Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan
School of Informatics
University of Edinburgh
warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

▶ Assume everyone is equally likely to be born any day (uniform at random). Exclude Feb 29 for neatness.

▶ Generate birthdays one-at-a-time from the pool of 365 (principle of deferred decisions).

Probability $p_{30\text{diff}}$ that all birthdays are different is

$$p_{30\text{diff}} = \prod_{i=1}^{30} \frac{365 - (i - 1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{i - 1}{365}\right) = \prod_{j=1}^{29} \left(1 - \frac{j}{365}\right).$$

Recall that $1 + x < e^x$ for all $x \in \mathbb{R}$, hence $\left(1 - \frac{j}{365}\right) < e^{-j/365}$ for any j.

RC (2016/17) – Lectures 9 and 10 – slide 2
Hence

\[p_{30\text{diff}} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j} \right)^{\frac{1}{365}} = \left(e^{-\sum_{j=1}^{29} j} \right)^{\frac{1}{365}} = \left(e^{-435} \right)^{\frac{1}{365}}, \]

last step using \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \). \((e^{-435})^{\frac{1}{365}} \sim e^{-1.19} \sim 0.3 \). So with probability of at least 0.7, two people at the party share a birthday.

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]
warm-up: General Birthday Paradox

More general framework:

\[n \text{ birthday options, } m \text{ party guests} \]

Probability \(p_{\text{all} - \text{m} - \text{diff}} \) that all are different is

\[
p_{\text{all} - \text{m} - \text{diff}} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n} \right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n} \right). \]

Continuing,

\[
p_{\text{all} - \text{m} - \text{diff}} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j} \right)^{1/n} = \left(e^{-\sum_{j=1}^{m-1} j} \right)^{1/n} = e^{-\frac{(m-1)m}{2n}}, \]

approximately \(e^{-m^2/2n} \).

Suppose we set \(m = \lfloor \sqrt{n} \rfloor \), then \(e^{-m^2/2n} \) becomes \(\sim e^{-0.5} \sim 0.6 \).
Balls in Bins

- m balls, n bins, and balls thrown *uniformly at random* into bins (usually one at a time).

- Magic bins with no upper limit on capacity.

- Common model of random allocations and their affect on overall *load* and *load balance*, typical *distribution* in the system.

- (by the birthdays analysis) we know that for $m = \Omega(\sqrt{n})$, then there is some constant probability $c > 0$ of a birthday clash (BOARD).

- “Classic" question - what does the distribution look like for $m = n$? Max load? (*with high probability* results are what we want).

RC (2016/17) – Lectures 9 and 10 – slide 5
Lemma (5.1)

Let \(n \) balls be thrown independently and uniformly at random into \(n \) bins. Then for sufficiently large \(n \), the maximum load is bounded above by \(\frac{3 \ln(n)}{\ln \ln(n)} \) with probability at least \(1 - \frac{1}{n} \).

Proof The probability that bin \(i \) receives \(\geq M \) balls is at most

\[
\binom{n}{M} \frac{n^{m-M}}{n^m} = \binom{n}{M} \frac{1}{n^M}.
\]

Expanding \(\binom{n}{M} \), this is

\[
\frac{n \cdots (n - M + 1)}{M!} \frac{1}{n^M} \leq \frac{1}{M!}.
\]

To bound \((M!)^{-1} \) note that for any \(k \), we have \(\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k \), hence \(\frac{1}{k!} \leq (\frac{e}{k})^k \). Or use Stirling . . .
Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
So bin i gets $\geq M$ bins with probability at most

$$\left(\frac{e}{M}\right)^M.$$

Set $M = \text{def} \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that any bin gets $\geq M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln \ln(n)}{3 \ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}}.$$

Again using properties of ln, this expands as

$$e^{\ln(n)} \left(\frac{e^{\ln \ln(n)} - \ln \ln(n)}{\ln \ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(e^{-3 \ln(n)} + \frac{3 \ln(n) \ln \ln(n)}{\ln(n)}\right).$$
Proof of Lemma 5.1 cont’d.
Grouping the $\ln(n)$s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n) \ln \ln(n)}{\ln(n)}} = \frac{1}{n^2} n^{3\frac{\ln \ln(n)}{\ln(n)}}.$$

If we take n “sufficiently large” ($n \geq e^{e^{e^4}}$ will do it), then $\frac{\ln \ln(n)}{\ln(n)} \leq 1/3$, hence the probability of some bin having $\geq M$ balls is at most

$$\frac{1}{n}.$$

Can derive a matching proof to show that “with high probability” there will be a bin with $\Omega(\frac{\ln(n)}{\ln \ln(n)})$ balls in it. We are going to skip over this (can read in Sections 5.3 and 5.4, won’t be examined)
We implicitly used the *Union Bound* in our proof Lemma 5.1, when we multiplied by n on slide 7. However, in reality, bin i has a lower chance of being “high” (say $\Omega\left(\frac{\ln(n)}{\ln \ln(n)}\right)$) if other bins are already “high” (the “high-bin” events are *negatively correlated*).

This means that we can’t use the same approach as in Theorem 5.1 to prove a partner result of $\Omega\left(\frac{\ln(n)}{\ln \ln(n)}\right)$.

Solution is to use the fact that for the binomial distribution $B(m, \frac{1}{n})$ for an individual bin, that as $n \to \infty$,

$$
\Pr[X = k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \to \frac{e^{-m/n}(m/n)^k}{k!}
$$

(i.e, close to the probabilities for the Poisson distribution with parameter $\mu = m/n$)

The Poisson’s aren’t independent but the dependance can be limited to an extra factor of $e^{\sqrt{m}}$ (Section 5.4).
Average-case analysis of Bucket Sort

- Items to be sorted are natural numbers from some bounded range $[0, 2^k)$, some large k.
- We have a collection of empty “buckets” (extendable arrays or lists).
- Each bucket has an “index” used to access it.
- We have some value m, the “number of prefix bits” (substantially smaller than k). We will have a bucket for each individual $\{0, 1\}^m$.

Algorithm $\textsc{BucketSort}(a_1, \ldots, a_n)$

1. Do a linear scan of the inputs, adding a_i to the bucket matching its first m bits.
2. for every $b \in \{0, 1\}^m$ do
3. Sort bucket b with any $O(n^2)$ sorting algorithm.
Average-case analysis of Bucket Sort

Imagine that we draw the n inputs to BUCKET SORT independently and uniformly at random from $\{0, 1\}^k$. Hence . . .

The first-m-bits of the inputs are independently uniform from $\{0, 1\}^m$.

Each a_i has probability $\frac{1}{2^m}$ of entering any bucket.

Bucket Sort can be seen as a “balls-in-bins" experiment.

Running time is $\Theta(n)$ for the linear scan of 1. The expected running time for 2.-3. will be $E\left[\sum_{b \in \{0,1\}^m} c \cdot (X_b^2)\right]$, where X_b is the number of inputs landing in bucket b, and $c > 0$ is the fixed constant of the $O(n^2)$ algorithm.

We want to evaluate $E\left[\sum_{b \in \{0,1\}^m} c \cdot (X_b^2)\right] = \sum_{b \in \{0,1\}^m} c \cdot E[X_b^2]$.

We are now going to use an unexpected “trick" where we exploit the “second moment" of Binomial random variables to bound the $E[X_b^2]$.
Average-case analysis of Bucket Sort

Realise each X_b is a binomial random variable $B[n, \frac{1}{2^m}]$ with

$$E[X_b^2] = n(n-1)2^{-2m} + n2^{-m}.$$

Multiplying by 2^m (for each $b \in \{0, 1\}^m$), and by c, this gives expected time for 2.-3. at most

$$c \cdot (n^22^{-m} + n).$$

Choose m carefully to satisfy $m \geq \lg(n)$ and we see that this ensures the expected number of steps for 2.-3. is at most $2 \cdot c \cdot n$.

RC (2016/17) – Lectures 9 and 10 – slide 12
The rest of the course

Lect 11 Random Graphs and Hamilton cycles (Section 5.6)
Lects 12-13 The Probabilistic method, derandomization via Conditional expectation (bit more than half Chapter 6)
 Will hold a “tutorial” in the lecture slot for Friday 10th March (we will cover questions about Coursework 1, and “end of printout” questions between now and then)
Lects 14-15 Markov chain basics (first half Chapter 7)
Lects 16-17 The Monte Carlo method (some of Chapter 9)
Lects 18-20 Mixing time bounds for Markov chains (Chapter 11)
 I will hold the second “tutorial” in the Lecture slot of Friday 7th April (our final meeting).
References and Exercises

▶ Sections 5.1, 5.2 of “Probability and Computing”. And if you are interested in the Ω bound for the $\Theta\left(\frac{\ln(n)}{\ln\ln(n)}\right)$ result, read Sections 5.3 and 5.4 also.

▶ Section 5.5 on Hashing is worth a read and has none of the Poisson stuff (I’m skipping it because of time limitations).

Exercises

▶ Exercise 5.3 (balls in bins when $m = c \cdot \sqrt{n}$).

▶ Exercise 5.10 (sequences of empty bins; this is a bit more tricky)