Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh
Bounding deviation

We already have …

Theorem (3.1, Markov’s Inequality)

Let X be any random variable that takes only non-negative values. Then for any $a > 0$,

\[\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}. \]

And also …

Theorem (3.2, Chebyshev’s Inequality)

For every $a > 0$,

\[\Pr[|X - \mathbb{E}[X]| \geq a] \leq \frac{\text{Var}[X]}{a^2}. \]

These are *generic*. Chernoff/Hoeffding bounds (specific) give tighter bounds for *sums of independent 0/1 variables* and related distributions.

RC (2017/18) – Lecture 7 – slide 2
Chernoff Bounds from the book

Poisson trials - sequence of Bernoulli variables X_i with varying p_is.

Theorem (4.4)

Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}[X]$. We have the following Chernoff bounds:

1. For any $\delta > 0$,
 \[
 \Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu;
 \]

2. For any $0 < \delta \leq 1$,
 \[
 \Pr[X \geq (1 + \delta)\mu] \leq e^{-\mu \delta^2/3};
 \]

3. For $R \geq 6\mu$,
 \[
 \Pr[X \geq R] \leq 2^{-R}.
 \]

RC (2017/18) – Lecture 7 – slide 3
Chernoff Bounds from the book

Lemma
For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$,
$\mu = E[X]$,

$$E[e^{tX}] \leq e^{\mu(e^t - 1)}.$$

Proof.
To prove the result, we will consider $E[e^{tX}]$ for $t > 0$.
This is $E[e^{t(\sum_{i=1}^{n} X_i)}] = E[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$.
Each e^{tX_i} has expectation

$$E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1$$

$$= 1 + p_i(e^t - 1)$$

$$\leq e^{p_i(e^t - 1)} \quad \text{by } 1 + x \leq e^x \text{ for } x \in \mathbb{R}$$

$$E[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t - 1)} = e^{\sum_{i=1}^{n} p_i(e^t - 1)} = e^{\mu(e^t - 1)}.$$
Lemma

For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$, $\mu = E[X]$,\[E[e^{tX}] \leq e^{\mu(e^t-1)}. \]

Proof.

To prove the result, we will consider $E[e^{tX}]$ for $t > 0$.

This is $E[e^{t(\sum_{i=1}^{n} X_i)}] = E[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$.

Each e^{tX_i} has expectation

\[E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1 \]

\[= 1 + p_i(e^t - 1) \]

\[\leq e^{p_i(e^t-1)} \quad \text{by } 1 + x \leq e^x \text{ for } x \in \mathbb{R} \]

\[E[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t-1)} = e^{\sum_{i=1}^{n} p_i(e^t-1)} = e^{\mu(e^t-1)}. \]
Chernoff Bounds from the book

Lemma
For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$,
$\mu = E[X]$,

$$E[e^{tX}] \leq e^{\mu(e^t-1)}.$$

Proof.
To prove the result, we will consider $E[e^{tX}]$ for $t > 0$.
This is $E[e^{t(\sum_{i=1}^{n} X_i)}] = E[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$.

Each e^{tX_i} has expectation

$$E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1$$
$$= 1 + p_i(e^t - 1)$$
$$\leq e^{p_i(e^t-1)}$$
by $1 + x \leq e^x$ for $x \in \mathbb{R}$

$$E[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t-1)} = e^{\sum_{i=1}^{n} p_i(e^t-1)} = e^{\mu(e^t-1)}.$$
Lemma
For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$,
$\mu = \mathbb{E}[X]$,

$$\mathbb{E}[e^{tX}] \leq e^{\mu(e^t - 1)}.$$

Proof.
To prove the result, we will consider $\mathbb{E}[e^{tX}]$ for $t > 0$.
This is $\mathbb{E}[e^{t(\sum_{i=1}^{n} X_i)}] = \mathbb{E}[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $\mathbb{E}[e^{tX}] = \prod_{i=1}^{n} \mathbb{E}[e^{tX_i}]$.
Each e^{tX_i} has expectation

$$\mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1$$

$$= 1 + p_i(e^t - 1)$$

$$\leq e^{p_i(e^t - 1)}$$

by $1 + x \leq e^x$ for $x \in \mathbb{R}$

$$\mathbb{E}[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t - 1)} = e^{\sum_{i=1}^{n} p_i(e^t - 1)} = e^{\mu(e^t - 1)}.$$
Lemma
For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$,
\[\mu = E[X], \]
\[E[e^{tX}] \leq e^{\mu(e^t - 1)}. \]

Proof.
To prove the result, we will consider $E[e^{tX}]$ for $t > 0$.
This is $E[e^{t(\sum_{i=1}^{n} X_i)}] = E[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$.
Each e^{tX_i} has expectation
\[
E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1 \\
= 1 + p_i(e^t - 1) \\
\leq e^{p_i(e^t - 1)} \quad \text{by } 1 + x \leq e^x \text{ for } x \in \mathbb{R}
\]
\[E[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t - 1)} = e^{\sum_{i=1}^{n} p_i(e^t - 1)} = e^{\mu(e^t - 1)}. \]
Lemma

For n independent Poisson trials X_1, \ldots, X_n and $X = \sum_{i=1}^{n} X_i$,

$\mu = \mathbb{E}[X]$,

$$
\mathbb{E}[e^{tX}] \leq e^{\mu(e^t-1)}.
$$

Proof.

To prove the result, we will consider $\mathbb{E}[e^{tX}]$ for $t > 0$.

This is $\mathbb{E}[e^{t(\sum_{i=1}^{n} X_i)}] = \mathbb{E}[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $\mathbb{E}[e^{tX}] = \prod_{i=1}^{n} \mathbb{E}[e^{tX_i}]$.

Each e^{tX_i} has expectation

$$
\mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1 \\
= 1 + p_i(e^t - 1) \\
\leq e^{p_i(e^t-1)} \quad \text{by } 1 + x \leq e^x \text{ for } x \in \mathbb{R}
$$

$$
\mathbb{E}[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t-1)} = e^{\sum_{i=1}^{n} p_i(e^t-1)} = e^{\mu(e^t-1)}.
$$
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$.

Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

\[\Pr[X \geq (1 + \delta)\mu] = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}] \]
\[\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov's Inequality} \]
\[\leq \frac{e^{\mu(e^t - 1)}}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved} \]

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

\[\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu(e^{\ln(1+\delta)} - 1)}}{e^{\ln(1+\delta)(1+\delta)\mu}} \]
\[= \frac{e^{\mu\delta}}{(1 + \delta)(1+\delta)\mu} = \left(\frac{e^{\delta}}{(1 + \delta)(1+\delta)}\right)^\mu. \]
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$. Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

$$
\Pr[X \geq (1 + \delta)\mu] = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}]
\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov's Inequality}
\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved}
$$

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

$$
\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}}
= \frac{e^{\mu\delta}}{(1 + \delta)^{(1+\delta)\mu}} = \left(\frac{e^{\delta}}{(1 + \delta)^{(1+\delta)}}\right)^{\mu}.
$$
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$.
Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

\[
\Pr[X \geq (1 + \delta)\mu] = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}]
\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov's Inequality}
\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved}
\]

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

\[
\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}} = \frac{e^{\mu\delta}}{(1 + \delta)(1+\delta)^\mu} = \left(\frac{e^{\delta}}{(1 + \delta)(1+\delta)}\right)^\mu.
\]

RC (2017/18) – Lecture 7 – slide 5
Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$.
Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

$$Pr[X \geq (1 + \delta)\mu] = Pr[e^{tX} \geq e^{t(1+\delta)\mu}]$$

$$\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov’s Inequality}$$

$$\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved}$$

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

$$Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}}$$

$$= \frac{e^{\mu\delta}}{(1 + \delta)(1+\delta)\mu} = \left(\frac{e^\delta}{(1 + \delta)(1+\delta)}\right)^\mu.$$
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$.
Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

\[
\Pr[X \geq (1 + \delta)\mu] = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}] \\
\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov's Inequality} \\
\leq \frac{e^{\mu}(e^t-1)}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved}
\]

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

\[
\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu}(e^{\ln(1+\delta)}-1)}{e^{\ln(1+\delta)(1+\delta)\mu}} \\
= \frac{e^{\mu\delta}}{(1 + \delta)^{(1+\delta)\mu}} = \left(\frac{e^\delta}{(1 + \delta)^{(1+\delta)}} \right)^\mu.
\]
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)

Interested in events when $X \geq (1 + \delta)\mu$. Identical to when $e^X \geq e^{(1+\delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{t(1+\delta)\mu}$.

\[
\Pr[X \geq (1 + \delta)\mu] = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}]
\leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \quad \text{by Markov’s Inequality}
\leq \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}} \quad \text{by Lemma just proved}
\]

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

\[
\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}} = \frac{e^{\mu\delta}}{(1 + \delta)(1+\delta)\mu} = \left(\frac{e^{\delta}}{(1 + \delta)(1+\delta)}\right)^\mu.
\]
Chernoff Bounds from the book

Proof of Thm 4.4 (2.)

Already have

\[\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)}\right)^\mu.\]

The rhs will be \(\leq e^{-\mu\delta^2/3}\) if and only if (taking \(\mu\)-th root, then ln)

\[\delta - (1 + \delta)\ln(1 + \delta) < -\delta^2/3\]

We will show the following \(f\) is always negative for \(\delta \in (0, 1)\)

\[f(\delta) =_{def} \delta - (1 + \delta)\ln(1 + \delta) + \delta^2/3\]

Differentiating,

\[f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) \frac{1}{1 + \delta} + \frac{2\delta}{3} = -\ln(1 + \delta) + \frac{2\delta}{3}\]
Chernoff Bounds from the book

Proof of Thm 4.4 (2.)

Already have

\[\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)} \right)^\mu. \]

The rhs will be \(\leq e^{-\mu\delta^2/3} \) if and only if (taking \(\mu \)-th root, then \(\ln \))

\[\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \]

We will show the following \(f \) is always negative for \(\delta \in (0, 1) \)

\[f(\delta) =_{def} \delta - (1 + \delta) \ln(1 + \delta) + \frac{\delta^2}{3} \]

Differentiating,

\[f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) \frac{1}{1 + \delta} + \frac{2\delta}{3} = -\ln(1 + \delta) + \frac{2\delta}{3} \]
Chernoff Bounds from the book

Proof of Thm 4.4 (2.)

Already have

$$\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1 + \delta)} \right)^\mu.$$

The rhs will be \(\leq e^{-\mu\delta^2/3} \) if and only if (taking \(\mu \)-th root, then \(\ln \))

$$\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3$$

We will show the following \(f \) is always negative for \(\delta \in (0, 1) \)

$$f(\delta) =_{def} \delta - (1 + \delta) \ln(1 + \delta) + \delta^2/3$$

Differentiating,

$$f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) \frac{1}{1 + \delta} - \frac{2\delta}{3}$$

$$= -\ln(1 + \delta) + \frac{2\delta}{3}.$$
Chernoff Bounds from the book

Proof of Thm 4.4 (2.)

Already have

\[\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1 + \delta)} \right)^\mu. \]

The rhs will be \(\leq e^{-\mu\delta^2/3} \) if and only if (taking \(\mu \)-th root, then \(\ln \))

\[\delta - (1 + \delta)\ln(1 + \delta) < -\delta^2/3 \]

We will show the following \(f \) is always negative for \(\delta \in (0, 1) \)

\[f(\delta) =_{\text{def}} \delta - (1 + \delta)\ln(1 + \delta) + \delta^2/3 \]

Differentiating,

\[f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) \frac{1}{1 + \delta} + \frac{2\delta}{3} \]
Chernoff Bounds from the book

Proof of Thm 4.4 (2.)

Already have

\[\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)} \right)^\mu. \]

The rhs will be \(\leq e^{-\mu \delta^2/3} \) if and only if (taking \(\mu \)-th root, then ln)

\[\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \]

We will show the following \(f \) is always negative for \(\delta \in (0, 1) \)

\[f(\delta) =_{def} \delta - (1 + \delta) \ln(1 + \delta) + \frac{\delta^2}{3} \]

Differentiating,

\[f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) \frac{1}{1+\delta} + \frac{2\delta}{3} \]

\[-\ln(1 + \delta) + _ \]
Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiating again

\[f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3} = -\frac{1}{1+\delta} + \frac{2}{3} \]

Note

\[f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2 \\ 0 & \delta = 1/2 \\ > 0 & \delta > 1/2 \end{cases} \]

Also \(f'(0) = 0, f'(1) < 0 \) (check \(\delta = 1 \) in top equation), and by \(f' \) decreasing first, then increasing from \(1/2 \) \(f'(\delta) < 0 \) on \((0, 1) \). By \(f(0) = 0 \), this implies that \(f(\delta) \leq 0 \) in all of \([0, 1]\). Hence \(\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \), proving 2.

RC (2017/18) – Lecture 7 – slide 7
Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiating again

\[f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3} \]

Note

\[f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < \frac{1}{2} \\ 0 & \delta = \frac{1}{2} \\ > 0 & \delta > \frac{1}{2} \end{cases} \]

Also \(f'(0) = 0 \), \(f'(1) < 0 \) (check \(\delta = 1 \) in top equation), and by \(f' \) decreasing first, then increasing from \(\frac{1}{2} \) \(f'(\delta) < 0 \) on \((0, 1) \). By \(f(0) = 0 \), this implies that \(f(\delta) \leq 0 \) in all of \([0, 1]\). Hence \(\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \), proving 2.
Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiating again

\[f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3} \]

Note

\[
\begin{align*}
 f''(\delta) \left\{
 \begin{array}{ll}
 < 0 & \text{for } 0 < \delta < 1/2 \\
 0 & \delta = 1/2 \\
 > 0 & \delta > 1/2
 \end{array}
 \right.
\end{align*}
\]

Also \(f'(0) = 0, f'(1) < 0 \) (check \(\delta = 1 \) in top equation), and by \(f' \) decreasing first, then increasing from \(1/2 \) \(f'(\delta) < 0 \) on \((0, 1) \).

By \(f(0) = 0 \), this implies that \(f(\delta) \leq 0 \) in all of \([0, 1]\).

Hence \(\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \), proving 2.
Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiating again

\[f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3} \]

Note

\[
\begin{align*}
f''(\delta) & < 0 \quad \text{for } 0 < \delta < 1/2 \\
0 & \quad \delta = 1/2 \\
> 0 & \quad \delta > 1/2
\end{align*}
\]

Also \(f'(0) = 0, f'(1) < 0 \) (check \(\delta = 1 \) in top equation), and by \(f' \) decreasing first, then increasing from \(1/2 \) \(f'(\delta) < 0 \) on \((0, 1) \).

By \(f(0) = 0 \), this implies that \(f(\delta) \leq 0 \) in all of \([0, 1] \).

Hence \(\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \), proving 2.
Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiating again

\[f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3} \]

Note

\[
\begin{align*}
 f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2 \\
 0 & \delta = 1/2 \\
 > 0 & \delta > 1/2
\end{cases}
\end{align*}
\]

Also \(f'(0) = 0, f'(1) < 0 \) (check \(\delta = 1 \) in top equation), and by \(f' \)
decreasing first, then increasing from \(1/2 \) \(f'(\delta) < 0 \) on \((0, 1) \).
By \(f(0) = 0 \), this implies that \(f(\delta) \leq 0 \) in all of \([0, 1]\).
Hence \(\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3 \), proving 2.
Theorem (4.5)

Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

1.
 $$\Pr[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right)^\mu;$$

2.
 $$\Pr[X \leq (1 - \delta)\mu] \leq e^{-\mu \delta^2 / 2};$$

- Proof is similar to Thm 4.4.
- Bound of 2. is slightly better than for the $\geq (1 + \delta)\mu$ bound.
- No 3. Why?
Concentration

Corollary (4.6)

Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$, and $\mu = E[X]$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X - \mu| \geq \delta \mu] \leq 2e^{-\mu \delta^2/3}.$$

- For almost all applications, we will want to work with a symmetric version like the Corollary.
- We “threw away” a bit in moving from the $(e^{\pm \delta}(1 \pm \delta)^{1 \pm \delta})^\mu$ versions, but they are tricky to work with.
Analysing a collection of coin flips

Suppose we have \(p_i = 1/2 \) for all \(i \in [n] \).
We have \(\mu = E[X] = \frac{n}{2} \), \(\text{Var}[X] = \frac{n}{4} \).
Consider the probability of being further than \(5\sqrt{n} \) from \(\mu \).

Chebyshev \(\Pr[|X - \mu| \geq 5\sqrt{n}] \leq \frac{\text{Var}[X]}{25n} = \frac{1}{100} \)

Chernoff Work out the \(\delta \) - we need \(\mu \delta = 5\sqrt{n} \), so need \(\delta = 5\sqrt{n}/\mu = 10\sqrt{n}/n = \frac{10}{\sqrt{n}} \). Then by Chernoff

\[
\Pr[|X - \mu| \geq 5\sqrt{n}] \leq 2e^{-\mu \delta^2/3} = 2e^{\frac{-10^2 \cdot n}{2 \cdot 3 \cdot \sqrt{n}^2}} = 2e^{-16.6\ldots}.
\]

This is much smaller than the Chebyshev bound (though note it doesn’t depend on \(n \)).

Get much improved bounds because Chernoff uses specialised analysis for sums of independent Bernoulli variables.
The handout for this lecture had extra slides in it at the end. I didn’t finish in class on 6th Feb so have moved those slides to lecture 8.

- Chapter 4 of “Probability and Computing"
- We don’t have time to cover the packet routing analysis of 4.5. But it’s worth reading (but not examinable in the exam).