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warm-up: Birthday Paradox

Hence

1

29 55 1 1
—j/365 - _y® N\ 435, ok
Psoditt < He 17385 — (He /) = (e ZH/) = (e74) %=

j=1

last step using "7, j = 250 (e—‘"35)365 ~ e 119 L 0.3. So with
probability of at Ieast 0.7, two people at the party share a birthday.

More general framework:

n birthday options, m party guests
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warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

» Assume everyone is equally likely to be born any day (uniform at
random). Exclude Feb 29 for neatness.

» Generate birthdays one-at-a-time from the pool of 365 (principle
of deferred decisions).

Probability psqgi that all birthdays are different is

365 — ( 1) 29 j
Psow#‘HH( 365>_H<1_365>'
j:

i=1

Recall that 1 +x < e for all x € R, hence (1 — 3%5) < 71/385 for any .
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warm-up: General Birthday Paradox
More general framework:
n birthday options, m party guests
Probability p.y_m_q4i that all are different is

m . m—1 .
Pali—m—dift = H <1 U;”) = 2 (1 L)

J=1 j=

Continuing,

m—1 m—1 ! .
—J — — m—17i\ n _ (m—1)m
Paii—m—dift < e /" = e’ = (e Py J) =e =

approximately e~ /21,
Suppose we set m = |/n|, then e~™/2" pecomes ~ e %5 ~ 0.6.
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Balls in Bins

» mballs, nbins, and balls thrown uniformly at random into bins
(usually one at a time).

» Magic bins with no upper limit on capacity.

» Common model of random allocations and their affect on overall
load and load balance, typical distribution in the system.

» (by the birthdays analysis) we know that for m = Q(+/n), then
there is some constant probability ¢ > 0 of a birthday clash
(BOARD).

» “Classic" question - what does the distribution look like for
m = n? Max load? (with high probability results are what we
want).
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Balls in Bins maximum load

Proof of Lemma 5.1 contd.
So bin i gets > M bins with probability at most

()

Set M =ggr 20U ’,’, Then the probability that any bin gets > M balls is

Inin(

(using the Union bound) at most

Inin(n) ey Inin(n) ey Inin(n) Ay
e-ininn nintn ningn nin{n _ _in(n) nin{n nintn

=" < pn. (22D _ )
" ( 3in(n) ) =N < In(n) ) © ( In(n) >

Again using properties of In, this expands as

M

3In(n)

gn(m (eininln(njfinin(n))‘”‘”(”) — ghn(m (efSIn( )+3W>_
O
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Balls in Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n
bins. Then for sufficient/y large n, the maximum load is bounded
above by 2nin) ; with probability at least 1 — 1

Inin(n

Proof The probability that bin / receives > M balls is at most
n\n™M — /n 1
M) nm — \M)nM

n....n—M+1) 1 <1

Expanding (), this is

m! M = M
To bound (M!)~" note that for any k, we have & < % K — ek,
hence & < (8K Or use Stirling . ..
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Balls in Bins maximum load

Proof of Lemma 5.1 contd.
Grouping the In(n)s in the exponents, and evaluating, we have

In(n) Ininin(n) Ininin(n)
—2In(n) B wmr = 12 n° )
n

e

“ [ Ininl
If we take n “sufficiently large" (n > e will do it), then ’}nr;n”n” <1/3,

hence the probability of some bin having > M balls is at most

1
o
Ol
Can derive a matching proof to show that “with high probability" there

will be a bin with Q( o |n ) ) balls in it. We are going to skip over this
(can read in Sections 5.3 and 5.4, won'’t be examined)
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Q(-) bound on the maximum load (chat)

» We implicitly used the Union Bound in our proof Lemma 5.1,
when we multiplied by n on slide 7. However, in reality, bin i has
a lower chance of being “high" (say Q1)) if other bins are

already “high" (the “high-bin" events are negatively correlateq).

» This means that we can’t use the same approach as in

Theorem 5.1 to prove a partner result of Q).

» Solution is to use the fact that for the binomial distribution
B(m, 1) for an individual bin, that as n — oo,

« m—k —m/n K
oo (2

(ie, close to the probabilities for the Poisson distribution with
parameter w = m/n)

» The Poisson’s aren’t independent but the dependance can be
limited to an extra factor of e\/m (Section 5.4).
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Average-case analysis of Bucket Sort

Imagine that we draw the n inputs to BUCKETSORT independently
and uniformly at random from {0, 1%, Hence . ..

The first-m-bits of the inputs are independently uniform from {0, 1}™.
Each a; has probability ;—m of entering any bucket.
Bucket Sort can be seen as a “balls-in-bins" experiment.

Running time is ©(n) for the linear scan of 1. The expected running
time for 2.-3. will be E[Y_ ¢ o ,n C - (XZ)], where X} is the number of
inputs landing in bucket b, and ¢ > 0 is the fixed constant of the
O(n?) algorithm.

We want to evaluate E[}_, (g 1yn €+ (XE)] = X_pci0.1ym € - EIXE]

We are now going to use an unexpected “trick" where we exploit the
“second moment" of Binomial random variables to bound the E[XZ].
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Average-case analysis of Bucket Sort

» Items to be sorted are natural numbers from some bounded
range [0, 2%), some large k.

» We have a collection of empty “buckets" (extendable arrays or
lists).

» Each bucket has an “index" used to access it.

» We have some value m, the “number of prefix bits" (substantially
smaller than k). We will have a bucket for each individual {0, 1}™.

Algorithm BUCKETSORT(ay,...,an)

1. Do alinear scan of the inputs, adding a; to the bucket matching
its first m bits.

2. forevery be{0,1}" do

3. Sort bucket b with any O(n?) sorting algorithm.
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Average-case analysis of Bucket Sort

Realise each X, is a binomial random variable B[n, Z‘—m} with
E[XZ] = n(n—1)272™ 4 2=,
Multiplying by 2™ (for each b € {0, 1}™), and by c, this gives expected
time for 2.-3. at most
c-(nP2-™+n).

Choose m carefully to satisfy m > Ig(n) and we see that this ensures
the expected number of steps for 2.-3. isat most 2 - ¢ - n.
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The rest of the course

Lect 11 Random Graphs and Hamilton cycles (Section 5.6)

Lects 12-13 The Probabilistic method, derandomization via
Conditional expectation (bit more than half Chapter 6)

Will hold a “tutorial" in the lecture slot for Friday 10th
March (we will cover questions about Coursework 1,
and “end of printout" questions between now and then)

Lects 14-15 Markov chain basics (first half Chapter 7)
Lects 16-17 The Monte Carlo method (some of Chapter 9)
Lects 18-20 Mixing time bounds for Markov chains (Chapter 11)

| will hold the second “tutorial” in the Lecture slot of
Friday 7th April (our final meeting).
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References and Exercises

> Sections 5.1, 5.2 of “Probability and Computing". And if you are
interested in the QO bound for the ©( |A”|,§f,)7)) result, read
Sections 5.3 and 5.4 also.

» Section 5.5 on Hashing is worth a read and has none of the
Poisson stuff (I'm skipping it because of time limitations).

Exercises

» Exercise 5.3 (balls in bins when m = ¢ - /n).

» Exercise 5.10 (sequences of empty bins; this is a bit more tricky)
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