Randomness and Computation

or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)
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Chernoff Bounds (upper tail)
Poisson trials - sequence of Bernoulli variables X; with varying p;s.

Theorem (4.4)

Let X1, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for
alli € [n]. Let X =Y | X; and u = E[X]. We have the following Chernoff
bounds:

1. Forany 6 >0,

ed "
PriX> (1+08)u] < (W) ;

2. Forany0 <6 <1,
PriX> (1+8)u] < e "73

3. ForR > 6y,
Pr[X> R <27k
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Chernoff Bounds (lower tail)

Theorem (4.5)

Let Xi, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for

alli € [n]. Let X= Y7, X;, and n = E[X]. Forany 0 < & < 1, we have the
following Chernoff bounds:

1. s .
Prix< (1—=08)u] < (W) ;
PriX < (1—8)u] < e "o/%

» Proof is similar to Thm 4.4.

» Bound of (2.) is slightly better than the bound for > (1+ ).
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Concentration

Corollary (4.6)
Let Xy, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] =
piforalli € [n]. Let X = Y ! X, and p = E[X]. Then for any
5,0 <8< 1,

PriX—pl > su) < 2¢7M°2,

» For almost all applications, we will want to work with a symmet-

ric version like the Corollary.

« P oy . . +6 H .
> We “threw away” a bit in moving from the (W) versions,

but they are tricky to work with.
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Unbiased +1/ — 1 variables

In fact, for the case of unbiased variables, we can do even better than 2e™ w8*/3
by switching to +1/-1 variables.

Theorem (4.7)
Let Xi,...,X, be independent random variables with Pr[X; = 1] = 1/2 =
Pr[X; = —1] foralli € [n]. Let X = Z',Z:1 Xk- Note w = E[X] = 0. Then for
any a > 0,

PriX>a < e/,
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Unbiased 0/1 variables

Consider Yi,..., Y, such that Pr[Y; = 1] = 1/2 for every i € [n].
Define X; = 2Y; — 1 for every i € [n]. Then

B 1 |Y,=1
Xi = { —1 |Y;=0

Note also that for any t € Z, that
n n
ZYi:t = ZX,‘:21'*I’)
i=1 i=1

Corollary (4.9, 4.10)
ForY = 27:1 Y, X= 27:1 Xi, we have

RC (2019/20) — Lecture 8 - slide 6



i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables with pa-
rameter p, their sum X satisfies the condition of Chernoff bounds.
Roughly speaking, X has

» deviation Q(y/n) with the probability O(1);

> deviation Q(v/nln n) with the probability O(n°);

> deviation Q(n) with the probability e~ (")
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Set balancing

We have an n X m binary matrix A (entries from {0, 1}). We consider the
value of

A-b=cg,
when b € {—1,+1}" (note ¢ will then be n-dimensional).

Goal is to find b € {—1,+1}" such that the value of ||A - b||oc = max]_, [¢|
is minimized.

Random choices are already pretty good: choose b € {—1,+1}" by generat-
ing b; independently and uniformly from {—1, +1}. We can show

Theorem (4.11)
For b chosen uar from {—1, 41},

i 2
Pr[||Abloo > \/4mIn(n)] < =.
n
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Set balancing

» |||lcc is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value

< /4mln(n).
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Set balancing

» ||-||loo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value
< /4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 2. Then Union Bound shows
that one of the entry is “too large” with probability < 2.
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Set balancing

» |||lcc is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value

< /4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 2. Then Union Bound shows
that one of the entry is “too large” with probability < 2.

» For row i of A, there are S; (/S]] < m) entries which are non-0 (ie, 1).
The absolute value of A; - b is the (absolute) weighted sum of these
entries, randomly weighted by +1 or -1... so we have S; random trials
of unbiased +1/-1. Setting a = \/4mIn(n), Thm 4.7 says the probability

we exceed this is at most

g tmin(m/2IS| _ 5p-2m/Is| < 2

—= )
n?

as required.
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Six standard deviations suffice

Last result implies that most b have ||A - b|lc = O(v/mlInn), but better b
exists, at least if m = n.

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

JA - Bllos < 63/7.

This is tight up to constants. There exists A such that ||A - bl|c = Q(y/n)
for any b.
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Six standard deviations suffice

Last result implies that most b have ||A - b|lc = O(v/mlInn), but better b
exists, at least if m = n.

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

JA - Bllos < 63/7.

This is tight up to constants. There exists A such that ||A - bl|c = Q(y/n)
for any b.

There are also efficient algorithms to find such b by Bansal (2010) and by
Lovett and Meka (2012).

Check out Chapter 13 of “The Probabilistic Method” by Alon and Spencer.
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Unbalancing lights

Let A be a n-by-n £1 matrix. There exist x, y € {+1,—1}" such that

X Ay = i i ajxiyj > ( 2/m+ 0(1)) n*/2,

i=1 j=1

If we randomize both x and y, the expectation is 0!
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Unbalancing lights

Let A be a n-by-n £1 matrix. There exist x, y € {+1,—1}" such that
n n
X Ay = Z Z aixiyj > ( 2/mt+ 0(1)) n/2,
=1 j=1
If we randomize both x and y, the expectation is 0!

However that is apparently a bad choice. Once y is fixed, we can choose X
so that the signs of x and Ay all match. Thus we are interested in

n n

D 1D -

i=1 | j=1
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Unbalancing lights

Regardless of the value of aj, ajjy; is a uar =1 rv. Call it s;. In fact,

ool o £

_ZJ n—1
2\ [(n—1)/2]

( 2/m+ 0(1)) n'’?

(The second equality was a 1974 Putnam competition problem.)
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Unbalancing lights

Regardless of the value of aj, ajjy; is a uar =1 rv. Call it s;. In fact,

ool o £

_2£ n—1
2\ [(n—1)/2]

( 2/m+ 0(1)) n'’?

(The second equality was a 1974 Putnam competition problem.)
Thus,
5|y

i=1

}:Z( z/n+o(1))n‘/2:( 2/7‘[+o(1))n3/2.

i=1

n
> ayy;
j=1

There exists y that beats the expectation. We can use, for example, conditional ex-
pectation to find it.
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Hoeffding’s inequality — beyond Bernoulli

Chernoff bounds only work for Bernoulli rvs.

Theorem (4.12)
Let Xy, ..., X, be independent rvs such that E[X]] = pwandPrla < X; < b] = 1.

Then,
Pr [

The constant is slightly weaker than Chernoff bounds (where a = 0 and
b = 1). However it does not require X;’s to be Bernoulli.

n

i=1

The proof also goes through the moment generating function E[e*].
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Hoeffding’s inequality

Theorem (4.14)
Let X, ..., X, be independent rvs such that E[X;] = u; and Pr[a; < X; < bj] =
1. Then,

Pr [

1 o 1
;ZX"_EZH"
i=1

i=1

. 2n?e?
> J < 2¢ T 0T
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More general Chernoff bounds

Many many variations. One general statement worth mentioning is due to
McDiarmid:

Theorem

Let Xi,..., X, be independent random variables, X taking values in a set Ay ,
for every k € [n]. Suppose that the (measurable) function f: [[,_, Ax = R
satisfies

fIx) =X < «
whenever x, x" only differ in the k-th coordinate.
Let Y be the random variable f{Xi, . .., X,]. Then for any t > 0,

PrllY— EIY]| > ] < 2exp [_ZF] .

Zke [n] Ci
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Correlation and concentration

Consider two Bernoulli random variable X and Y with parameter 1/2.
Independent: Pr[X=iAY=j]=1/4

0 w.p.0.25
X+Y=<1 wp.05

2 w.p.0.25

Positive correlation: Pr[X= Y] =1

0 w.p.05
X+Y=
2 w.p.05

Negative correlation: PrlX=1—Y] =1

X+Y=1 wp.1
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Correlation and concentration

Consider two Bernoulli random variable X and Y with parameter 1/2.

Independent: Pr[X=iAY=j]=1/4

0 w.p.0.25
X+Y=<1 wp.05
2 w.p.0.25

Positive correlation: Pr[X= Y] =1

0 w.p.05
X+Y=
2 w.p.05

Negative correlation: PrlX=1—Y] =1
X+Y=1 wp.1

For more variables, negative correlation gets trickier. For example, Cryan, G., and
Mousa (2019) give concentration bounds for rvs under matroid constraints.
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References

» Chapter 4 of [MU]

» Chapter 2 of “The Probabilistic Method” (unbalancing lights) and Chap-
ter 13 (six standard deviations suffice)

> We will not have time to cover the packet routing analysis of 4.5, but
it’s worth reading (not examinable in the exam).

> Next week: balls into bins, Chapter 5 of [MU]
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