Randomness and Computation

or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)
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Chernoff Bounds (upper tail)

Poisson trials - sequence of Bernoulli variables X; with varying p;s.

Theorem (4.4)

Let Xi,..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for
alli € [nl. Let X =37 | X, and p = E[X]. We have the following Chernoff
bounds:

1. Forany $ > 0,
ed K
Pr[X>(1+6 < _ :
X3 (14 8)] < ((1+6)1+5> ,

2. Forany0 < 6 <1,
PriX > (1+8)u] < e o/3

3. ForR > 6y,
Pr[X> R <27R
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Chernoff Bounds (lower tail)

Theorem (4.5)

Let Xy, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for
alli € [n]. Let X = 27:1 Xi, and @ = E[X]. Forany 0 < § < 1, we have the
following Chernoff bounds:

1.

e ® "
PriX < (1—9)u] < <(]_5)1_5> )

PriX < (1—8)u < e /%

» Proof is similar to Thm 4.4.

» Bound of (2.) is slightly better than the bound for > (1+ ).
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Concentration

Corollary (4.6)

Let X1, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] =
pi forall i € [n]. Let X = 27:1 Xi, and w = E[X]. Then for any
5,0 < d <1,

PrX— |l > oyl < 2e /3,

» For almost all applications, we will want to work with a symmet-
ric version like the Corollary.

« » s . + K .
» We “threw away” a bit in moving from the <#) versions,

but they are tricky to work with.
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Unbiased +1/ — 1 variables

In fact, for the case of unbiased variables, we can do even better than 2eM5/3
by switching to +1/-1 variables.

Theorem (4.7)

Let Xi,...,X, be independent random variables with Pr[X; = 1] = 1/2 =
Pr[X; = —1] foralli € [n]. Let X = ZZ:1 Xk. Note u = E[X] = 0. Then for
any a > 0,

PrIX>aq < e @/,
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Unbiased 0/1 variables

Consider Yq,..., Y, such that Pr[Y; = 1] = 1/2 for every i € [n].
Define X; = 2Y; — 1 for every i € [n]. Then

1T |Yi=1
Xi = { —1 |Yi=0

Note also that for any t € Z, that

n

ZYi:f = iX;zZt—n
i=1

i=1

Corollary (4.9, 4.10)

ForY=3Y " Y, X=Y 1 X, wehave
Pr|
Pr|

>

+a =Pr[X>2d < e_zaz/”;
=Pr

NI NI

X< —2q < e2a/n

Y
Y

IN

—da
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i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables with pa-
rameter p, their sum X satisfies the condition of Chernoff bounds.
Roughly speaking, X has

» deviation Q(/n) with the probability O(1);

» deviation Q(v/nln n) with the probability O(n~¢);

» deviation Q(n) with the probability e~ ("),

RC (2019/20) — Lecture 8 — slide 7

Set balancing

We have an n X m binary matrix A (entries from {0, 1}). We consider the
value of

A-b=c¢,
when b € {—1, +1}" (note ¢ will then be n-dimensional).

Goal is to find b € {—1,+1}" such that the value of ||A - b||cc = max;_; [¢]
is minimized.

Random choices are already pretty good: choose b € {—1,41}™ by generat-
ing b; independently and uniformly from {—1,+1}. We can show

Theorem (4.11)
For b chosen uar from {—1,+1}",

Pr{[|Ab]loc > \/AmIn(n)] < >.
n
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Set balancing

» ||[|oo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value
< y/4mln(n).
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Set balancing

» [|[|oo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value
< +/4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 2. Then Union Bound shows
that one of the entry is “too large” with probability < 2.
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Set balancing

» ||[|oo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value

< +/4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 2. Then Union Bound shows
that one of the entry is “too large” with probability < 2.

» For row i of A, there are S; (|S;| < m) entries which are non-0 (ie, 1).
The absolute value of A; - b is the (absolute) weighted sum of these
entries, randomly weighted by +1 or -1... so we have S; random trials
of unbiased +1/-1. Setting a = y/4mlIn(n), Thm 4.7 says the probability

we exceed this is at most

2674mln(n)/2\5;| —_ 2n*2m/|5i| < 3

— )
n2

as required.

RC (2019/20) — Lecture 8 — slide 9

Six standard deviations suffice

Last result implies that most b have ||A - b||oc = O(v/mIn n), but better b
exists, at least if m = n.

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

|A- Blloo < 63/

This is tight up to constants. There exists A such that [|A - b|lo, = Q(y/n)
for any b.
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Six standard deviations suffice

Last result implies that most b have ||A - b||oc = O(v/mIn n), but better b
exists, at least if m = n.

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

|4+ bllos < 63/

This is tight up to constants. There exists A such that [|A - b|lo, = Q(y/n)
for any b.

There are also efficient algorithms to find such b by Bansal (2010) and by
Lovett and Meka (2012).

Check out Chapter 13 of “The Probabilistic Method” by Alon and Spencer.
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Unbalancing lights

Let A be a n-by-n +1 matrix. There exist X, y € {+1, —1}" such that

XAy = Z Z aixiy; > ( 2/ + o(1)> n/2.

i=1 j=1

If we randomize both x and ¥, the expectation is 0!
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Unbalancing lights

Let A be a n-by-n 1 matrix. There exist X, y € {+1, —1}" such that
XAy =D > agxy; > ( 2/m+ 0(1)) n*/2.
i=1 j=1
If we randomize both x and y, the expectation is 0!

However that is apparently a bad choice. Once y is fixed, we can choose x
so that the signs of x and Ay all match. Thus we are interested in

n n

D 1D ay-

i=1 | j=1
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Unbalancing lights

n

D ay

j=1

n

Regardless of the value of ajj, ajjy; is a uar £1 rv. Call it s;. In fact,
2

o] =] 2]
_2n n—1
-3 ()

= ( 2/m+ o(])) n'/?

(The second equality was a 1974 Putnam competition problem.)
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Unbalancing lights

n

D ay

=1

n

Regardless of the value of ajj, ajjy; is a uar =1 rv. Call it s;. In fact,
P

el =121
_2n n—1
N 2"<L(n—1)/2J>

= ( 2/7t+o(1)) n'/?

(The second equality was a 1974 Putnam competition problem.)
Thus,

> ayy;

J=1

i=1

}:Z( 2/m+ o) 0> = (V/2/m+ o(1)) 2

There exists y that beats the expectation. We can use, for example, conditional ex-
pectation to find it.

RC (2019/20) - Lecture 8 — slide 12

Hoeffding’s inequality — beyond Bernoulli

Chernoff bounds only work for Bernoulli rvs.

Theorem (4.12)

Let Xi,. .., X, be independent rvs such that E[X;] = wandPrla < X; < bl = 1.
Then,

1 — 2 2
PanZX,-—HIZE}gh 2ne”/ (b=a)”,

i=1

The constant is slightly weaker than Chernoff bounds (where a = 0 and
b = 1). However it does not require X;’s to be Bernoulli.

The proof also goes through the moment generating function E[e*].
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Hoeffding’s inequality

Theorem (4.14)
Let Xi, ..., X, be independent rvs such that E[X;] = w; andPr[a; < X; < b]] =
1. Then,

Pr [

n

1 — 1
n;Xi—nZHi

i=1

2.2

_ 2n“ e
> 5] < 2e Tt
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More general Chernoff bounds

Many many variations. One general statement worth mentioning is due to
McDiarmid:

Theorem
Let X1, ..., X, be independent random variables, Xy taking values in a set Ay,
for every k € [n]. Suppose that the (measurable) function f: [[,_, Ax = R
satisfies

) =X <
whenever x, X' only differ in the k-th coordinate.
Let Y be the random variable fIX, ..., X,]. Then for any t > 0,

Pr[[Y—E[Y]| > 1] <2exp [_th
a a Zké[n]ci ‘
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Correlation and concentration

Consider two Bernoulli random variable X and Y with parameter 1/2.

Independent: Pr[X=iAY=j=1/4

0 w.p.0.25
X+Y=<¢1 wp.05
2 w.p.0.25

Positive correlation: Pr[X= Y] =1

0 w.p.05
X+Y=
2 w.p.05

Negative correlation: PrlX=1—Y =1

X4+Y=1 wp.1
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Correlation and concentration

Consider two Bernoulli random variable X and Y with parameter 1/2.

Independent: Pr[X=iAY=j=1/4

0 w.p.0.25
X+Y=<¢1 wp.05
2 w.p.0.25

Positive correlation: Pr[X=Y] =1

0 w.p.05
X+Y=
2 w.p.05

Negative correlation: PrlX=1—Y =1
X+Y=1 wp.1

For more variables, negative correlation gets trickier. For example, Cryan, G., and
Mousa (2019) give concentration bounds for rvs under matroid constraints.
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References

» Chapter 4 of [MU]

» Chapter 2 of “The Probabilistic Method” (unbalancing lights) and Chap-
ter 13 (six standard deviations suffice)

We will not have time to cover the packet routing analysis of 4.5, but
it’s worth reading (not examinable in the exam).

P> Next week: balls into bins, Chapter 5 of [MU]
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