Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh
warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

- Assume everyone is equally likely to be born any day (*uniform at random*). Exclude Feb 29 for neatness.

- Generate birthdays one-at-a-time from the pool of 365 (*principle of deferred decisions*).

Probability $p_{30\text{diff}}$ that all birthdays are different is

$$p_{30\text{diff}} = \prod_{i=1}^{30} \frac{365 - (i - 1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{(i - 1)}{365}\right) = \prod_{j=1}^{29} \left(1 - \frac{j}{365}\right).$$

Recall that $1 + x < e^x$ for all $x \in \mathbb{R}$, hence $(1 - \frac{j}{365}) < e^{-j/365}$ for any j.
30 people in a room. What is the probability they share a birthday?

- Assume everyone is equally likely to be born any day (*uniform at random*). Exclude Feb 29 for neatness.

- Generate birthdays one-at-a-time from the pool of 365 (*principle of deferred decisions*).

Probability $p_{30\text{diff}}$ that all birthdays are *different* is

$$p_{30\text{diff}} = \prod_{i=1}^{30} \frac{365 - (i - 1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{(i - 1)}{365}\right) = \prod_{j=1}^{29} \left(1 - \frac{j}{365}\right).$$

Recall that $1 + x < e^x$ for all $x \in \mathbb{R}$, hence $(1 - \frac{j}{365}) < e^{-j/365}$ for any j.

RC (2018/19) – Lecture 9 – slide 2
Hence

\[p_{30\text{diff}} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j} \right)^{\frac{1}{365}} = \left(e^{-\sum_{j=1}^{29} j} \right)^{\frac{1}{365}} = \left(e^{-435} \right)^{\frac{1}{365}}, \]

last step using \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \). And \((e^{-435})^{\frac{1}{365}} \sim e^{-1.19} \sim 0.3 \). So with probability of at least 0.7, two people at the party share a birthday.

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]
warm-up: Birthday Paradox

Hence

\[p_{30\text{diff}} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j} \right)^{\frac{1}{365}} = \left(e^{-\sum_{j=1}^{29} j} \right)^{\frac{1}{365}} = \left(e^{-\frac{435}{2}} \right)^{\frac{1}{365}}, \]

last step using \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \). And \(\left(e^{-\frac{435}{2}} \right)^{\frac{1}{365}} \sim e^{-1.19} \sim 0.3 \). So with probability of at least 0.7, two people at the party share a birthday.

More general framework:

n birthday options, m party guests
warm-up: Birthday Paradox

Hence

\[p_{30\text{diff}} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j} \right)^{1/365} = \left(e^{- \sum_{j=1}^{29} j} \right)^{1/365} = \left(e^{-435} \right)^{1/365}, \]

last step using \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \). And \(\left(e^{-435} \right)^{1/365} \sim e^{-1.19} \sim 0.3 \). So with probability of at least 0.7, two people at the party share a birthday.

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]
warm-up: General Birthday Paradox

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]

Probability \(p_{\text{all}-m-\text{diff}} \) that all are different is

\[
p_{\text{all}-m-\text{diff}} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n} \right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n} \right).
\]

Continuing,

\[
p_{\text{all}-m-\text{diff}} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j} \right)^{1/n} = \left(e^{-\sum_{j=1}^{m-1} j} \right)^{1/n} = e^{-\frac{(m-1)m}{2n}},
\]

approximately \(e^{-m^2/2n} \).

Suppose we set \(m = \lfloor \sqrt{n} \rfloor \), then \(e^{-m^2/2n} \) becomes \(\sim e^{-0.5} \sim 0.6 \).
warm-up: General Birthday Paradox

More general framework:

\(n \) birthday options, \(m \) party guests

Probability \(p_{all-m-diff} \) that all are different is

\[
p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).
\]

Continuing,

\[
p_{all-m-diff} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j}\right)^{1/n} = \left(e^{-\sum_{j=1}^{m-1} j}\right)^{1/n} = e^{-\frac{(m-1)m}{2n}},
\]

approximately \(e^{-m^2/2n} \).

Suppose we set \(m = \lfloor \sqrt{n} \rfloor \), then \(e^{-m^2/2n} \) becomes \(\sim e^{-0.5} \sim 0.6 \).
warm-up: General Birthday Paradox

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]

Probability \(p_{\text{all-m-diff}} \) that all are \textit{different} is

\[
p_{\text{all-m-diff}} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n} \right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n} \right).
\]

Continuing,

\[
p_{\text{all-m-diff}} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j} \right)^{1/n} = \left(e^{-\sum_{j=1}^{m-1} j} \right)^{1/n} = e^{-\frac{(m-1)m}{2n}},
\]

approximately \(e^{-m^2/2n} \).

Suppose we set \(m = \lfloor \sqrt{n} \rfloor \), then \(e^{-m^2/2n} \) becomes \(\sim e^{-0.5} \sim 0.6 \).
Balls in Bins

- m balls, n bins, and balls thrown uniformly at random into bins (usually one at a time).
- Magic bins with no upper limit on capacity.
- Common model of random allocations and their affect on overall load and load balance, typical distribution in the system.
- (by the birthdays analysis) we know that for $m = \Omega(\sqrt{n})$, then there is some constant probability $c > 0$ of a birthday clash (visualiser).
- “Classic" question - what does the distribution look like for $m = n$? Max load? (with high probability results are what we want).
Balls in Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3 \ln(n)}{\ln \ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Proof

The probability that bin i receives $\geq M$ balls is at most

$$\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.$$

Expanding $\binom{n}{M}$, this is

$$\frac{n \ldots (n-M+1)}{M!} \frac{1}{n^M} \leq \frac{1}{M!}.$$

To bound $(M!)^{-1}$ note that for any k, we have $\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k$,

hence $\frac{1}{k!} \leq (\frac{e}{k})^k$. Or use Stirling ...

RC (2018/19) – Lecture 9 – slide 6
Balls in Bins maximum load

Lemma (5.1)

Let \(n \) balls be thrown independently and uniformly at random into \(n \) bins. Then for sufficiently large \(n \), the maximum load is bounded above by \(\frac{3 \ln(n)}{\ln \ln(n)} \) with probability at least \(1 - \frac{1}{n} \).

Proof The probability that bin \(i \) receives \(\geq M \) balls is at most

\[
\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.
\]

Expanding \(\binom{n}{M} \), this is

\[
\frac{n \cdots (n - M + 1)}{M!} \frac{1}{n^M} \leq \frac{1}{M!}.
\]

To bound \((M!)^{-1} \) note that for any \(k \), we have \(\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k \), hence \(\frac{1}{k!} \leq (\frac{e}{k})^k \). Or use Stirling …

RC (2018/19) – Lecture 9 – slide 6
Lemma (5.1)

Let \(n \) balls be thrown independently and uniformly at random into \(n \) bins. Then for sufficiently large \(n \), the maximum load is bounded above by \(\frac{3 \ln(n)}{\ln \ln(n)} \) with probability at least \(1 - \frac{1}{n} \).

Proof The probability that bin \(i \) receives \(\geq M \) balls is at most

\[
\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.
\]

Expanding \(\binom{n}{M} \), this is

\[
\frac{n \ldots (n-M+1)}{M!} \frac{1}{n^M} \leq \frac{1}{M!}.
\]

To bound \((M!)^{-1} \) note that for any \(k \), we have \(\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k \), hence \(\frac{1}{k!} \leq (\frac{e}{k})^k \). Or use Stirling …
Balls in Bins maximum load

Lemma (5.1)
Let \(n \) balls be thrown independently and uniformly at random into \(n \) bins. Then for sufficiently large \(n \), the maximum load is bounded above by \(\frac{3 \ln(n)}{\ln \ln(n)} \) with probability at least \(1 - \frac{1}{n} \).

Proof
The probability that bin \(i \) receives \(\geq M \) balls is at most

\[
\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.
\]

Expanding \(\binom{n}{M} \), this is

\[
\frac{n \ldots (n-M+1)}{M!} \frac{1}{n^M} \leq \frac{1}{M!}.
\]

To bound \((M!)^{-1} \) note that for any \(k \), we have \(\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k \), hence \(\frac{1}{k!} \leq (\frac{e}{k})^k \). Or use Stirling …
Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
So bin \(i\) gets \(\geq M\) bins with probability at most

\[
\left(\frac{e}{M}\right)^M.
\]

Set \(M = \frac{3 \ln(n)}{\ln \ln(n)}\). Then the probability that any bin gets \(\geq M\) balls is (using the Union bound) at most

\[
n \cdot \left(\frac{e \cdot \ln \ln(n)}{3 \ln(n)}\right)^{\frac{3 \ln(n)}{\ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{3 \frac{\ln(n)}{\ln(n)}}.
\]

Again using properties of \(\ln\), this expands as

\[
e^{\ln(n)} \left(\frac{e^{\ln \ln(n)} - \ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln(n)}} = e^{\ln(n)} \left(e^{-3 \ln(n)} + 3 \frac{\ln(n) \ln \ln(n)}{\ln(n)}\right).
\]
Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
So bin i gets $\geq M$ bins with probability at most $\left(\frac{e^M}{M} \right)$.

Set $M = e^{\frac{3\ln(n)}{\ln\ln(n)}}$. Then the probability that any bin gets $\geq M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln\ln(n)}{3 \ln(n)} \right)^{\frac{3\ln(n)}{\ln\ln(n)}} \leq n \cdot \left(\frac{\ln\ln(n)}{\ln(n)} \right)^{\frac{3\ln(n)}{\ln\ln(n)}} = e^{\ln(n)} \left(\frac{\ln\ln(n)}{\ln(n)} \right)^{\frac{3\ln(n)}{\ln\ln(n)}}.$$

Again using properties of ln, this expands as

$$e^{\ln(n)} \left(e^{\ln\ln(n) - \ln\ln(n)} \right)^{\frac{3\ln(n)}{\ln\ln(n)}} = e^{\ln(n)} \left(e^{-3\ln(n) + \frac{3\ln(n) \ln\ln(n)}{\ln\ln(n)}} \right).$$
Proof of Lemma 5.1 cont’d.
So bin i gets $\geq M$ bins with probability at most

$$
\left(\frac{e}{M} \right)^{M}.
$$

Set $M = \text{def} \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that any bin gets $\geq M$ balls is (using the Union bound) at most

$$
n \cdot \left(\frac{e \cdot \ln \ln(n)}{3 \ln(n)} \right)^{\frac{3 \ln(n)}{\ln \ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)} \right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)} \right)^{\frac{3 \ln(n)}{\ln \ln(n)}}.
$$

Again using properties of \ln, this expands as

$$
e^{\ln(n)} \left(e^{\ln \ln(n)} - \ln \ln(n) \right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(e^{-3 \ln(n)} + 3 \frac{\ln(n) \ln \ln(n)}{\ln \ln(n)} \right).
$$

\[\square \]
Proof of Lemma 5.1 cont’d.

Grouping the $\ln(n)$s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n) \ln \ln(n)}{\ln(n)}} = \frac{1}{n^2} n^{3\frac{\ln \ln(n)}{\ln(n)}}.$$

If we take n “sufficiently large” ($n \geq e^{e^{e^4}}$ will do it), then $\frac{\ln \ln(n)}{\ln(n)} \leq 1/3$, hence the probability of some bin having $\geq M$ balls is at most

$$\frac{1}{n}.$$

Can derive a matching proof to show that “with high probability” there will be a bin with $\Omega\left(\frac{\ln(n)}{\ln \ln(n)}\right)$ balls in it.
Proof of Lemma 5.1 cont’d.
Grouping the $\ln(n)$s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3 \frac{\ln(n) \ln \ln(n)}{\ln(n)}} = \frac{1}{n^2} n^{3 \frac{\ln \ln(n)}{\ln(n)}}.$$

If we take n “sufficiently large” ($n \geq e^{e^4}$ will do it), then $\frac{\ln \ln(n)}{\ln \ln(n)} \leq 1/3$, hence the probability of some bin having $\geq M$ balls is at most

$$\frac{1}{n}.$$

Can derive a matching proof to show that “with high probability” there will be a bin with $\Omega\left(\frac{\ln(n)}{\ln \ln(n)}\right)$ balls in it.
Proof of Lemma 5.1 cont’d.

Grouping the \(\ln(n) \)s in the exponents, and evaluating, we have

\[
e^{-2 \ln(n)} \cdot e^{3 \frac{\ln(n) \ln \ln(n)}{\ln(n)}} = \frac{1}{n^2} n^{3 \frac{\ln \ln(n)}{\ln(n)}}.
\]

If we take \(n \) “sufficiently large” \((n \geq e^{e^4} \) will do it), then \(\frac{\ln \ln(n)}{\ln(n)} \leq 1/3 \), hence the probability of some bin having \(\geq M \) balls is at most

\[
\frac{1}{n}.
\]

Can derive a matching proof to show that “with high probability” there will be a bin with \(\Omega(\frac{\ln(n)}{\ln \ln(n)}) \) balls in it.
\(\Omega(\cdot) \) bound on the maximum load (chat)

- We implicitly used the *Union Bound* in our proof of Lemma 5.1, when we multiplied by \(n \) on slide 7. However, in reality, bin \(i \) has a lower chance of being “high” (say \(\Omega\left(\frac{\ln(n)}{\ln\ln(n)}\right) \)) if other bins are already “high” (the “high-bin” events are *negatively correlated*).

- This means that we can’t use the same approach as in Theorem 5.1 to prove a partner result of \(\Omega\left(\frac{\ln(n)}{\ln\ln(n)}\right) \).

- Solution is to use the fact that for the binomial distribution \(B(m, \frac{1}{n}) \) for an individual bin, that as \(n \to \infty \),

\[
\Pr[X = k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \to \frac{e^{-m/n}(m/n)^k}{k!}
\]

(i.e., close to the probabilities for the Poisson distribution with parameter \(\mu = m/n \))

- The Poisson’s aren’t independent but the dependance can be limited to an extra factor of \(e^{\sqrt{m}} \) (Section 5.4).

RC (2018/19) – Lecture 9 – slide 9
Some preliminary observations, definitions

The probability is of a specific bin (bin i, say) being empty:

$$(1 - \frac{1}{n})^m \sim e^{-m/n}.$$

Expected number of empty bins: $\sim ne^{-m/n}$

Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{m-r}.$$

Note

$$p_r \sim \frac{e^{-m/n} m^r}{r!} \frac{1}{n}.$$

Definition (5.1)

A discrete Poisson random variable X with parameter μ is given by the following probability distribution on $j = 0, 1, 2, \ldots$:

$$\Pr[X = j] = e^{-\mu} \frac{\mu^j}{j!}.$$

RC (2018/19) – Lecture 9 – slide 10
References and Exercises

- Sections 5.1, 5.2 of “Probability and Computing”.
- For Friday’s lecture, try to read Sections 5.3 and 5.4 with the Ω bound for the $\Theta\left(\frac{\ln(n)}{\ln\ln(n)}\right)$ result; I plan to sketch this on Friday.

Exercises

- Exercise 5.3 (balls in bins when $m = c \cdot \sqrt{n}$).
- Exercise 5.10 (sequences of empty bins; this is a bit more tricky)