewin, Panigrahy

One year later, Leighton and Lewin co-founded Akamai based on this technique. They created the "Content Delivery Network" (CDN) industry. Many well-known services, including Apple, Facebook, Google / Youtube, Steam, NetFlix, (partly) rely on it.

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$\mathrm{E}[X_i] = \sum_{j=1}^n \mathrm{E}[X_{ij}] = 1.$$

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$\mathrm{E}[X_i] = \sum_{j=1}^n \mathrm{E}[X_{ij}] = 1.$$

Let $X_i > T$ be our "bad events" for some threshold *T*. Then to get a whp result via union bound, we need to at least upper bound the bad event like

$$\Pr[X_i > T] \leq \frac{1}{n^2}.$$

Thus Markov inequality is not good enough, nor is Chebyshev ($\operatorname{Var}[X_i] = \sum_{j=1}^{n} \operatorname{Var}[X_{ij}] = 1 - \frac{1}{n}$).

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$\mathrm{E}[X_i] = \sum_{j=1}^n \mathrm{E}[X_{ij}] = 1.$$

Let $X_i > T$ be our "bad events" for some threshold *T*. Then to get a whp result via union bound, we need to at least upper bound the bad event like

$$\Pr[X_i > T] \leq \frac{1}{n^2}.$$

Thus Markov inequality is not good enough, nor is Chebyshev ($\operatorname{Var}[X_i] = \sum_{j=1}^{n} \operatorname{Var}[X_{ij}] = 1 - \frac{1}{n}$).

Chernoff bounds actually work here, since X_i 's are negatively correlated. We will do a quicker "ad hoc" analysis for the upper bound first.

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3\ln(n)}{\ln\ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3\ln(n)}{\ln\ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Proof: The probability that bin *i* receives $\geq M$ balls is *at most*

$$\binom{n}{M}\frac{n^{n-M}}{n^n} = \binom{n}{M}\frac{1}{n^M}.$$

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3\ln(n)}{\ln\ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Proof: The probability that bin *i* receives $\geq M$ balls is *at most*

$$\binom{n}{M}\frac{n^{n-M}}{n^n} = \binom{n}{M}\frac{1}{n^M}.$$

Binomial coefficient satisfies

$$\left(\frac{n}{M}\right)^M \leq \binom{n}{M} \leq \frac{n^M}{M!} \leq \left(\frac{en}{M}\right)^M.$$

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{en}{nM}\right)^M = \left(\frac{e}{M}\right)^M$.

Proof of Lemma 5.1 cont'd. Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^{M}$.

Proof of Lemma 5.1 cont'd.

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^M$.

Set $M := \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that *any* bin gets $\ge M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln \ln(n)}{3\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}}$$

Proof of Lemma 5.1 cont'd.

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^M$.

Set $M := \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that *any* bin gets $\ge M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln \ln(n)}{3\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3\ln(n)}{\ln\ln(n)}}$$

Again using properties of ln, this expands as

$$e^{\ln(n)} \left(e^{\ln \ln \ln(n) - \ln \ln(n)} \right)^{\frac{3\ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(e^{-3\ln(n) + 3\frac{\ln(n)\ln \ln \ln(n)}{\ln \ln(n)}} \right).$$

Proof of Lemma 5.1 cont'd.

Grouping the ln(n)s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}.$$

Proof of Lemma 5.1 cont'd.

Grouping the $\ln(n)$ s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}$$

If we take *n* "sufficiently large" ($n \ge e^{e^{t^4}}$ will do it), then $\frac{\ln \ln \ln(n)}{\ln \ln(n)} \le 1/3$, hence the probability of *some* bin having $\ge M$ balls is at most

$$n^{-1}$$
.

Proof of Lemma 5.1 cont'd.

Grouping the $\ln(n)$ s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}$$

If we take *n* "sufficiently large" ($n \ge e^{e^{t^4}}$ will do it), then $\frac{\ln \ln \ln(n)}{\ln \ln(n)} \le 1/3$, hence the probability of *some* bin having $\ge M$ balls is at most

$$n^{-1}$$
.

Can derive a matching proof to show that "with high probability" there will be a bin with $\Omega(\frac{\ln(n)}{\ln \ln(n)})$ balls in it.

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

Surprisingly, the maximum load in this case is $\ln \ln n / \ln 2 \pm O(1)$ with probability 1 - o(1/n)!The load reduces from $O(-\ln n)$ to $O(\ln \ln n)!$

The load reduces from $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ to $\Theta(\ln \ln n)!$

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

Surprisingly, the maximum load in this case is $\ln \ln n / \ln 2 \pm O(1)$ with probability 1 - o(1/n)!The load reduces from $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ to $\Theta(\ln \ln n)!$

More generally, we may have $d \ge 2$ choices, and the resulting maximum load is $\ln \ln n / \ln d \pm O(1)$ with probability 1 - o(1/n).

This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).

$\Omega(\cdot)$ bound on the maximum load (sketch)

- We used the Union Bound in our proof of Lemma 5.1, when we multiplied by n. However, in reality, bin i has a lower chance of being "high" (say Ω(ln(n)/ln ln(n))) if other bins are already "high" (the "high-bin" events are negatively correlated).
- This means that we can't use the same approach as in Lemma 5.1 to prove a partner result of Ω(ln(n)/ln ln(n)).
- Solution is to use the fact that for the binomial distribution $B(m, \frac{1}{n})$ for an individual bin, that as $n \to \infty$,

$$\Pr[X=k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1-\frac{1}{n}\right)^{m-k} \to \frac{e^{-m/n}(m/n)^k}{k!}$$

(ie, close to the probabilities for the Poisson distribution with parameter $\mu = m/n$)

The Poisson's aren't independent but the dependance can be limited to an extra factor of $e\sqrt{m}$ (Section 5.4).

Some preliminary observations, definitions

The probability of a specific bin (bin *i*, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}$$

Expected number of empty bins: ~ $ne^{-m/n}$.

Some preliminary observations, definitions

The probability of a specific bin (bin *i*, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}$$

Expected number of empty bins: $\sim ne^{-m/n}$. Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r}$$

Note

$$p_r \sim \frac{e^{-m/n}}{r!} \left(\frac{m}{n}\right)^r.$$

Some preliminary observations, definitions

The probability of a specific bin (bin *i*, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}$$

Expected number of empty bins: $\sim ne^{-m/n}$. Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r}$$

Note

$$p_r \sim \frac{e^{-m/n}}{r!} \left(\frac{m}{n}\right)^r.$$

Definition (5.1)

A discrete *Poisson random variable X* with parameter μ is given by the following probability distribution on j = 0, 1, 2, ...

$$\Pr[X=j] = \frac{e^{-\mu}\mu^j}{j!}.$$

References and Exercises

- Sections 5.1, 5.2 of "Probability and Computing" [MU].
- On Friday we will do the lower bound and the Poisson approximation. Read Sections 5.3 and 5.4.

Exercises

- Exercise 5.3 (balls in bins when $m = c \cdot \sqrt{n}$).
- Exercise 5.10 (sequences of empty bins; this is a bit more tricky)