Randomness and Computation
or, “Randomized Algorithms”
Mary Cryan
School of Informatics
University of Edinburgh

warm-up: Birthday Paradox
Hence
\[
p_{30\text{diff}} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j} \right)^{1/365} = \left(e^{-\sum_{j=1}^{29} j} \right)^{1/365} = \left(e^{-435} \right)^{1/365},
\]
last step using \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \). And \(e^{-435} \approx e^{-1.9} \approx 0.3 \). So with probability of at least 0.7, two people at the party share a birthday.

More general framework:
\(n \) birthday options, \(m \) party guests

Recall that \(1 + x < e^x \) for all \(x \in \mathbb{R} \), hence \(1 - \frac{j}{365} < e^{-j/365} \) for any \(j \).

More general framework:
\(n \) birthday options, \(m \) party guests

Probability \(p_{\text{all--m--diff}} \) that all are different is
\[
p_{\text{all--m--diff}} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n} \right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n} \right).
\]
Continuing,
\[
p_{\text{all--m--diff}} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j} \right)^{1/n} = \left(e^{-\sum_{j=1}^{m-1} j} \right)^{1/n} = e^{-\frac{(m-1)m}{2n}},
\]
approximately \(e^{-m^2/2n} \).
Suppose we set \(m = \lfloor \sqrt{n} \rfloor \), then \(e^{-m^2/2n} \) becomes \(e^{-0.5} \approx 0.6 \).

warm-up: General Birthday Paradox

More general framework:
\(n \) birthday options, \(m \) party guests

Probability \(p_{\text{all--m--diff}} \) that all are different is
\[
p_{\text{all--m--diff}} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n} \right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n} \right).
\]
Balls in Bins

- m balls, n bins, and balls thrown uniformly at random into bins (usually one at a time).
- Magic bins with no upper limit on capacity.
- Common model of random allocations and their affect on overall load and load balance, typical distribution in the system.
- (by the birthdays analysis) we know that for \(m = \Omega(\sqrt{n}) \), then there is some constant probability \(c > 0 \) of a birthday clash (visualiser).
- “Classic” question - what does the distribution look like for \(m = n \)? Max load? (with high probability results are what we want).

Balls in Bins maximum load

Lemma (5.1)

Let \(n \) balls be thrown independently and uniformly at random into \(n \) bins. Then for sufficiently large \(n \), the maximum load is bounded above by \(\frac{3 \ln(n)}{3 \ln(n) - 1} \) with probability at least \(1 - \frac{1}{n} \).

Proof The probability that bin \(i \) receives \(\geq M \) balls is at most

\[
\left(\frac{n}{M} \right)^{n - M} = \left(\frac{n}{M} \right) \frac{1}{M^M}.
\]

Expanding \(\left(\frac{n}{M} \right) \), this is

\[
\frac{n(n-1)...(n-M+1)}{M!} \cdot \frac{1}{M^M} \leq \frac{1}{M!}.
\]

To bound \((M!)^{-1} \) note that for any \(k \), we have \(\frac{k^k}{k!} \leq \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k \), hence \(\frac{1}{k!} \leq \left(\frac{e}{k} \right)^k \). Or use Stirling...

Proof of Lemma 5.1 cont’d.

So bin \(i \) gets \(\geq M \) balls with probability at most

\[
\left(\frac{e^M}{M} \right).
\]

Set \(M = \defn \frac{3 \ln(n)}{3 \ln(n) - 1} \). Then the probability that any bin gets \(\geq M \) balls is (using the Union bound) at most

\[
n \cdot \left(\frac{e \cdot \ln(n)}{3 \ln(n)} \right)^{\frac{3 \ln(n)}{3 \ln(n) - 1}} = e^\ln(n) \left(\frac{\ln(n)}{\ln(n)} \right)^{\frac{3 \ln(n)}{3 \ln(n) - 1}}.
\]

Again using properties of \(\ln \), this expands as

\[
e^{\ln(n)} \left(e^{\ln(n) - \ln(n)} \right)^{\frac{3 \ln(n)}{3 \ln(n) - 1}} = e^{\ln(n)} \left(e^{\frac{3 \ln(n) - 3 \ln(n) + 3 \ln(n)}{3 \ln(n) - 1}} \right).
\]

\[\square\]

Proof of Lemma 5.1 cont’d.

Grouping the \(\ln(n) \)’s in the exponents, and evaluating, we have

\[
e^{-2 \ln(n)} \cdot \frac{e^{\frac{3 \ln(n) \ln(n)}{3 \ln(n) - 1}}}{n^3} = \frac{1}{n^2} n^{\frac{3 \ln(n) \ln(n)}{3 \ln(n) - 1}}.
\]

If we take \(n \) “sufficiently large” \(n \geq e^{-a} \) will do it, then \(\frac{\ln(n) \ln(n)}{\ln(n)} \leq 1/3 \), hence the probability of some bin having \(\geq M \) balls is at most

\[
\frac{1}{n}.
\]

\[\square\]

Can derive a matching proof to show that “with high probability” there will be a bin with \(\Omega(\frac{\ln(n)}{\ln(n)}) \) balls in it.
We implicitly used the Union Bound in our proof of Lemma 5.1, when we multiplied by n on slide 7. However, in reality, bin i has a lower chance of being "high" (say $\Omega(\frac{\ln(n)}{\ln \ln(n)})$) if other bins are already "high" (the "high-bin" events are negatively correlated).

This means that we can’t use the same approach as in Theorem 5.1 to prove a partner result of $\Omega(\frac{\ln(n)}{\ln \ln(n)})$.

Solution is to use the fact that for the binomial distribution $B(m, \frac{1}{n})$ for an individual bin, that as $n \to \infty$,

$$\Pr[X = k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \rightarrow e^{-m/n} \frac{(m/n)^k}{k!}$$

(i.e., close to the probabilities for the Poisson distribution with parameter $\mu = m/n$)

The Poisson’s aren’t independent but the dependance can be limited to an extra factor of $e\sqrt{m}$ (Section 5.4).

Some preliminary observations, definitions

The probability is of a specific bin (bin i, say) being empty:

$$(1 - \frac{1}{n})^m \sim e^{-m/n}.$$

Expected number of empty bins: $\sim ne^{-m/n}$

Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{m-r}.$$

Note

$$p_r \sim e^{-m/n} \frac{m^r}{r!} \frac{1}{n}.$$

Definition (5.1)

A discrete Poisson random variable X with parameter μ is given by the following probability distribution on $j = 0, 1, 2, \ldots$:

$$\Pr[X = j] = e^{-\mu} \frac{\mu^j}{j!}.$$