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Bounding deviation

We already have . . .

Theorem (3.1, Markov’s Inequality)
Let X be any random variable that takes only non-negative values. Then for
any a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

Theorem (3.2, Chebyshev’s Inequality)
For every a > 0,

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

These are generic. Chernoff/Hoeffding bounds (specific) give tighter bounds
for sums of independent variables and related distributions.
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Chernoff bounds — upper tail

Poisson trials - sequence of Bernoulli variables Xi with varying pis.

Theorem (4.4, basic form)
Let X1, . . . ,Xn be independent Bernoulli random variables with parameter pi
for i ∈ [n].Let X =

∑n
i=1 Xi, and µ = E[X]. Then for any δ > 0,

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)1+δ

)µ

.

For example, if µ = pn and δ = 1,

Pr[X ≥ 2µ] ≤
( e
4

)pn
= exp(−Ω(n)).
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Comparing with Chebyshev’s inequality

Theorem (4.4, basic Chernoff)
Pr[X ≥ (1+ δ)µ] ≤

(
eδ

(1+δ)(1+δ)

)µ

.

Consider the casewhere pi = p andµ = pn. Due to independence,Var[Xi] =
p− p2 and Var[X] = (p− p2)n = µ(1− p). With Chebyshev’s inequality

Pr[X ≥ (1+ δ)µ] ≤ Pr[|X− µ| ≥ δµ]

≤ µ(1− p)
δ2µ2 =

1− p
δ2µ

= O(1/n).

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives
us an exponential tail.

However, both give us constant concentration bound for a window of width
O(

√
n), although Chernoff’s constant is much better.
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Chernoff bounds — upper tail
Lemma
Let X1, . . . , Xn and X be the same as before and µ = E[X]. For any t ∈ R,

E[etX] ≤ eµ(et−1)
.

Proof.
Consider

E[etX] = E
[
et(

∑n
i=1 Xi)

]
= E

[
n∏

i=1

etXi
]
.

The Xi and hence the etXi are mutually independent, so by Thm 3.3,
E[etX] =

∏n
i=1 E[e

tXi ]. Each etXi has expectation

E[etXi ] = pi · et + (1 − pi) · 1
= 1 + pi(e

t − 1)

≤ epi(e
t−1) (by 1 + x ≤ ex for x ∈ R)

⇒ E[etX] ≤
n∏

i=1

epi(e
t−1) = e

∑n
i=1 pi(e

t−1) = eµ(et−1)
.
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Chernoff bounds — upper tail
Proof of Thm 4.4.
The event of interest is

X ≥ (1 + δ)µ ⇔ eX ≥ e(1+δ)µ

which, in turn, is equivalent to etX ≥ et(1+δ)µ for any t > 0.

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ]

≤ E[etX]
et(1+δ)µ

(by Markov’s Inequality)

≤ eµ(et−1)

et(1+δ)µ
. (by the last Lemma)

This holds for any t > 0, and we want to pick t to minimize the right hand side,
which is RHS := eµ(et−1)−t(1+δ)µ. Differentiate the exponent,

(lnRHS) ′ = µet − (1 + δ)µ.

Thus, RHS decreases if t ≤ ln(1 + δ) and increases if t ≥ ln(1 + δ). Its minimum is
taken at t = ln(1 + δ).
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Chernoff bounds — upper tail

Proof of Thm 4.4 (cont.)
Now take t = ln(1+ δ) (and note this is > 0) to see

Pr[X ≥ (1+ δ)µ] ≤ eµ(et−1)−t(1+δ)µ

≤ eµ(eln(1+δ)−1)

eln(1+δ)(1+δ)µ

=
eµδ

(1+ δ)(1+δ)µ
=

(
eδ

(1+ δ)(1+δ)

)µ

.
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Chernoff bounds — upper tail

Theorem (4.4, full)
Let X1, . . . ,Xn be independent Bernoulli random variables with param-
eter pi for i ∈ [n].Let X =

∑n
i=1 Xi, and µ = E[X].

1. For any δ > 0,

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)1+δ

)µ

;

2. For any 0 < δ ≤ 1,

Pr[X ≥ (1+ δ)µ] ≤ e−µδ2/3;

3. For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R.

RC (2019/20) – Lecture 7 – slide 8



Chernoff bounds — upper tail
Proof of Thm 4.4 (2.)
Already have

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ

.

Comparing the RHS with ≤ e−µδ2/3, we want

δ− (1+ δ) ln(1+ δ) < −δ2/3

We will show the following f is always negative for δ ∈ (0, 1)

f(δ) := δ− (1+ δ) ln(1+ δ) + δ2/3

Differentiating,

f ′(δ) = 1− ln(1+ δ) − (1+ δ)
1

1+ δ
+

2δ
3

= − ln(1+ δ) +
2δ
3
.
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Chernoff bounds — upper tail

Proof of Thm 4.4 (2.) cont.

f ′(δ) = − ln(1 + δ) +
2δ
3
.

Differentiate again

f ′′(δ) = −
1

1 + δ
+

2
3

= −
1

1 + δ
+

2
3

Note

f ′′(δ)


< 0 for 0 < δ < 1/2;

= 0 for δ = 1/2;

> 0 for δ > 1/2.

Also f ′(0) = 0, f ′(1) ≈ −0.026 < 0 (check δ = 1 in top equation). Since f ′ decreases
from 0 to 1/2 and then increases from 1/2 to 1, we have that f ′(δ) < 0 on (0, 1).

By f(0) = 0, this implies that f(δ) ≤ 0 in all of [0, 1].
Hence δ − (1 + δ) ln(1 + δ) < −δ2/3, proving (2.).
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Chernoff bounds — upper tail

For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R

.

Proof of Thm 4.4 (3.)
Let R = (1 + δ)µ and thus δ = R/µ − 1 ≥ 5. By Thm 4.4 (1.)

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

=

 e
δ

1+δ

1 + δ

(1+δ)µ

≤
(

e
1 + δ

)(1+δ)µ

≤
( e
6

)R
≤ 2−R

Thm 4.4 (1.) is the strongest. The other two are slightly weaker but easy to use.
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Chernoff Bounds (lower tail)

Theorem (4.5)
Let X1, . . . ,Xn be independent Poisson trials such that Pr[Xi = 1] = pi for all
i ∈ [n]. Let X =

∑n
i=1 Xi, and µ = E[X]. For any 0 < δ < 1, we have the

following Chernoff bounds:

1.

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

;

2.
Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2;

▶ Proof is similar to Thm 4.4.

▶ Bound of (2.) is slightly better than the bound for ≥ (1+ δ)µ.

▶ No (3.) Why?
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Concentration

Corollary (4.6)
Let X1, . . . ,Xn be independent Bernoulli rv such that Pr[Xi = 1] = pi for
all i ∈ [n]. Let X =

∑n
i=1 Xi, and µ = E[X]. Then for any δ, 0 < δ < 1,

Pr[|X− µ| ≥ δµ] ≤ 2e−µδ2/3.

▶ For most applications, we will want to work with a symmetric
version like the Corollary.

▶ We “threw away” a bit in moving from the
(

e±δ

(1±δ)1±δ

)µ

versions,
but they are tricky to work with.

RC (2019/20) – Lecture 7 – slide 13



Analysing a collection of coin flips

Suppose we have pi = 1/2 for all i ∈ [n].

We have µ = E[X] = n
2 , Var[X] =

n
4 .

Consider the probability of being further than 5
√
n from µ.

Chebyshev Pr[|X− µ| ≥ 5
√
n] ≤ Var[X]

25n = 1
100

Chernoff Work out the δ — we need µδ = 5
√
n, so need

δ = 5
√
n/µ = 10

√
n/n = 10√

n . Then by Chernoff

Pr[|X− µ| ≥ 5
√
n] ≤ 2e−µδ2/3 = 2e

−102·n
2·3·

√
n2 = 2e−16.6....

This is much smaller than the Chebyshev bound (though
note it doesn’t depend on n).

Get much improved bounds because Chernoff uses specialised analysis for
sums of independent Bernoulli variables.
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Comparison with Chebyshev

For i.i.d. coin flips,
Pr[|X− µ| > D] ≤ p

Deviation p Constant O( 1
nc ) exp(−Ω(n))

D for Chebyshev Ω(
√
n) Ω(

√
n · nc/2) exp(Ω(n))

D for Chernoff Ω(
√
n) Ω(

√
n(log n)c/2) Ω(n)

RC (2019/20) – Lecture 7 – slide 15



Unbiased +1/− 1 variables

In fact, for the case of unbiased variables, we can do even better than 2e−µδ2/3.
We first switch to +1/-1 variables.

Theorem (4.7)
Let X1, . . . ,Xn be independent random variables with Pr[Xi = 1] = 1/2 =
Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk. Note µ = E[X] = 0. Then for

any a > 0,
Pr[X ≥ a] ≤ e−a2/2n.

Proof.
We will once again consider the moment generating function etXi :

E
[
etXi

]
=

et + e−t

2
≤ et

2/2,

where the last estimate is due to Taylor expansion.
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Unbiased +1/− 1 variables

Proof of Thm 4.7 cont.
Use the last estimate

E
[
etX

]
=

n∏
i=1

E
[
etXi

]
≤ et

2n/2;

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX]
eta = et

2n/2−ta.

Once again, minimizing the exponent gives us t = a/n and

Pr[X ≥ a] ≤ e−a2/2n.

The lower tail is completely symmetric. Think −X.

Pr[X ≤ −a] = Pr[−X ≥ a] ≤ e−a2/2n.
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Unbiased +1/− 1 variables

Corollary (4.8)
Let X1, . . . ,Xn be independent random variables with Pr[Xi = 1] = 1/2 =
Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk. Note µ = E[X] = 0. Then for

any a > 0,
Pr[|X| ≥ a] ≤ 2e−a2/2n.
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Unbiased 0/1 variables
Consider Y1, . . . ,Yn such that Pr[Yi = 1] = 1/2 for every i ∈ [n].
Define Xi = 2Yi − 1 for every i ∈ [n]. Then

Xi =

{
1 | Yi = 1
−1 | Yi = 0

Note also that for any t ∈ Z, that

n∑
i=1

Yi = t ⇔ n∑
i=1

Xi = 2t − n

Corollary (4.9, 4.10)
For Y =

∑n
i=1 Yi, X =

∑n
i=1 Xi, we have

Pr[Y ≥ n
2 + a] = Pr[X ≥ 2a] ≤ e−2a2/n;

Pr[Y ≤ n
2 − a] = Pr[X ≤ −2a] ≤ e−2a2/n

.

Say µ = E[Y] = n/2 and a = δµ. The bound is

e−2a2/n = e−2δ2µ2/(2µ) = e−δ2µ
.
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References

▶ Chapter 4 of [MU]

▶ We will continue with Chernoff Bounds on Friday.

▶ We will not have time to cover the packet routing analysis of 4.5, but
it’s worth reading (not examinable in the exam).
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