Randomness and Computation

or, "Randomized Algorithms"

Heng Guo (Based on slides by M. Cryan)

warm-up: Birthday Paradox

Alternatively, we can also use the principle of deferred decision. "Generate" the birthdays one by one

$$p_{30diff} = \prod_{i=1}^{30} \frac{365 - (i-1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{(i-1)}{365} \right) = \prod_{i=1}^{29} \left(1 - \frac{j}{365} \right).$$

Recall that $1 + x < e^x$ for all $x \in \mathbb{R}$. Hence $(1 - \frac{j}{365}) < e^{-j/365}$ for any j.

$$p_{30diff} < \prod_{j=1}^{29} e^{-j/365} = \left(\prod_{j=1}^{29} e^{-j}\right)^{\frac{1}{365}} = \left(e^{-\sum_{j=1}^{29} j}\right)^{\frac{1}{365}} = \left(e^{-435}\right)^{\frac{1}{365}},$$

where the last step used $\sum_{i=1}^{n} j = \frac{n(n+1)}{2}$.

RC (2019/20) – Lecture 9 – slide 1

warm-up: Birthday Paradox

Alternatively, we can also use the principle of deferred decision. "Generate" the birthdays one by one

$$p_{30diff} = \prod_{i=1}^{30} \frac{365 - (i-1)}{365} = \prod_{i=1}^{30} \left(1 - \frac{(i-1)}{365}\right) = \prod_{j=1}^{29} \left(1 - \frac{j}{365}\right).$$

warm-up: Birthday Paradox

30 people in a room. What is the probability they share a birthday?

- Assume everyone is equally likely to be born any day (uniform at random). Exclude Feb 29 for neatness.
- ▶ Also assume that the birthdays are mutually independent. (E.g. no twins)

Probability p_{30diff} that all birthdays are different can be directly calculated

$$\frac{30!\binom{365}{30}}{365^{30}}$$
.

RC (2019/20) – Lecture 9 – slide 2

warm-up: Birthday Paradox

So far we have

$$p_{30diff} < (e^{-435})^{\frac{1}{365}} < e^{-1.19} \approx 0.3042.$$

This approximation is pretty close, as $p_{30diff} \approx 0.2937$.

RC (2019/20) – Lecture 9 – slide 4

warm-up: Birthday Paradox

So far we have

$$p_{30 diff} < \left(e^{-435}\right)^{\frac{1}{365}} < e^{-1.19} \approx 0.3042.$$

This approximation is pretty close, as $p_{30diff} \approx 0.2937$.

With probability of at least 0.7, two people at the party share a birthday.

More general framework: *n* birthday options, *m* persons

RC (2019/20) – Lecture 9 – slide 4

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{i=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{i=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

Continuing,

$$p_{all-m-diff} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j}\right)^{\frac{1}{n}} = \left(e^{-\sum_{j=1}^{m-1} j}\right)^{\frac{1}{n}} = e^{-\frac{(m-1)m}{2n}},$$

approximately $e^{-m^2/2n}$.

RC (2019/20) – Lecture 9 – slide 5

warm-up: General Birthday Paradox

n birthday options, *m* persons

Probability $p_{all-m-diff}$ that all are *different* is

$$p_{all-m-diff} = \prod_{j=1}^{m} \left(1 - \frac{(j-1)}{n}\right) = \prod_{j=1}^{m-1} \left(1 - \frac{j}{n}\right).$$

Continuing,

$$p_{all-m-diff} \leq \prod_{j=1}^{m-1} e^{-j/n} = \left(\prod_{j=1}^{m-1} e^{-j}\right)^{\frac{1}{n}} = \left(e^{-\sum_{j=1}^{m-1} j}\right)^{\frac{1}{n}} = e^{-\frac{(m-1)m}{2n}},$$

approximately $e^{-m^2/2n}$.

Suppose we set $m = \lfloor \sqrt{n} \rfloor$, then $e^{-m^2/2n}$ becomes $\sim e^{-0.5} \sim 0.6$.

RC (2019/20) – Lecture 9 – slide 5

The paradox

n birthday options, *m* persons

Deterministically, there is guaranteed to have a collision (two persons sharing the same birthday) if and only if $m \ge n + 1$.

Randomly, with $m = \Omega(\sqrt{n})$, the probability of a collision is very high.

For example, if n = 365 and m = 57, $p_{diff} < 1\%$.

RC (2019/20) – Lecture 9 – slide 6

Balls into Bins

- ► *m* balls, *n* bins, and balls thrown uniformly at random and independently into bins (usually one at a time).
- ▶ Magic bins with no upper limit on capacity.
- ightharpoonup Can be viewed as a random function $[m] \rightarrow [n]$.
- Common model of random allocations and their effects on overall *load* and *load balance*, typical *distribution* in the system.

Balls into Bins

- ▶ *m* balls, *n* bins, and balls thrown uniformly at random and independently into bins (usually one at a time).
- ► Magic bins with no upper limit on capacity.
- ▶ Can be viewed as a random function $[m] \rightarrow [n]$.
- Common model of random allocations and their effects on overall *load* and *load balance*, typical *distribution* in the system.

Many related questions:

- How many balls do we need to cover all bins? (Coupon collector, surjective mapping)
- How many balls will lead to a collision? (Birthday paradox, injective mapping)
- What is the maximum load of each bin? (Load balancing)

RC (2019/20) – Lecture 9 – slide 7

Load balancing

Load balancing is a very important problem, especially for networks. "Balls into Bins" is a simplified model for hashing.

A success story worth mentioning: Akamai

Consistent Hashing and Random Trees, *STOC* 1997 Karger, Lehman, Leighton, Levine, Lewin, Panigrahy

One year later, Leighton and Lewin co-founded Akamai based on this technique. They created the "Content Delivery Network" (CDN) industry. Many well-known services, including Apple, Facebook, Google / Youtube, Steam, NetFlix, (partly) rely on it.

RC (2019/20) – Lecture 9 – slide 8

Balls into Bins maximum load

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$E[X_i] = \sum_{i=1}^n E[X_{ij}] = 1.$$

Let $X_i > T$ be our "bad events" for some threshold T. Then to get a whp result via union bound, we need to at least upper bound the bad event like

$$\Pr[X_i > T] \leq \frac{1}{n^2}.$$

Thus Markov inequality is not good enough, nor is Chebyshev $(Var[X_i] = \sum_{j=1}^{n} Var[X_{ij}] = 1 - \frac{1}{n})$.

Balls into Bins maximum load

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$E[X_i] = \sum_{j=1}^n E[X_{ij}] = 1.$$

RC (2019/20) – Lecture 9 – slide 9

Balls into Bins maximum load

We aim to bound the maximum load of the "Balls into Bins" model in the case of m = n. For any bin $i \in [n]$, its load, denoted X_i , has expectation

$$E[X_i] = \sum_{i=1}^n E[X_{ij}] = 1.$$

Let $X_i > T$ be our "bad events" for some threshold T. Then to get a whp result via union bound, we need to at least upper bound the bad event like

$$\Pr[X_i > T] \leq \frac{1}{n^2}.$$

Thus Markov inequality is not good enough, nor is Chebyshev $(Var[X_i] = \sum_{j=1}^{n} Var[X_{ij}] = 1 - \frac{1}{n})$.

Chernoff bounds actually work here, since X_i 's are negatively correlated. We will do a quicker "ad hoc" analysis for the upper bound first.

RC (2019/20) – Lecture 9 – slide 9

Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3 \ln(n)}{\ln \ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Balls into Bins maximum load

Lemma (5.1)

Let *n* balls be thrown independently and uniformly at random into *n* bins. Then for sufficiently large *n*, the maximum load is bounded above by $\frac{3 \ln(n)}{\ln \ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Proof: The probability that bin *i* receives $\geq M$ balls is *at most*

$$\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.$$

RC (2019/20) – *Lecture* 9 – *slide* 10

RC (2019/20) – *Lecture 9 – slide 10*

Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins. Then for sufficiently large n, the maximum load is bounded above by $\frac{3 \ln(n)}{\ln \ln(n)}$ with probability at least $1 - \frac{1}{n}$.

Proof: The probability that bin *i* receives $\geq M$ balls is *at most*

$$\binom{n}{M} \frac{n^{n-M}}{n^n} = \binom{n}{M} \frac{1}{n^M}.$$

Binomial coefficient satisfies

$$\left(\frac{n}{M}\right)^M \le \binom{n}{M} \le \frac{n^M}{M!} \le \left(\frac{en}{M}\right)^M.$$

Bin i gets $\geq M$ bins with probability at most $\left(\frac{en}{nM}\right)^M = \left(\frac{e}{M}\right)^M$.

RC (2019/20) – Lecture 9 – slide 10

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^{M}$.

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^{M}$.

Set $M := \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that *any* bin gets $\geq M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln \ln(n)}{3 \ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}}.$$

RC (2019/20) – Lecture 9 – slide 11

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Bin *i* gets $\geq M$ bins with probability at most $\left(\frac{e}{M}\right)^{M}$.

Set $M := \frac{3 \ln(n)}{\ln \ln(n)}$. Then the probability that *any* bin gets $\geq M$ balls is (using the Union bound) at most

$$n \cdot \left(\frac{e \cdot \ln \ln(n)}{3 \ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} \leq n \cdot \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(\frac{\ln \ln(n)}{\ln(n)}\right)^{\frac{3 \ln(n)}{\ln \ln(n)}}.$$

Again using properties of ln, this expands as

$$e^{\ln(n)} \left(e^{\ln \ln \ln(n) - \ln \ln(n)} \right)^{\frac{3 \ln(n)}{\ln \ln(n)}} = e^{\ln(n)} \left(e^{-3 \ln(n) + 3 \frac{\ln(n) \ln \ln \ln(n)}{\ln \ln(n)}} \right).$$

RC (2019/20) – Lecture 9 – slide 11

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Grouping the ln(n)s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}$$

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Grouping the ln(n)s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}$$

If we take n "sufficiently large" ($n \ge e^{e^{e^4}}$ will do it), then $\frac{\ln \ln \ln \ln (n)}{\ln \ln (n)} \le 1/3$, hence the probability of *some* bin having $\ge M$ balls is at most

$$n^{-1}$$
.

Balls into Bins maximum load

Proof of Lemma 5.1 cont'd.

Grouping the ln(n)s in the exponents, and evaluating, we have

$$e^{-2\ln(n)} \cdot e^{3\frac{\ln(n)\ln\ln\ln(n)}{\ln\ln(n)}} = n^{-2} \cdot n^{3\frac{\ln\ln\ln(n)}{\ln\ln(n)}}.$$

If we take n "sufficiently large" ($n \ge e^{e^{e^4}}$ will do it), then $\frac{\ln \ln \ln \ln(n)}{\ln \ln(n)} \le 1/3$, hence the probability of *some* bin having $\ge M$ balls is at most

$$n^{-1}$$
.

Can derive a matching proof to show that "with high probability" there will be a bin with $\Omega(\frac{\ln(n)}{\ln \ln(n)})$ balls in it.

RC (2019/20) – *Lecture 9 – slide 12*

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

Surprisingly, the maximum load in this case is $\frac{\ln \ln n}{\ln 2} + O(1)$ with probability 1 - o(1/n)!

The load reduces from $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ to $\Theta\left(\ln \ln n\right)$!

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

RC (2019/20) – Lecture 9 – slide 13

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the following tweak: for each ball, we pick two random choices of bins, and choose the one with the lower load.

Surprisingly, the maximum load in this case is $\frac{\ln \ln n}{\ln 2} + O(1)$ with probability 1 - o(1/n)!

The load reduces from $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ to $\Theta\left(\ln \ln n\right)$!

More generally, we may have $d \ge 2$ choices, and the resulting maximum load is $\ln \ln n / \ln d \pm O(1)$ with probability 1 - o(1/n).

This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).

RC (2019/20) – Lecture 9 – slide 13

$\Omega(\cdot)$ bound on the maximum load (sketch)

- We used the *Union Bound* in our proof of Lemma 5.1, when we multiplied by n. However, in reality, bin i has a lower chance of being "high" (say $\Omega(\frac{\ln(n)}{\ln \ln(n)})$) if other bins are already "high" (the "high-bin" events are negatively correlated).
- This means that we can't use the same approach as in Lemma 5.1 to prove a partner result of $\Omega(\frac{\ln(n)}{\ln \ln(n)})$.
- ▶ Solution is to use the fact that for the binomial distribution $B(m, \frac{1}{n})$ for an individual bin, that as $n \to \infty$,

$$\Pr[X=k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \to \frac{e^{-m/n}(m/n)^k}{k!}$$

(ie, close to the probabilities for the Poisson distribution with parameter $\mu = m/n$)

The Poisson's aren't independent but the dependance can be limited to an extra factor of $e\sqrt{m}$ (Section 5.4).

RC (2019/20) - Lecture 9 - slide 14

Some preliminary observations, definitions

The probability of a specific bin (bin *i*, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}.$$

Expected number of empty bins: $\sim ne^{-m/n}$.

RC (2019/20) – Lecture 9 – slide 15

Some preliminary observations, definitions

The probability of a specific bin (bin i, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}.$$

Expected number of empty bins: $\sim ne^{-m/n}$. Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r}.$$

Note

$$p_r \sim \frac{e^{-m/n}}{r!} \left(\frac{m}{n}\right)^r$$
.

Some preliminary observations, definitions

The probability of a specific bin (bin *i*, say) being empty is:

$$\left(1-\frac{1}{n}\right)^m \sim e^{-m/n}.$$

Expected number of empty bins: $\sim ne^{-m/n}$.

Probability p_r of a specific bin having r balls:

$$p_r = \binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r}.$$

Note

$$p_r \sim \frac{e^{-m/n}}{r!} \left(\frac{m}{n}\right)^r$$
.

Definition (5.1)

A discrete *Poisson random variable X* with parameter μ is given by the following probability distribution on i = 0, 1, 2, ...:

$$\Pr[X=j] = \frac{e^{-\mu}\mu^j}{i!}.$$

References and Exercises

- ► Sections 5.1, 5.2 of "Probability and Computing" [MU].
- ► On Friday we will do the lower bound and the Poisson approximation. Read Sections 5.3 and 5.4.

Exercises

- Exercise 5.3 (balls in bins when $m = c \cdot \sqrt{n}$).
- Exercise 5.10 (sequences of empty bins; this is a bit more tricky)