
Randomness and Computation
or, “Randomized Algorithms”

Heng Guo

(Based on slides by M. Cryan)
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warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

▶ Assume everyone is equally likely to be born any day (uniform at ran-
dom). Exclude Feb 29 for neatness.

▶ Also assume that the birthdays are mutually independent. (E.g. no
twins)

Probability p30diff that all birthdays are different can be directly calculated

30!
(365

30

)
36530 .

RC (2019/20) – Lecture 9 – slide 2



warm-up: Birthday Paradox

Alternatively, we can also use the principle of deferred decision. “Generate”
the birthdays one by one

p30diff =

30∏
i=1

365− (i− 1)
365

=

30∏
i=1

(
1−

(i− 1)
365

)
=

29∏
j=1

(
1−

j
365

)
.

Recall that 1+ x < ex for all x ∈ R. Hence (1− j
365 ) < e−j/365 for any j.

p30diff <

29∏
j=1

e−j/365 =

 29∏
j=1

e−j

 1
365

=
(
e−

∑29
j=1 j

) 1
365

=
(
e−435) 1

365 ,

where the last step used
∑n

j=1 j =
n(n+1)

2 .
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warm-up: Birthday Paradox

So far we have

p30diff <
(
e−435) 1

365 < e−1.19 ≈ 0.3042.

This approximation is pretty close, as p30diff ≈ 0.2937.

With probability of at least 0.7, two people at the party share a birthday.

More general framework: n birthday options, m persons
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warm-up: General Birthday Paradox

n birthday options, m persons

Probability pall−m−diff that all are different is

pall−m−diff =

m∏
j=1

(
1−

(j− 1)
n

)
=

m−1∏
j=1

(
1−

j
n

)
.

Continuing,

pall−m−diff ≤
m−1∏
j=1

e−j/n =

m−1∏
j=1

e−j

 1
n

=
(
e−

∑m−1
j=1 j

) 1
n
= e−

(m−1)m
2n ,

approximately e−m2/2n.
Suppose we set m = ⌊

√
n⌋, then e−m2/2n becomes ∼ e−0.5 ∼ 0.6.
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The paradox

n birthday options, m persons

Deterministically, there is guaranteed to have a collision (two persons
sharing the same birthday) if and only if m ≥ n+ 1.

Randomly, with m = Ω(
√
n), the probability of a collision is very

high.

For example, if n = 365 and m = 57, pdiff < 1%.
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Balls into Bins

▶ m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

▶ Magic bins with no upper limit on capacity.

▶ Can be viewed as a random function [m] → [n].

▶ Commonmodel of random allocations and their effects on overall load
and load balance, typical distribution in the system.

Many related questions:

▶ How many balls do we need to cover all bins?

(Coupon collector, surjective mapping)

▶ How many balls will lead to a collision?

(Birthday paradox, injective mapping)

▶ What is the maximum load of each bin?

(Load balancing)
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Load balancing

Load balancing is a very important problem, especially for networks.
“Balls into Bins” is a simplified model for hashing.

A success story worth mentioning: Akamai

Consistent Hashing and Random Trees, STOC 1997
Karger, Lehman, Leighton, Levine, Lewin, Panigrahy

One year later, Leighton and Lewin co-founded Akamai based on this tech-
nique. They created the “Content Delivery Network” (CDN) industry. Many
well-known services, including Apple, Facebook, Google / Youtube, Steam,
NetFlix, (partly) rely on it.
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Balls into Bins maximum load

We aim to bound the maximum load of the “Balls into Bins” model in the
case of m = n. For any bin i ∈ [n], its load, denoted Xi, has expectation

E[Xi] =

n∑
j=1

E[Xij] = 1.

Let Xi > T be our “bad events” for some threshold T. Then to get a whp
result via union bound, we need to at least upper bound the bad event like

Pr[Xi > T] ≤ 1
n2 .

Thus Markov inequality is not good enough, nor is Chebyshev (Var[Xi] =∑n
j=1 Var[Xij] = 1− 1

n ).

Chernoff bounds actually work here, since Xi’s are negatively correlated. We
will do a quicker “ad hoc” analysis for the upper bound first.
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Balls into Bins maximum load

Lemma (5.1)
Let n balls be thrown independently and uniformly at random into n bins.
Then for sufficiently large n, the maximum load is bounded above by 3 ln(n)

ln ln(n)
with probability at least 1− 1

n .

Proof: The probability that bin i receives ≥ M balls is at most(
n
M

)
nn−M

nn
=

(
n
M

)
1
nM

.

Binomial coefficient satisfies( n
M

)M
≤

(
n
M

)
≤ nM

M!
≤

(en
M

)M
.

Bin i gets ≥ M bins with probability at most
(

en
nM

)M
=

(
e
M

)M
.
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Bin i gets ≥ M bins with probability at most

(
e
M

)M
.

Set M := 3 ln(n)
ln ln(n) . Then the probability that any bin gets ≥ M balls is (using

the Union bound) at most

n ·
(
e · ln ln(n)
3 ln(n)

) 3 ln(n)
ln ln(n)

≤ n ·
(
ln ln(n)
ln(n)

) 3 ln(n)
ln ln(n)

= eln(n)
(
ln ln(n)
ln(n)

) 3 ln(n)
ln ln(n)

.

Again using properties of ln, this expands as

eln(n)
(
eln ln ln(n)−ln ln(n)

) 3 ln(n)
ln ln(n)

= eln(n)
(
e−3 ln(n)+3 ln(n) ln ln ln(n)

ln ln(n)

)
.
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the ln(n)s in the exponents, and evaluating, we have

e−2 ln(n) · e3
ln(n) ln ln ln(n)

ln ln(n) = n−2 · n3 ln ln ln(n)
ln ln(n) .

If we take n “sufficiently large” (n ≥ ee
e4

will do it), then ln ln ln(n)
ln ln(n) ≤ 1/3,

hence the probability of some bin having ≥ M balls is at most

n−1.

Can derive a matching proof to show that “with high probability” there will
be a bin with Ω( ln(n)

ln ln(n) ) balls in it.
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The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins, and
choose the one with the lower load.

Surprisingly, the maximum load in this case is ln ln n/ ln 2±O(1)with prob-
ability 1− o(1/n)!

The load reduces from Θ
( ln n
ln ln n

)
to Θ (ln ln n)!

More generally, we may have d ≥ 2 choices, and the resulting maximum
load is ln ln n/ ln d± O(1) with probability 1− o(1/n).

This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).
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Ω(·) bound on the maximum load (sketch)

▶ We used the Union Bound in our proof of Lemma 5.1, when we multi-
plied by n. However, in reality, bin i has a lower chance of being “high”
(say Ω( ln(n)

ln ln(n) )) if other bins are already “high” (the “high-bin” events
are negatively correlated).

▶ This means that we can’t use the same approach as in Lemma 5.1 to
prove a partner result of Ω( ln(n)

ln ln(n) ).

▶ Solution is to use the fact that for the binomial distribution B(m, 1
n )

for an individual bin, that as n → ∞,

Pr[X = k] =

(
m
k

)(
1
n

)k (
1−

1
n

)m−k → e−m/n(m/n)k

k!

(ie, close to the probabilities for the Poisson distribution with param-
eter µ = m/n)

▶ The Poisson’s aren’t independent but the dependance can be limited
to an extra factor of e

√
m (Section 5.4).
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Some preliminary observations, definitions
The probability of a specific bin (bin i, say) being empty is:(

1−
1
n

)m

∼ e−m/n.

Expected number of empty bins: ∼ ne−m/n.

Probability pr of a specific bin having r balls:

pr =

(
m
r

)(
1
n

)r (
1−

1
n

)m−r

.

Note

pr ∼
e−m/n

r!

(m
n

)r
.

Definition (5.1)
A discrete Poisson random variable X with parameter µ is given by the fol-
lowing probability distribution on j = 0, 1, 2, . . .:

Pr[X = j] =
e−µµj

j!
.
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References and Exercises

▶ Sections 5.1, 5.2 of “Probability and Computing” [MU].

▶ On Friday we will do the lower bound and the Poisson approximation.
Read Sections 5.3 and 5.4.

Exercises

▶ Exercise 5.3 (balls in bins when m = c ·
√
n).

▶ Exercise 5.10 (sequences of empty bins; this is a bit more tricky)

RC (2019/20) – Lecture 9 – slide 16


