Randomness and Computation or, "Randomized Algorithms"

Mary Cryan

School of Informatics University of Edinburgh

Bounding deviation

We already have ...

Theorem (3.1, Markov's Inequality)

Let X be any random variable that takes only non-negative values. Then for any a > 0,

$$\Pr[X \ge a] \le \frac{\mathrm{E}[X]}{a}$$

And also ...

Theorem (3.2, Chebyshev's Inequality) For every a > 0,

$$\Pr[|X - E[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$

These are *generic*. Chernoff/Hoeffding bounds (specific) give tighter bounds for *sums of independent 0/1 variables* and related distributions.

Chernoff Bounds

Many many variations. My favourite (general statement) is McDiarmid's presentation:

Theorem

Let X_1, \ldots, X_n be independent random variables, X_k taking values in a set A_k , for every $k \in [n]$. Suppose that the (measurable) function $f : \prod_{k=1}^n A_k \to \mathbb{R}$ satisfies

 $|f(\bar{x}) - f(\bar{x}')| \leq c_k$

whenever \bar{x}, \bar{x}' only differ in the *k*-th coordinate. Let Y be the random variable $f[X_1, \ldots, X_n]$. Then for any t > 0,

$$\Pr[|Y - E[Y]| \ge t] \le 2 \exp\left[\frac{-2t^2}{\sum_{k \in [n]} c_k^2}\right]$$

Corollaries from previous slide

Corollary

Let X_1, \ldots, X_n be independent Bernoulli variables with parameters p_1, \ldots, p_n respectively, and let $Y = \sum_{k=1}^n X_k$. (this case of Bernoulli's with differing ps is often called Poisson trials). Let $\mu = E[Y]$. Then for any $\delta > 0$, $\Pr[|Y - E[Y]| \ge \delta\mu] \le 2 \exp\left[\frac{-2(\delta\mu)^2}{n}\right]$.

This is not as tight as we'd like ... we can't cancel an *n* with μ as we don't know the size of the average p_k . See Corollary 4.6 later

Corollary

Let X_1, \ldots, X_n be independent fair coin flips ($\Pr[X_k = 1] = 1/2$ for every k) respectively, and let $Y = \sum_{k=1}^n X_k$. Note $\mu = E[Y] = n/2$. Then for any $\delta > 0$,

$$\Pr\left[|Y - E[Y]| \ge \delta \mu\right] \le 2 \exp\left[\frac{-n\delta^2}{2}\right].$$

See Theorem 4.7 later (has $\frac{1}{4}$ rather than $\frac{1}{2}$). RC (2016/17) - Lectures 7, 8 - slide 4

Poisson trials - sequence of Bernoulli variables X_i with varying p_i s. Theorem (4.4)

Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$, and $\mu = E[X]$. We have the following Chernoff bounds:

1. For any $\delta > 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu};$$

2. For any $0 < \delta \leq 1$,

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3};$$

3. *For* $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

・ロト・四ト・山下・山下・山下・

Lemma For *n* independent Poisson trials $X_1, ..., X_n$ and $X = \sum_{i=1}^n X_i$, $\mu = E[X]$,

 $\mathrm{E}[\boldsymbol{e}^{tX}] \leq \boldsymbol{e}^{\mu(\boldsymbol{e}^t-1)}.$

Proof.

To prove the result, we will consider $E[e^{tX}]$ for t > 0. This is $E[e^{t(\sum_{i=1}^{n} X_i)}] = E[\prod_{i=1}^{n} e^{tX_i}]$. The X_i and hence the e^{tX_i} are mutually independent, so by Thm 3.3, $E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}]$. Each e^{tX_i} has expectation

$$E[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1$$

= $1 + p_i(e^t - 1)$
 $\leq e^{p_i(e^t - 1)}$ by $1 + x \leq e^x$ for $x \in \mathbb{R}$

$$E[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t-1)} = e^{\sum_{i=1}^{n} p_i(e^t-1)} = e^{\mu(e^t-1)}.$$

$$RC (2016/17) - Lectures 7, 8 - slide 6$$

Proof of Thm 4.4 (1.)

Interested in events when $X \ge (1 + \delta)\mu$. Identical to when $e^X \ge e^{(1+\delta)\mu}$, or for any t > 0, when $e^{tX} \ge e^{t(1+\delta)\mu}$.

$$\begin{aligned} \Pr[X \ge (1+\delta)\mu] &= & \Pr[e^{tX} \ge e^{t(1+\delta)\mu}] \\ &\leq & \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)\mu}} & \text{by Markov's Inequality} \\ &\leq & \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}} & \text{by Lemma just proved} \end{aligned}$$

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

$$\Pr[X \ge (1+\delta)\mu] \le \frac{e^{\mu(e^{\ln(1+\delta)}-1)}}{e^{\ln(1+\delta)(1+\delta)\mu}} = \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

$$= \frac{e^{\mu\delta}}{(1+\delta)^{(1+\delta)\mu}} = \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

$$RC (2016/17) - Lectures 7, 8 - slide \mathbb{Z}$$

Chernoff Bounds from the book Proof of Thm 4.4 (2.)

Already have

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

The rhs will be $\leq e^{-\mu\delta^2/3}$ if and only if (taking μ -th root, then ln)

$$\delta - (1+\delta)\ln(1+\delta) < -\delta^2/3$$

We will show the following *f* is always negative for $\delta \in (0, 1)$

$$f(\delta) =_{def} \delta - (1 + \delta) \ln(1 + \delta) + \delta^2/3$$

Differentiating,

$$f'(\delta) = 1 - \ln(1+\delta) + (1+\delta)\frac{1}{1+\delta} + \frac{2\delta}{3}$$

= $-\ln(1+\delta) + \frac{2\delta}{3}$.
RC (2016/17) - Lectures 7, 8 - slide 8

Proof of Thm 4.4 (2.) cont'd.

$$f'(\delta) = -\ln(1+\delta) + \frac{2\delta}{3}.$$

Differentiating again

$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3} = -\frac{1}{1+\delta} + \frac{2}{3}$$

Note

$$f^{\prime\prime}(\delta) \left\{ \begin{array}{ll} <0 & \mbox{for } 0<\delta<1/2 \\ 0 & \delta=1/2 \\ >0 & \delta>1/2 \end{array} \right.$$

Also f'(0) = 0, f'(1) < 0 (check $\delta = 1$ in top equation), and by f'decreasing first, then increasing from 1/2) $f'(\delta) < 0$ on (0, 1). By f(0) = 0, this implies that $f(\delta) \le 0$ in all of [0, 1]. Hence $\delta - (1 + \delta) \ln(1 + \delta) < -\delta^2/3$, proving 2.

Chernoff Bounds from the book (other direction)

Theorem (4.5)

Let $X_1, ..., X_n$ be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$, and $\mu = E[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

$$\Pr[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu};$$

2.

1.

$$\Pr[X \leq (1-\delta)\mu] \leq e^{-\mu\delta^2/2};$$

- Proof is similar to Thm 4.4.
- ▶ Bound of 2. is slightly *better* than for the $\geq (1 + \delta)\mu$ bound.

▶ No 3. Why?

Concentration

Corollary (4.6)

Let X_1, \ldots, X_n be independent Poisson trials such that $Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$, and $\mu = E[X]$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X - \mu| \ge \delta \mu] \le 2e^{-\mu \delta^2/3}.$$

- For almost all applications, we will want to work with a symmetric version like the Corollary.
- We "threw away" a bit in moving from the $\left(\frac{e^{\pm\delta}}{(1\pm\delta)^{1\pm\delta}}\right)^{\mu}$ versions, but they are tricky to work with.

Analysing a collection of coin flips

We have $p_i = 1/2$ for all $i \in [n]$. We have $\mu = E[X] = \frac{n}{2}$, $Var[X] = \frac{n}{4}$. Consider the probability of being further than $5\sqrt{n}$ from μ .

Chebyshev $\Pr[|X - \mu| \ge 5\sqrt{n}] \le \frac{\operatorname{Var}[X]}{25n} = \frac{1}{100}$

Chernoff Work out the δ - we need $\mu \delta = 5\sqrt{n}$, so need $\delta = 5\sqrt{n}/\mu = 10\sqrt{n}/n = \frac{10}{\sqrt{n}}$. Then by Chernoff

$$\Pr[|X - \mu| \ge 5\sqrt{n}] \le 2e^{-\mu\delta^2/3} = 2e^{\frac{-10^2 \cdot n}{2 \cdot 3 \cdot \sqrt{n^2}}} = 2e^{-16.6...}.$$

This is much smaller than the Chebyshev bound (though note it doesn't depend on *n*).

Get much improved bounds because Chernoff uses specialised analysis for sums of independent Bernoulli variables.

Unbiased +1/-1 variables

In fact, for the case of unbiased variables, we can do even better than $2e^{-\mu\delta^2/3}$.

Theorem (4.7)

Let X_1, \ldots, X_n be independent random variables with $\Pr[X_i = 1] = 1/2 = \Pr[X_i = -1]$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$. Note $\mu = \operatorname{E}[X] = 0$. Then for any a > 0,

$$\Pr[X \ge a] \le e^{-a^2/2n}$$

Proof is in the book.

(uses Taylor series expansions for e^t , e^{-t}).

Constant is just a bit better than with Theorem 4.6. We did the details of this on the BOARD.

Set Balancing for statistical experiments

We have an $n \times m$ binary matrix A (entries from $\{0, 1\}$). We consider the value of

$$A\cdot ar{b}=ar{c},$$

when $\bar{b} \in \{-1, +1\}^m$ (note \bar{c} will then be *n*-dimensional).

Goal is to find $\bar{b} \in \{-1, +1\}^m$ such that the value of $\|A \cdot \bar{b}\|_{\infty} = \max_{i=1}^n |c_i|$ is minimized.

Solution: choose $\overline{b} \in \{-1, +1\}^m$ by generating b_i independently and uniformly from $\{-1, +1\}$. We can show

Theorem (4.11) For \bar{b} chosen uar from $\{-1, +1\}^m$,

$$\Pr[\|A\bar{b}\|_{\infty} \geq \sqrt{4m\ln(n)}] \leq \frac{2}{n}.$$

Set Balancing for statistical experiments (added post-lecture)

- ▶ $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, *every entry* of $A \cdot \overline{b}$ has absolute value $\leq \sqrt{4m \ln(n)}$.
- ► There are *n* different entries of $\bar{c} = A \cdot \bar{b}$; we will show that for each entry, we are "small enough" with probability $\geq 1 \frac{2}{n^2}$. Then Union Bound shows that $||A \cdot \bar{b} \cdot ||_{\infty}$ is bounded with prob $\geq 1 \frac{2}{n}$.
- For any row *i* of *A*, there are some entries S_i , $|S_i| \le m$ which are non-0 (ie, 1). The absolute value of $A_i \cdot \overline{b}$ is the (absolute) weighted sum of these 1s, *randomly* weighted by +1 or -1 ... so we have S_i random trials of unbiased +1/-1. Setting $a = \sqrt{4m \ln(n)}$, Thm 4.7 says the probability we exceed this is at most

$$2e^{-4m\ln(n)/2|S_i|} = 2n^{-2m/|S_i|} \le \frac{2}{n^2},$$

as required.

・ロト・日本・山下・山下・山下・山下・

References

- Chapter 4 of "Probability and Computing"
- We don't have time to cover the packet routing analysis of 4.5. But it's worth reading (but not examinable in the exam).