Randomness and Computation or, "Randomized Algorithms"

Heng Guo (Based on slides by M. Cryan)

Bounding deviation

We already have ...

Theorem (3.1, Markov's Inequality)

Let X be any random variable that takes only non-negative values. Then for any a > 0,

$$\Pr[X \ge a] \le \frac{E[X]}{a}.$$

Theorem (3.2, Chebyshev's Inequality) For every a > 0,

$$\Pr[|X - E[X]| \ge a] \le \frac{Var[X]}{a^2}.$$

These are generic. Chernoff/Hoeffding bounds (specific) give tighter bounds for sums of independent variables and related distributions.

Poisson trials - sequence of Bernoulli variables X_i with varying p_i s.

Theorem (4.4, basic form)

Let X_1, \ldots, X_n be independent Bernoulli random variables with parameter p_i for $i \in [n]$.Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $\delta > 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

For example, if $\mu = pn$ and $\delta = 1$,

$$\Pr[X \ge 2\mu] \le \left(\frac{e}{4}\right)^{pn} = \exp(-\Omega(n)).$$

Comparing with Chebyshev's inequality

Theorem (4.4, basic Chernoff)

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$

Consider the case where $p_i = p$ and $\mu = pn$. Due to independence, $Var[X_i] = p - p^2$ and $Var[X] = (p - p^2)n = \mu(1 - p)$. With Chebyshev's inequality

$$\Pr[X \ge (1+\delta)\mu] \le \Pr[|X-\mu| \ge \delta\mu]$$
$$\le \frac{\mu(1-p)}{\delta^2\mu^2} = \frac{1-p}{\delta^2\mu} = O(1/n).$$

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives us an exponential tail.

Comparing with Chebyshev's inequality

Theorem (4.4, basic Chernoff)

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

Consider the case where $p_i = p$ and $\mu = pn$. Due to independence, $Var[X_i] = p - p^2$ and $Var[X] = (p - p^2)n = \mu(1 - p)$. With Chebyshev's inequality

$$\Pr[X \ge (1+\delta)\mu] \le \Pr[|X-\mu| \ge \delta\mu]$$
$$\le \frac{\mu(1-p)}{\delta^2\mu^2} = \frac{1-p}{\delta^2\mu} = O(1/n).$$

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives us an exponential tail.

However, both give us constant concentration bound for a window of width $O(\sqrt{n})$, although Chernoff's constant is much better.

Lemma

Let X_1, \ldots, X_n and X be the same as before and $\mu = E[X]$. For any $t \in \mathbb{R}$,

$$E[e^{tX}] \leq e^{\mu(e^t-1)}.$$

Proof.

Consider

$$\mathbb{E}[e^{tX}] = \mathbb{E}\left[e^{t(\sum_{i=1}^{n} X_i)}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{tX_i}\right].$$

The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$. Each e^{tX_i} has expectation

$$E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1$$

= 1 + p_i(e^t - 1)
 $\leq e^{p_i(e^t - 1)}$ (by 1 + x $\leq e^x$ for $x \in \mathbb{R}$)

$$\Rightarrow \qquad \mathbf{E}[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t-1)} = e^{\sum_{i=1}^{n} p_i(e^t-1)} = e^{\mu(e^t-1)}.$$

Proof of Thm 4.4.

The event of interest is

$$X \ge (1+\delta)\mu \Leftrightarrow e^X \ge e^{(1+\delta)\mu}$$

which, in turn, is equivalent to $e^{tX} \ge e^{t(1+\delta)\mu}$ for any t > 0.

$$\begin{split} \Pr[X \ge (1+\delta)\mu] &= \Pr[e^{tX} \ge e^{t(1+\delta)\mu}] \\ &\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} & \text{(by Markov's Inequality)} \\ &\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}}. & \text{(by the last Lemma)} \end{split}$$

RC (2019/20) - Lecture 7 - slide 6

(by the last Lemma)

Proof of Thm 4.4.

The event of interest is

$$X \ge (1+\delta)\mu \Leftrightarrow e^X \ge e^{(1+\delta)\mu}$$

which, in turn, is equivalent to $e^{tX} \ge e^{t(1+\delta)\mu}$ for any t > 0.

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$

$$\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \qquad \text{(by Markov's Inequality)}$$

$$\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}}. \qquad \text{(by the last Lemma)}$$

This holds for any t > 0, and we want to pick t to minimize the right hand side, which is $RHS := e^{\mu(e^t-1)-t(1+\delta)\mu}$. Differentiate the exponent,

$$(\ln RHS)' = \mu e^t - (1+\delta)\mu.$$

Thus, *RHS* decreases if $t \le \ln(1 + \delta)$ and increases if $t \ge \ln(1 + \delta)$. Its minimum is taken at $t = \ln(1 + \delta)$.

Proof of Thm 4.4 (cont.)

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

$$\Pr[X \ge (1+\delta)\mu] \le e^{\mu(e^{\ln(1+\delta)}-1)\mu}$$
$$\le \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}}$$
$$= \frac{e^{\mu\delta}}{(1+\delta)^{(1+\delta)\mu}} = \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

Theorem (4.4, full)

Let X_1, \ldots, X_n be independent Bernoulli random variables with parameter p_i for $i \in [n]$.Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$.

1. For any $\delta > 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu};$$

2. For any $0 < \delta \leq 1$,

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3};$$

3. *For* $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

Chernoff bounds — upper tail Proof of Thm 4.4 (2.) Already have

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

Comparing the RHS with $\leq e^{-\mu\delta^2/3}$, we want

$$\delta-(1+\delta)\ln(1+\delta)<-\delta^2/3$$

We will show the following *f* is always negative for $\delta \in (0, 1)$

$$f(\delta) := \delta - (1+\delta)\ln(1+\delta) + \delta^2/3$$

Differentiating,

$$f'(\delta) = 1 - \ln(1+\delta) - (1+\delta)\frac{1}{1+\delta} + \frac{2\delta}{3}$$

= $-\ln(1+\delta) + \frac{2\delta}{3}$.
RC (2019/20) - Lecture 7 - slide 9

Proof of Thm 4.4 (2.) cont.

$$f'(\delta) = -\ln(1+\delta) + \frac{2\delta}{3}$$

Differentiate again

$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3} = -\frac{1}{1+\delta} + \frac{2}{3}$$

Note

$$f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2; \\ = 0 & \text{for } \delta = 1/2; \\ > 0 & \text{for } \delta > 1/2. \end{cases}$$

Proof of Thm 4.4 (2.) cont.

$$f'(\delta) = -\ln(1+\delta) + \frac{2\delta}{3}$$

Differentiate again

$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3} = -\frac{1}{1+\delta} + \frac{2}{3}$$

Note

$$f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2; \\ = 0 & \text{for } \delta = 1/2; \\ > 0 & \text{for } \delta > 1/2. \end{cases}$$

Also f'(0) = 0, $f'(1) \approx -0.026 < 0$ (check $\delta = 1$ in top equation). Since f' decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that $f'(\delta) < 0$ on (0, 1).

Proof of Thm 4.4 (2.) cont.

$$f'(\delta) = -\ln(1+\delta) + \frac{2\delta}{3}$$

Differentiate again

$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3} = -\frac{1}{1+\delta} + \frac{2}{3}$$

Note

$$f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2; \\ = 0 & \text{for } \delta = 1/2; \\ > 0 & \text{for } \delta > 1/2. \end{cases}$$

Also f'(0) = 0, $f'(1) \approx -0.026 < 0$ (check $\delta = 1$ in top equation). Since f' decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that $f'(\delta) < 0$ on (0, 1). By f(0) = 0, this implies that $f(\delta) \le 0$ in all of [0, 1]. Hence $\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3$, proving (2.).

For $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

Proof of Thm 4.4 (3.)

Let $\textit{R} = (1 + \delta)\mu$ and thus $\delta = \textit{R}/\mu - 1 \geq 5$. By Thm 4.4 (1.)

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
$$= \left(\frac{e^{\delta}}{1+\delta}\right)^{(1+\delta)\mu} \le \left(\frac{e}{1+\delta}\right)^{(1+\delta)\mu}$$
$$\le \left(\frac{e}{\delta}\right)^{R} \le 2^{-R}$$

For $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

Proof of Thm 4.4 (3.)

Let $R = (1 + \delta)\mu$ and thus $\delta = R/\mu - 1 \ge 5$. By Thm 4.4 (1.)

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
$$= \left(\frac{e^{\delta}}{(1+\delta)}\right)^{(1+\delta)\mu} \le \left(\frac{e}{1+\delta}\right)^{(1+\delta)\mu}$$
$$\le \left(\frac{e}{\delta}\right)^{R} \le 2^{-R}$$

Thm 4.4 (1.) is the strongest. The other two are slightly weaker but easy to use.

Chernoff Bounds (lower tail)

Theorem (4.5)

1

Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

Pr[
$$X \le (1-\delta)\mu$$
] $\le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$;
2.
Pr[$X \le (1-\delta)\mu$] $\le e^{-\mu\delta^2/2}$;

Proof is similar to Thm 4.4.

Bound of (2.) is slightly *better* than the bound for $\geq (1 + \delta)\mu$.

No (3.) Why?

Concentration

Corollary (4.6)

Let X_1, \ldots, X_n be independent Bernoulli rv such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X-\mu| \geq \delta\mu] \leq 2e^{-\mu\delta^2/3}.$$

- For most applications, we will want to work with a symmetric version like the Corollary.
- We "threw away" a bit in moving from the $\left(\frac{e^{\pm \delta}}{(1\pm \delta)^{1\pm \delta}}\right)^{\mu}$ versions, but they are tricky to work with.

Analysing a collection of coin flips

Suppose we have $p_i = 1/2$ for all $i \in [n]$. We have $\mu = \mathbb{E}[X] = \frac{n}{2}$, $\operatorname{Var}[X] = \frac{n}{4}$. Consider the probability of being further than $5\sqrt{n}$ from μ .

Chebyshev $\Pr[|X - \mu| \ge 5\sqrt{n}] \le \frac{\operatorname{Var}[X]}{25n} = \frac{1}{100}$

Analysing a collection of coin flips

Suppose we have $p_i = 1/2$ for all $i \in [n]$. We have $\mu = \mathbb{E}[X] = \frac{n}{2}$, $\operatorname{Var}[X] = \frac{n}{4}$. Consider the probability of being further than $5\sqrt{n}$ from μ .

Chebyshev $\Pr[|X - \mu| \ge 5\sqrt{n}] \le \frac{\operatorname{Var}[X]}{25n} = \frac{1}{100}$

Chernoff Work out the δ – we need $\mu \delta = 5\sqrt{n}$, so need $\delta = 5\sqrt{n}/\mu = 10\sqrt{n}/n = \frac{10}{\sqrt{n}}$. Then by Chernoff

$$\Pr[|X-\mu| \ge 5\sqrt{n}] \le 2e^{-\mu\delta^2/3} = 2e^{\frac{-10^2 \cdot n}{2 \cdot 3 \cdot \sqrt{n^2}}} = 2e^{-16.6\dots}.$$

This is much smaller than the Chebyshev bound (though note it doesn't depend on *n*).

Get much improved bounds because Chernoff uses specialised analysis for sums of independent Bernoulli variables.

Comparison with Chebyshev

For i.i.d. coin flips,

 $\Pr[|X-\mu| > D] \le p$

Deviation <i>p</i>	Constant	$O(\frac{1}{n^c})$	$\exp(-\Omega(n))$
D for Chebyshev	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n}\cdot n^{c/2})$	$\exp(\Omega(n))$
D for Chernoff	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n}(\log n)^{c/2})$	$\Omega(n)$

In fact, for the case of unbiased variables, we can do even better than $2e^{-\mu\delta^2/3}$. We first switch to +1/-1 variables.

Theorem (4.7)

Let X_1, \ldots, X_n be independent random variables with $\Pr[X_i = 1] = 1/2 = \Pr[X_i = -1]$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$. Note $\mu = E[X] = 0$. Then for any a > 0,

$$\Pr[X \ge a] \le e^{-a^2/2n}.$$

Proof.

We will once again consider the moment generating function e^{tX_i} :

$$\mathbb{E}\left[e^{tX_i}\right] = \frac{e^t + e^{-t}}{2} \le e^{t^2/2},$$

where the last estimate is due to Taylor expansion.

Proof of Thm 4.7 cont.

Use the last estimate

$$\mathbf{E}\left[e^{tX}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{tX_i}\right] \le e^{t^2 n/2};$$

Proof of Thm 4.7 cont.

Use the last estimate

$$\mathbb{E}\left[e^{tX}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_i}\right] \le e^{t^2 n/2};$$
$$\Pr[X \ge a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbb{E}\left[e^{tX}\right]}{e^{ta}} = e^{t^2 n/2 - ta}.$$

Once again, minimizing the exponent gives us t = a/n and

$$\Pr[X \ge a] \le e^{-a^2/2n}.$$

Proof of Thm 4.7 cont.

Use the last estimate

$$\mathbb{E}\left[e^{tX}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_i}\right] \le e^{t^2 n/2};$$
$$\Pr[X \ge a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbb{E}\left[e^{tX}\right]}{e^{ta}} = e^{t^2 n/2 - ta}.$$

Once again, minimizing the exponent gives us t = a/n and

$$\Pr[X \ge a] \le e^{-a^2/2n}.$$

The lower tail is completely symmetric. Think -X.

$$\Pr[X \le -a] = \Pr[-X \ge a] \le e^{-a^2/2n}.$$

Corollary (4.8)

Let X_1, \ldots, X_n be independent random variables with $\Pr[X_i = 1] = 1/2 = \Pr[X_i = -1]$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$. Note $\mu = E[X] = 0$. Then for any a > 0,

$$\Pr[|X| \ge a] \le 2e^{-a^2/2n}.$$

Consider Y_1, \ldots, Y_n such that $\Pr[Y_i = 1] = 1/2$ for every $i \in [n]$. Define $X_i = 2Y_i - 1$ for every $i \in [n]$. Then

$$X_i = \begin{cases} 1 & | Y_i = 1 \\ -1 & | Y_i = 0 \end{cases}$$

Note also that for any $t \in \mathbb{Z}$, that

$$\sum_{i=1}^{n} Y_i = t \qquad \Leftrightarrow \qquad \sum_{i=1}^{n} X_i = 2t - r$$

Corollary (4.9, 4.10) For $Y = \sum_{i=1}^{n} Y_i$, $X = \sum_{i=1}^{n} X_i$, we have $\Pr[Y \ge \frac{n}{2} + a] = \Pr[X \ge 2a] \le e^{-2a^2/n};$ $\Pr[Y \le \frac{n}{2} - a] = \Pr[X \le -2a] \le e^{-2a^2/n}.$

Say $\mu = E[Y] = n/2$ and $a = \delta \mu$. The bound is

$$e^{-2a^2/n} = e^{-2\delta^2\mu^2/(2\mu)} = e^{-\delta^2\mu}.$$

References

- Chapter 4 of [MU]
- We will continue with Chernoff Bounds on Friday.
- We will not have time to cover the packet routing analysis of 4.5, but it's worth reading (not examinable in the exam).