Randomness and Computation

or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)
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warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

P> Assume everyone is equally likely to be born any day (uniform at ran-
dom). Exclude Feb 29 for neatness.

P Also assume that the birthdays are mutually independent. (E.g. no
twins)

Probability psoqif that all birthdays are different can be directly calculated
365
301 (%)
3653
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warm-up: Birthday Paradox

Alternatively, we can also use the principle of deferred decision. “Generate”
the birthdays one by one

30

B 365—(i—1) =1\ ™ J
P3odiff —H? —H<1— 365 > _H<]_:%55>'

i=1 i=1 j=1
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warm-up: Birthday Paradox

Alternatively, we can also use the principle of deferred decision. “Generate”
the birthdays one by one

30

B e (e = SR Uk A= A
poayr = | | 365 _H<1 365)_111(1 365)‘

i=1 =1

Recall that 1+ x < e* for all x € R. Hence (1 — ?)JE) < /3 for any |

i
365

29 29 3 :

—j/365 __ —j _ — 5 ® j\® _ [ _—435\ 3%

P30diﬁ”<||€j = e’ = (e 2= = (e ™)™,
=1

J=1

n(n+1)

where the last step used 27:1 j="5
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warm-up: Birthday Paradox

So far we have
paodir < (€)™ < e ~ 0.3042.

This approximation is pretty close, as p3oqif = 0.2937.
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warm-up: Birthday Paradox

So far we have
paodir < (€7°)*® < e " &~ 0.3042.
This approximation is pretty close, as p3odj =~ 0.2937.

With probability of at least 0.7, two people at the party share a birthday.

More general framework: n birthday options, m persons

RC (2019/20) — Lecture 9 — slide 4

warm-up: General Birthday Paradox

n birthday options, m persons

Probability pgj—m—dif that all are different is

Pall—m—diff = H (1_ (J;U> = 1:[ <1—i}> .

J=1 J=1
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warm-up: General Birthday Paradox

n birthday options, m persons

Probability pgi—m—dif that all are different is

o TH(-5) T ()

j=1 j=1
Continuing,
1

m—1 m—1 " 1 ()

. . m—1 -\ p m—1)m

_i/n _ _ym- _ _(mUm
Pall—m—diff < He imn = He / = (e 27 j) = e wo

J=1 J=1
m*/2n

approximately e~
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warm-up: General Birthday Paradox

n birthday options, m persons

Probability pi—m—dif that all are different is

Pall—m—diff = H (1_ (J;U> = lj_[ <1—i}> .

j:1 Jj=1
Continuing,
1

T T n p (m—1)

j i _ 5 m—1:\n _ (m—1)m

Pati—m—diff < | |e_f/” = | |e—f = (e 25 J> — e

J=1 j=1
—m?®/2n

approximately e
Suppose we set m = |\/n], then e

2
—m/2n hecomes ~ e %% ~ 0.6.
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The paradox

n birthday options, m persons

Deterministically, there is guaranteed to have a collision (two persons
sharing the same birthday) if and only if m > n+ 1.

Randomly, with m = Q(./n), the probability of a collision is very
high.

For example, if n = 365 and m = 57, pgisr < 1%.
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Balls into Bins

» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

P> Magic bins with no upper limit on capacity.
Can be viewed as a random function [m] — [n].

» Common model of random allocations and their effects on overall load
and load balance, typical distribution in the system.
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Balls into Bins

» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

» Magic bins with no upper limit on capacity.
» Can be viewed as a random function [m] — [n].

» Common model of random allocations and their effects on overall load
and load balance, typical distribution in the system.

Many related questions:

» How many balls do we need to cover all bins?

(Coupon collector, surjective mapping)

» How many balls will lead to a collision?

(Birthday paradox, injective mapping)

» What is the maximum load of each bin?

(Load balancing)
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Load balancing

Load balancing is a very important problem, especially for networks.
“Balls into Bins” is a simplified model for hashing.

A success story worth mentioning: Akamai

Consistent Hashing and Random Trees, STOC 1997
Karger, Lehman, Leighton, Levine, Lewin, Panigrahy

One year later, Leighton and Lewin co-founded Akamai based on this tech-
nique. They created the “Content Delivery Network” (CDN) industry. Many
well-known services, including Apple, Facebook, Google / Youtube, Steam,
NetFlix, (partly) rely on it.

RC (2019/20) - Lecture 9 — slide 8

Balls into Bins maximum load

We aim to bound the maximum load of the “Balls into Bins” model in the
case of m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) ElX;j] =1.
j=1
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Balls into Bins maximum load

We aim to bound the maximum load of the “Balls into Bins” model in the
case of m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) ElX;j=1.
j=1

Let X; > T be our “bad events” for some threshold T. Then to get a whp
result via union bound, we need to at least upper bound the bad event like

1
PI'[X,' > T] < -
n

Thus Markov inequality is not good enough, nor is Chebyshev (Var[X]] =
27:1 Var[X;] = 1— %).
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Balls into Bins maximum load

We aim to bound the maximum load of the “Balls into Bins” model in the
case of m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) ElXj] =1.
j=1

Let X; > T be our “bad events” for some threshold T. Then to get a whp
result via union bound, we need to at least upper bound the bad event like

1
PI'[X,‘ > T] < -
n

Thus Markov inequality is not good enough, nor is Chebyshev (Var[X;] =
27:1 Var[X;] = 1— %).

Chernoff bounds actually work here, since X;’s are negatively correlated. We
will do a quicker “ad hoc” analysis for the upper bound first.
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Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.
Then for sufficiently large n, the maximum load is bounded above by 1111?1 ((':1)]

with probability at least 1 — %
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Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.
Then for sufficiently large n, the maximum load is bounded above by 13111?1 ((':,))

with probability at least 1 — %
Proof:  The probability that bin i receives > M balls is at most

nn”_M_ni
M) nn \M) M’
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Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.

Then for sufficiently large n, the maximum load is bounded above by 1?111?1 ((':1)]

with probability at least 1 — %
Proof:  The probability that bin i receives > M balls is at most

n\ n"M _(n i
M) nn \M) M’
Binomial coefficient satisfies
n\M n i en\M
i) =) ssr=(G)
M M M! M

Bin i gets > M bins with probability at most (%)M = (A%)M

IN
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. \
Bin i gets > M bins with probability at most ().
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. \
Bin i gets > M bins with probability at most (ﬁ)

Set M= 1‘:’111’:1((';)). Then the probability that any bin gets > M balls is (using

the Union bound) at most

3In(n) 3In(n)

3In(n)
. M InIn(n) S . lnln(n) InIn(n) :eln(n) lnln(n) Inln(n) .
31In(n) In(n) In(n)
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. \
Bin i gets > M bins with probability at most (A—‘;)

Set M = lilﬁl((';]). Then the probability that any bin gets > M balls is (using
the Union bound) at most

3In(n) 3In(n) 3In(n)
e-Inln(n) | »r Inln(n) \ »=07 in(n) (InIn(n) =R
n-| ————— < n- =e .
31n(n) In(n) In(n)

Again using properties of In, this expands as

3In(n)
In(n) Inlnln(n)

eln(n) (elnlnln(n)flnln(n])1“1“(”) — eln(n) (e—3ln(n)+3w) )
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)s in the exponents, and evaluating, we have

In(n) Inlnln(n) Inlnln(n)
eiZln(n] . e3 Inln(n) — niz - n Inln(n) .
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)s in the exponents, and evaluating, we have

In(n) Inlnln(n) Inlnln(n)
7211’1(") . e3 Inln(n) — niz - n Inln(n) .

e

A
If we take n “sufficiently large” (n > e¢ will do it), then h;ﬁ;?ﬁ;’) <1/3,
hence the probability of some bin having > M balls is at most

n . ]
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)s in the exponents, and evaluating, we have

In(n) Inlnln(n) Inlnln(n)
elel’l(ﬂ] . e3 Inln(n) — niz . n3 Inln(n) .

34
If we take n “sufficiently large” (n > e¢ will do it), then h;ﬂrll?r(";) <1/3,

hence the probability of some bin having > M balls is at most

n . O

Can derive a matching proof to show that “with high probability” there will

be a bin with Q(I:I‘r(l'(’i)) balls in it.

RC (2019/20) - Lecture 9 — slide 12

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins, and
choose the one with the lower load.
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The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins, and
choose the one with the lower load.

Surprisingly, the maximum load in this case is InIn n/In 2+ O(1) with prob-
ability 1—o(1/n)!
The load reduces from © ( Inn ) to © (Inln n)!

Inlnn
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The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins, and
choose the one with the lower load.

Surprisingly, the maximum load in this case is InIn n/In 24+ O(1) with prob-
ability 1— o(1/n)!
The load reduces from © ( Inn ) to © (Inln n)!

Inlnn

More generally, we may have d > 2 choices, and the resulting maximum
load is Inln n/1In d+ O(1) with probability 1— o(1/n).

This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).
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Q(-) bound on the maximum load (sketch)

» We used the Union Bound in our proof of Lemma 5.1, when we multi-
plied by n. However, in reality, bin i has a lower chance of being “high”
(say Q(Iﬁé'gi) )) if other bins are already “high” (the “high-bin” events
are negatively correlated).

P> This means that we can’t use the same approach as in Lemma 5.1 to
In(n)
Inln(n) )

prove a partner result of Q(

» Solution is to use the fact that for the binomial distribution B(m, %)
for an individual bin, that as n — oo,

k m—k —m/n
e - () (-2) -

(ie, close to the probabilities for the Poisson distribution with param-
eter w = m/n)

» The Poisson’s aren’t independent but the dependance can be limited
to an extra factor of ey/m (Section 5.4).
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Some preliminary observations, definitions
The probability of a specific bin (bin /, say) being empty is:

m
1—1 ~e m/n,
n

Expected number of empty bins: ~ ne="/".
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Some preliminary observations, definitions
The probability of a specific bin (bin i, say) being empty is:

m
1—1 ~e M,
n

Expected number of empty bins: ~ ne=™/".

Probability p, of a specific bin having r balls:
(MG (-5
pr = - 1— - .
r n n

A NG
(2

r! n

Note
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Some preliminary observations, definitions
The probability of a specific bin (bin /, say) being empty is:

m
1—1 ~emn,
n

Expected number of empty bins: ~ ne="/".

Probability p, of a specific bin having r balls:
BIOICOE
pr = - 1— - .
r n n

e M/ rmNr
e (5)

rl n

Note

Definition (5.1)
A discrete Poisson random variable X with parameter p is given by the fol-
lowing probability distribution on j =0,1,2,...:
efp'uj
J!
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References and Exercises

» Sections 5.1, 5.2 of “Probability and Computing” [MU].

» On Friday we will do the lower bound and the Poisson approximation.
Read Sections 5.3 and 5.4.

Exercises

» Exercise 5.3 (balls in bins when m = ¢ \/n).

P Exercise 5.10 (sequences of empty bins; this is a bit more tricky)
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