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Chernoff Bounds (upper tail)
Poisson trials - sequence of Bernoulli variables Xi with varying pis.

Theorem (4.4)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that Pr[Xi = 1] = pi for
all i ∈ [n]. Let X =

∑n
i=1 Xi, and µ = E[X]. We have the following Chernoff

bounds:

1. For any δ > 0,

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)1+δ

)µ

;

2. For any 0 < δ ≤ 1,

Pr[X ≥ (1+ δ)µ] ≤ e−µδ2/3;

3. For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R.
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Chernoff Bounds (lower tail)

Theorem (4.5)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that Pr[Xi = 1] = pi for
all i ∈ [n]. Let X =

∑n
i=1 Xi, and µ = E[X]. For any 0 < δ < 1, we have the

following Chernoff bounds:

1.

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

;

2.
Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2;

▶ Proof is similar to Thm 4.4.

▶ Bound of (2.) is slightly better than the bound for ≥ (1+ δ)µ.

RC (2019/20) – Lecture 8 – slide 3

Concentration

Corollary (4.6)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that Pr[Xi = 1] =
pi for all i ∈ [n]. Let X =

∑n
i=1 Xi, and µ = E[X]. Then for any

δ, 0 < δ < 1,
Pr[|X− µ| ≥ δµ] ≤ 2e−µδ2/3.

▶ For almost all applications, we will want to work with a symmet-
ric version like the Corollary.

▶ We “threw away” a bit in moving from the
(

e±δ

(1±δ)1±δ

)µ

versions,
but they are tricky to work with.
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Unbiased +1/− 1 variables

In fact, for the case of unbiased variables, we can do even better than 2e−µδ2/3

by switching to +1/-1 variables.

Theorem (4.7)
Let X1, . . . ,Xn be independent random variables with Pr[Xi = 1] = 1/2 =
Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk. Note µ = E[X] = 0. Then for

any a > 0,
Pr[X ≥ a] ≤ e−a2/2n.
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Unbiased 0/1 variables
Consider Y1, . . . ,Yn such that Pr[Yi = 1] = 1/2 for every i ∈ [n].
Define Xi = 2Yi − 1 for every i ∈ [n]. Then

Xi =

{
1 | Yi = 1
−1 | Yi = 0

Note also that for any t ∈ Z, that

n∑
i=1

Yi = t ⇔ n∑
i=1

Xi = 2t− n

Corollary (4.9, 4.10)
For Y =

∑n
i=1 Yi, X =

∑n
i=1 Xi, we have

Pr[Y ≥ n
2 + a] = Pr[X ≥ 2a] ≤ e−2a2/n;

Pr[Y ≤ n
2 − a] = Pr[X ≤ −2a] ≤ e−2a2/n.
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i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables with pa-
rameter p, their sum X satisfies the condition of Chernoff bounds.

Roughly speaking, X has

▶ deviation Ω(
√
n) with the probability O(1);

▶ deviation Ω(
√
n ln n) with the probability O(n−c);

▶ deviation Ω(n) with the probability e−Ω(n).
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Set balancing

We have an n × m binary matrix A (entries from {0, 1}). We consider the
value of

A · b̄ = c̄,

when b̄ ∈ {−1,+1}m (note c̄ will then be n-dimensional).

Goal is to find b̄ ∈ {−1,+1}m such that the value of ∥A · b̄∥∞ = maxnj=1 |cj|
is minimized.

Random choices are already pretty good: choose b̄ ∈ {−1,+1}m by generat-
ing bi independently and uniformly from {−1,+1}. We can show

Theorem (4.11)
For b̄ chosen uar from {−1,+1}m,

Pr[∥Ab̄∥∞ ≥
√

4m ln(n)] ≤ 2
n
.
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Set balancing

▶ ∥·∥∞ is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A · b̄ has absolute value
≤

√
4m ln(n).

▶ There are n different entries of c̄ = A · b̄; we will show that for each
entry, it is “too large” with probability≤ 2

n2 . Then Union Bound shows
that one of the entry is “too large” with probability ≤ 2

n .

▶ For row i of A, there are Si (|Si| ≤ m) entries which are non-0 (ie, 1).
The absolute value of Ai · b̄ is the (absolute) weighted sum of these
entries, randomly weighted by +1 or -1 . . . so we have Si random trials
of unbiased +1/-1. Setting a =

√
4m ln(n), Thm 4.7 says the probability

we exceed this is at most

2e−4m ln(n)/2|Si| = 2n−2m/|Si| ≤ 2
n2
,

as required.
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Six standard deviations suffice

Last result implies that most b̄ have ∥A · b̄∥∞ = O(
√
m ln n), but better b̄

exists, at least if m = n.

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b̄ ∈ {+1,−1}n such that

∥A · b̄∥∞ ≤ 6
√
n.

This is tight up to constants. There exists A such that ∥A · b̄∥∞ = Ω(
√
n)

for any b̄.

There are also efficient algorithms to find such b̄ by Bansal (2010) and by
Lovett and Meka (2012).

Check out Chapter 13 of “The Probabilistic Method” by Alon and Spencer.
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Unbalancing lights

Let A be a n-by-n ±1 matrix. There exist x̄, ȳ ∈ {+1,−1}n such that

x̄TAȳ =

n∑
i=1

n∑
j=1

aijxiyj ≥
(√

2/π+ o(1)
)
n3/2.

If we randomize both x̄ and ȳ, the expectation is 0!

However that is apparently a bad choice. Once ȳ is fixed, we can choose x̄
so that the signs of x̄ and Aȳ all match. Thus we are interested in

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

aijyj

∣∣∣∣∣∣ .
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Unbalancing lights

Regardless of the value of aij, aijyj is a uar ±1 rv. Call it sj. In fact,

E
[∣∣∣∣ n∑

j=1

aijyj

∣∣∣∣] = E
[∣∣∣∣ n∑

j=1

sj

∣∣∣∣]

=
2n
2n

(
n − 1

⌊(n − 1)/2⌋

)
=
(√

2/π + o(1)
)
n1/2

(The second equality was a 1974 Putnam competition problem.)

Thus,

E
[ n∑

i=1

∣∣∣∣ n∑
j=1

aijyj

∣∣∣∣] = n∑
i=1

(√
2/π + o(1)

)
n1/2 =

(√
2/π + o(1)

)
n3/2.

There exists ȳ that beats the expectation. We can use, for example, conditional ex-
pectation to find it.
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Hoeffding’s inequality — beyond Bernoulli

Chernoff bounds only work for Bernoulli rvs.

Theorem (4.12)
Let X1, . . . ,Xn be independent rvs such that E[Xi] = µ and Pr[a ≤ Xi ≤ b] = 1.
Then,

Pr
[∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣ ≥ ε

]
≤ 2e−2nε2/(b−a)2 .

The constant is slightly weaker than Chernoff bounds (where a = 0 and
b = 1). However it does not require Xi’s to be Bernoulli.

The proof also goes through the moment generating function E[etX].
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Hoeffding’s inequality

Theorem (4.14)
Let X1, . . . ,Xn be independent rvs such that E[Xi] = µi and Pr[ai ≤ Xi ≤ bi] =
1. Then,

Pr
[∣∣∣∣ 1n

n∑
i=1

Xi −
1
n

n∑
i=1

µi

∣∣∣∣ ≥ ε

]
≤ 2e

− 2n2ε2∑n
i=1(bi−ai)

2
.
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More general Chernoff bounds

Many many variations. One general statement worth mentioning is due to
McDiarmid:

Theorem
Let X1, . . . ,Xn be independent random variables, Xk taking values in a set Ak ,
for every k ∈ [n]. Suppose that the (measurable) function f :

∏n
k=1 Ak → R

satisfies
|f(x̄) − f(x̄ ′)| ≤ ck

whenever x̄, x̄ ′ only differ in the k-th coordinate.
Let Y be the random variable f[X1, . . . ,Xn]. Then for any t > 0,

Pr[|Y− E[Y]| ≥ t] ≤ 2 exp
[

−2t2∑
k∈[n] c

2
k

]
.
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Correlation and concentration
Consider two Bernoulli random variable X and Y with parameter 1/2.

Independent: Pr[X = i∧ Y = j] = 1/4

X + Y =


0 w.p. 0.25

1 w.p. 0.5

2 w.p. 0.25

Positive correlation: Pr[X = Y] = 1

X + Y =

{
0 w.p. 0.5

2 w.p. 0.5

Negative correlation: Pr[X = 1 − Y] = 1

X + Y = 1 w.p. 1

For more variables, negative correlation gets trickier. For example, Cryan, G., and
Mousa (2019) give concentration bounds for rvs under matroid constraints.
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References

▶ Chapter 4 of [MU]

▶ Chapter 2 of “The ProbabilisticMethod” (unbalancing lights) andChap-
ter 13 (six standard deviations suffice)

▶ We will not have time to cover the packet routing analysis of 4.5, but
it’s worth reading (not examinable in the exam).

▶ Next week: balls into bins, Chapter 5 of [MU]
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