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warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

» Assume everyone is equally likely to be born any day (uniform at
random). Exclude Feb 29 for neatness.

» Generate birthdays one-at-a-time from the pool of 365 (principle
of deferred decisions).

Probability psgqi that all birthdays are different is

30

365 (i—1) &5/ (i—1)) £ J
P3odift = H 365 = H<1 ~ 365 ) = H<1 _ﬁ)'

Recall that 14 x < e* for all x € R, hence (1— 5k) < e77/3% for any .
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warm-up: Birthday Paradox

Hence

]
29

29 365 1
/365 .y — Yy 29 j\ 365 435\ 35
Paogift < | |e 17365 — (l |e j) = (e Z"”) = (e ) )
J=1

j=1

last step using Y\, j = ”+” . (e7%%) B . o119 _ 0.3 So with
probability of at Ieast 0.7, two people at the party share a birthday.

More general framework:

n birthday options, m party guests
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warm-up: General Birthday Paradox
More general framework:
n birthday options, m party guests

Probability p,y—m—qi that all are different is

m . m—1 .
Pali—m—diff = H (1 — U;”) — (1 — ,]—7> :

J=1 J=1

Continuing,
1
m—1 m—1 n N )
g 9 . m—1 i\ n __(m—1)m
Pall—m—diff = He I/n = e/ = (e 2 j— /) = e =
J=1 j=1

approximately e /2n
Suppose we set m = |\/n|, then e~ /2" pecomes ~ e %5 ~ 0.6.
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Balls in Bins

» m balls, nbins, and balls thrown uniformly at random into bins
(usually one at a time).

» Magic bins with no upper limit on capacity.

» Common model of random allocations and their affect on overall
load and load balance, typical distribution in the system.

» (by the birthdays analysis) we know that for m = Q(+/n), then
there is some constant probability ¢ > 0 of a birthday clash
(BOARD).

» “Classic" question - what does the distribution look like for
m = n? Max load? (with high probability results are what we
want).
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Balls in Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n
bins. Then for sufficient/y large n, the maximum load is bounded

above by 3In(n W/th probability at least1 — -

Inin(n) In(n

Proof The probab|I|ty that bin / receives > M balls is at most

n\nm™M n\ 1
M) nm  \M)nM

Expanding (), this is

n....n—M+1) 1 - 1

M! M o= M
To bound (M!)~1 note that for any k, we have ’,ﬁ—l,( < Y ’f—, = e~
hence 1 < (£). Or use Stirling . ..
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Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
So bin i gets > M bins with probability at most

()

Set M =gor S0 Then the probability that any bin gets > M balls is

def Tnin(n)
(using the Unlon bound) at most

3In(n) 3In(n) 3In(n

)
(e Inin(n)\ e AInIn(n)\ PR g 'Iﬂlm(n)>m
1 ( 3in(n) ) = 7 ( in(n) ) - (In(n) '

Again using properties of In, this expands as

3In(n)
entm (e'”'”'”(”)—'”'”(”)) il gin(n) (e—3ln( n)+3 A )) .

[
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Balls in Bins maximum load

Proof of Lemma 5.1 contd.
Grouping the In(n)s in the exponents, and evaluating, we have

In(n) Ininin(n) InInin(n)
—21In(n) | 63 Inin(n) — ln3 nin(n)

né

e

64 . .
If we take n “sufficiently large" (n > e® will do it), then Ir;r:r;r:r(] <1/83,

hence the probability of some bin having > M balls is at most

1
.
=

Can derive a matching proof to show that “with high probability" there
will be a bin with Q (" InIn ) balls in it. We are going to skip over this
(can read in Sections 5. 3 and 5.4, won't be examined)
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Q(-) bound on the maximum load (chat)

» We implicitly used the Union Bound in our proof Lemma 5.1,
when we multiplied by n on slide 7. However in reality, bin / has

a lower chance of being “high" (say Q( InIn )) if other bins are
already “high" (the “high-bin" events are negat/vely correlated).

» This means that we can’t use the same approach as in
Theorem 5.1 to prove a partner result of Q( InIn ))

» Solution is to use the fact that for the binomial distribution
B(m, 1) for an individual bin, that as n — oo,

k m—Kk —m/n k
PrIX = k] = (':) (%) (1—%) 5 ° ,E(”/”)

(ie, close to the probabilities for the Poisson distribution with
parameter u = m/n)

» The Poisson’s aren’t independent but the dependance can be
limited to an extra factor of e\/m (Section 5.4).
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Average-case analysis of Bucket Sort

» |tems to be sorted are natural numbers from some bounded
range [0, 2%), some large k.

» We have a collection of empty “buckets” (extendable arrays or
lists).

» Each bucket has an “index" used to access it.

» We have some value m, the “number of prefix bits" (substantially
smaller than k). We will have a bucket for each individual {0, 1}™.

Algorithm BUCKETSORT(ay,..., an)

1. Do a linear scan of the inputs, adding a; to the bucket matching
its first m bits.

2. forevery be{0,1}"do

3. Sort bucket b with any O(n?) sorting algorithm.
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Average-case analysis of Bucket Sort

Imagine that we draw the n inputs to BUCKETSORT independently
and uniformly at random from {0, 1}¥. Hence ...

The first-m-bits of the inputs are independently uniform from {0, 1}™.
Each a; has probability 21—m of entering any bucket.
Bucket Sort can be seen as a “balls-in-bins" experiment.

Running time is @(n) for the linear scan of 1. The expected running
time for 2.-3. will be E[}_, (o 1y» C - (X5)], where X, is the number of

inputs landing in bucket b, and ¢ > 0 is the fixed constant of the
O(n?) algorithm.

We want to evaluate E[Y_, 1 1yn C- (X5)] = X pci0.1ym € - EIXG].

We are now going to use an unexpected “trick" where we exploit the
“second moment" of Binomial random variables to bound the E[X?].

RC (2016/17) — Lectures 9 and 10 — slide 11



Average-case analysis of Bucket Sort

Realise each X, is a binomial random variable B[n, 5] with
E[XZ] =n(n—1)272™ 4 n2=™,

Multiplying by 2™ (for each b € {0, 1}'"), and by c, this gives expected
time for 2.-3. at most
c- (P2~ +n).

Choose m carefully to satisfy m > Ig(n) and we see that this ensures
the expected number of steps for 2.-3. isat most2 - ¢ - n.
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The rest of the course

Lect 11
Lects 12-13

Lects 14-15
Lects 16-17
Lects 18-20

Random Graphs and Hamilton cycles (Section 5.6)

The Probabilistic method, derandomization via
Conditional expectation (bit more than half Chapter 6)

Will hold a “tutorial” in the lecture slot for Friday 10th
March (we will cover questions about Coursework 1,
and “end of printout" questions between now and then)

Markov chain basics (first half Chapter 7)
The Monte Carlo method (some of Chapter 9)
Mixing time bounds for Markov chains (Chapter 11)

| will hold the second “tutorial" in the Lecture slot of
Friday 7th April (our final meeting).
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References and Exercises

» Sections 5.1, 5.2 of “Probability and Computing". And if you are
interested in the QO bound for the @(%) result, read
Sections 5.3 and 5.4 also.

» Section 5.5 on Hashing is worth a read and has none of the
Poisson stuff (I'm skipping it because of time limitations).

Exercises

» Exercise 5.3 (balls in bins when m = ¢ - /n).

» Exercise 5.10 (sequences of empty bins; this is a bit more tricky)
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