
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2016/17) – Lectures 9 and 10 – slide 1

warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

I Assume everyone is equally likely to be born any day (uniform at
random). Exclude Feb 29 for neatness.

I Generate birthdays one-at-a-time from the pool of 365 (principle
of deferred decisions).

Probability p30diff that all birthdays are different is

p30diff =

30∏
i=1

365 − (i − 1)

365
=

30∏
i=1

(
1 −

(i − 1)

365

)
=

29∏
j=1

(
1 −

j
365

)
.

Recall that 1+x < ex for all x ∈ R, hence (1− j
365) < e−j/365 for any j .

RC (2016/17) – Lectures 9 and 10 – slide 2

warm-up: Birthday Paradox

Hence

p30diff <

29∏
j=1

e−j/365 =

 29∏
j=1

e−j

 1
365

=
(

e−
∑29

j=1 j
) 1

365
=
(
e−435) 1

365 ,

last step using
∑n

j=1 j =
n(n+1)

2 .
(
e−435

) 1
365 ∼ e−1.19 ∼ 0.3. So with

probability of at least 0.7, two people at the party share a birthday.

More general framework:

n birthday options, m party guests

RC (2016/17) – Lectures 9 and 10 – slide 3

warm-up: General Birthday Paradox

More general framework:

n birthday options, m party guests

Probability pall−m−diff that all are different is

pall−m−diff =

m∏
j=1

(
1 −

(j − 1)

n

)
=

m−1∏
j=1

(
1 −

j
n

)
.

Continuing,

pall−m−diff ≤
m−1∏
j=1

e−j/n =

m−1∏
j=1

e−j

 1
n

=
(

e−
∑m−1

j=1 j
) 1

n
= e−

(m−1)m
2n ,

approximately e−m2/2n.
Suppose we set m = b√nc, then e−m2/2n becomes ∼ e−0.5 ∼ 0.6.

RC (2016/17) – Lectures 9 and 10 – slide 4

Balls in Bins

I m balls, n bins, and balls thrown uniformly at random into bins
(usually one at a time).

I Magic bins with no upper limit on capacity.

I Common model of random allocations and their affect on overall
load and load balance, typical distribution in the system.

I (by the birthdays analysis) we know that for m = Ω(
√

n), then
there is some constant probability c > 0 of a birthday clash
(BOARD).

I “Classic" question - what does the distribution look like for
m = n? Max load? (with high probability results are what we
want).

RC (2016/17) – Lectures 9 and 10 – slide 5

Balls in Bins maximum load

Lemma (5.1)
Let n balls be thrown independently and uniformly at random into n
bins. Then for sufficiently large n, the maximum load is bounded
above by 3 ln(n)

ln ln(n) with probability at least 1 − 1
n .

Proof The probability that bin i receives ≥ M balls is at most(
n
M

)
nm−M

nm =

(
n
M

)
1

nM .

Expanding
(n

M

)
, this is

n . . . (n − M + 1)

M!

1
nM ≤ 1

M!
.

To bound (M!)−1 note that for any k , we have kk

k! ≤
∑∞

i=0
k i

i! = ek ,
hence 1

k! ≤ (e
k)k . Or use Stirling . . .

RC (2016/17) – Lectures 9 and 10 – slide 6

Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
So bin i gets ≥ M bins with probability at most(e

M

)M
.

Set M =def
3 ln(n)
ln ln(n) . Then the probability that any bin gets ≥ M balls is

(using the Union bound) at most

n ·
(

e · ln ln(n)

3 ln(n)

) 3 ln(n)
ln ln(n)

≤ n ·
(

ln ln(n)

ln(n)

) 3 ln(n)
ln ln(n)

= eln(n)

(
ln ln(n)

ln(n)

) 3 ln(n)
ln ln(n)

.

Again using properties of ln, this expands as

eln(n)
(

eln ln ln(n)−ln ln(n)
) 3 ln(n)

ln ln(n)

= eln(n)
(

e−3 ln(n)+3 ln(n) ln ln ln(n)
ln ln(n)

)
.

RC (2016/17) – Lectures 9 and 10 – slide 7

Balls in Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the ln(n)s in the exponents, and evaluating, we have

e−2 ln(n) · e3 ln(n) ln ln ln(n)
ln ln(n) =

1
n2 n3 ln ln ln(n)

ln ln(n) .

If we take n “sufficiently large" (n ≥ eee4

will do it), then ln ln ln(n)
ln ln(n) ≤ 1/3,

hence the probability of some bin having ≥ M balls is at most

1
n
.

Can derive a matching proof to show that “with high probability" there
will be a bin with Ω(

ln(n)
ln ln(n)) balls in it. We are going to skip over this

(can read in Sections 5.3 and 5.4, won’t be examined)

RC (2016/17) – Lectures 9 and 10 – slide 8

Ω(·) bound on the maximum load (chat)

I We implicitly used the Union Bound in our proof Lemma 5.1,
when we multiplied by n on slide 7. However, in reality, bin i has
a lower chance of being “high" (say Ω(

ln(n)
ln ln(n))) if other bins are

already “high" (the “high-bin" events are negatively correlated).

I This means that we can’t use the same approach as in
Theorem 5.1 to prove a partner result of Ω(

ln(n)
ln ln(n)).

I Solution is to use the fact that for the binomial distribution
B(m, 1

n) for an individual bin, that as n → ∞,

Pr[X = k] =

(
m
k

)(
1
n

)k (
1 −

1
n

)m−k → e−m/n(m/n)k

k !

(ie, close to the probabilities for the Poisson distribution with
parameter µ = m/n)

I The Poisson’s aren’t independent but the dependance can be
limited to an extra factor of e

√
m (Section 5.4).

RC (2016/17) – Lectures 9 and 10 – slide 9

Average-case analysis of Bucket Sort

I Items to be sorted are natural numbers from some bounded
range [0,2k), some large k .

I We have a collection of empty “buckets" (extendable arrays or
lists).

I Each bucket has an “index" used to access it.

I We have some value m, the “number of prefix bits" (substantially
smaller than k). We will have a bucket for each individual {0,1}m.

Algorithm BUCKETSORT(a1, . . . ,an)

1. Do a linear scan of the inputs, adding ai to the bucket matching
its first m bits.

2. for every b ∈ {0,1}m do
3. Sort bucket b with any O(n2) sorting algorithm.

RC (2016/17) – Lectures 9 and 10 – slide 10

Average-case analysis of Bucket Sort

Imagine that we draw the n inputs to BUCKETSORT independently
and uniformly at random from {0,1}k . Hence . . .

The first-m-bits of the inputs are independently uniform from {0,1}m.

Each ai has probability 1
2m of entering any bucket.

Bucket Sort can be seen as a “balls-in-bins" experiment.

Running time is Θ(n) for the linear scan of 1. The expected running
time for 2.-3. will be E[

∑
b∈{0,1}m c · (X 2

b)], where Xb is the number of
inputs landing in bucket b, and c > 0 is the fixed constant of the
O(n2) algorithm.

We want to evaluate E[
∑

b∈{0,1}m c · (X 2
b)] =

∑
b∈{0,1}m c · E[X 2

b].

We are now going to use an unexpected “trick" where we exploit the
“second moment" of Binomial random variables to bound the E[X 2

b].

RC (2016/17) – Lectures 9 and 10 – slide 11

Average-case analysis of Bucket Sort

Realise each Xb is a binomial random variable B[n, 1
2m] with

E[X 2
b] = n(n − 1)2−2m + n2−m.

Multiplying by 2m (for each b ∈ {0,1}m), and by c, this gives expected
time for 2.-3. at most

c · (n22−m + n
)
.

Choose m carefully to satisfy m ≥ lg(n) and we see that this ensures
the expected number of steps for 2.-3. is at most 2 · c · n.

RC (2016/17) – Lectures 9 and 10 – slide 12

The rest of the course

Lect 11 Random Graphs and Hamilton cycles (Section 5.6)

Lects 12-13 The Probabilistic method, derandomization via
Conditional expectation (bit more than half Chapter 6)

Will hold a “tutorial" in the lecture slot for Friday 10th
March (we will cover questions about Coursework 1,
and “end of printout" questions between now and then)

Lects 14-15 Markov chain basics (first half Chapter 7)

Lects 16-17 The Monte Carlo method (some of Chapter 9)

Lects 18-20 Mixing time bounds for Markov chains (Chapter 11)

I will hold the second “tutorial" in the Lecture slot of
Friday 7th April (our final meeting).

RC (2016/17) – Lectures 9 and 10 – slide 13

References and Exercises

I Sections 5.1, 5.2 of “Probability and Computing". And if you are
interested in the Ω bound for the Θ(

ln(n)
ln ln(n)) result, read

Sections 5.3 and 5.4 also.

I Section 5.5 on Hashing is worth a read and has none of the
Poisson stuff (I’m skipping it because of time limitations).

Exercises

I Exercise 5.3 (balls in bins when m = c · √n).

I Exercise 5.10 (sequences of empty bins; this is a bit more tricky)

RC (2016/17) – Lectures 9 and 10 – slide 14

