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Bounding deviation
We already have . . .

Theorem (3.1, Markov’s Inequality)
Let X be any random variable that takes only non-negative values.
Then for any a > 0,

Pr[X ≥ a] ≤ E[X ]

a
.

And also . . .

Theorem (3.2, Chebyshev’s Inequality)
For every a > 0,

Pr[|X − E[X ]| ≥ a] ≤ Var[X ]

a2 .

These are generic. Chernoff/Hoeffding bounds (specific) give tighter
bounds for sums of independent 0/1 variables and related
distributions.
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Chernoff Bounds

Many many variations. My favourite (general statement) is
McDiarmid’s presentation:

Theorem
Let X1, . . . ,Xn be independent random variables, Xk taking values in
a set Ak , for every k ∈ [n]. Suppose that the (measurable)
function f :

∏n
k=1 Ak → R satisfies

|f (x̄) − f (x̄ ′)| ≤ ck

whenever x̄ , x̄ ′ only differ in the k-th coordinate.
Let Y be the random variable f [X1, . . . ,Xn]. Then for any t > 0,

Pr[|Y − E[Y ]| ≥ t ] ≤ 2 exp

[
−2t2∑
k∈[n] c2

k

]
.
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Corollaries from previous slide

Corollary
Let X1, . . . ,Xn be independent Bernoulli variables with parameters
p1, . . . ,pn respectively, and let Y =

∑n
k=1 Xk . (this case of Bernoulli’s

with differing ps is often called Poisson trials). Let µ = E[Y ]. Then for
any δ > 0, Pr [|Y − E[Y ]| ≥ δµ] ≤ 2 exp

[
−2(δµ)2

n

]
.

This is not as tight as we’d like . . . we can’t cancel an n with µ as we
don’t know the size of the average pk . See Corollary 4.6 later

Corollary
Let X1, . . . ,Xn be independent fair coin flips (Pr[Xk = 1] = 1/2 for
every k) respectively, and let Y =

∑n
k=1 Xk . Note µ = E[Y ] = n/2.

Then for any δ > 0,

Pr [|Y − E[Y ]| ≥ δµ] ≤ 2 exp
[
−nδ2

2

]
.

See Theorem 4.7 later (has 1
4 rather than 1

2 ).
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Chernoff Bounds from the book
Poisson trials - sequence of Bernoulli variables Xi with varying pis.

Theorem (4.4)
Let X1, . . . ,Xn be independent Poisson trials such that Pr[Xi = 1] = pi
for all i ∈ [n]. Let X =

∑n
k=1 Xk , and µ = E[X ]. We have the following

Chernoff bounds:

1. For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
;

2. For any 0 < δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3;

3. For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R .
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Chernoff Bounds from the book
Lemma
For n independent Poisson trials X1, . . . ,Xn and X =

∑n
i=1 Xi ,

µ = E[X ],
E[etX ] ≤ eµ(et −1).

Proof.
To prove the result, we will consider E[etX ] for t > 0.
This is E[et(

∑n
i=1 Xi)] = E [

∏n
i=1 etXi ]. The Xi and hence the etXi are

mutually independent, so by Thm 3.3, E[etX ] =
∏n

i=1 E[etXi ].
Each etXi has expectation

E[etXi ] = pi · et + (1 − pi) · 1
= 1 + pi(et − 1)

≤ epi(et −1) by 1 + x ≤ ex for x ∈ R

E[etX ] ≤
n∏

i=1

epi(et −1) = e
∑n

i=1 pi(et −1) = eµ(et −1).
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Chernoff Bounds from the book
Proof of Thm 4.4 (1.)
Interested in events when X ≥ (1 + δ)µ.
Identical to when eX ≥ e(1+δ)µ, or for any t > 0, when etX ≥ et(1+δ)µ.

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ]

≤ E[etX ]

et(1+δ)µ
by Markov’s Inequality

≤ eµ(et −1)

et(1+δ)µ
by Lemma just proved

Now take t = ln(1 + δ) (and note this is > 0) to see

Pr[X ≥ (1 + δ)µ] ≤ eµ(eln(1+δ)−1)

eln(1+δ)(1+δ)µ

=
eµδ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)(1+δ)

)µ
.
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Chernoff Bounds from the book
Proof of Thm 4.4 (2.)
Already have

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

The rhs will be ≤ e−µδ2/3 if and only if (taking µ-th root, then ln)

δ− (1 + δ) ln(1 + δ) < −δ2/3

We will show the following f is always negative for δ ∈ (0,1)

f (δ) =def δ− (1 + δ) ln(1 + δ) + δ2/3

Differentiating,

f ′(δ) = 1 − ln(1 + δ) + (1 + δ)
1

1 + δ
+

2δ
3

= − ln(1 + δ) +
2δ
3
.
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Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont’d.

f ′(δ) = − ln(1 + δ) +
2δ
3
.

Differentiating again

f ′′(δ) = −
1

1 + δ
+

2
3

= −
1

1 + δ
+

2
3

Note

f ′′(δ)

 < 0 for 0 < δ < 1/2
0 δ = 1/2
> 0 δ > 1/2

Also f ′(0) = 0, f ′(1) < 0 (check δ = 1 in top equation), and by f ′

decreasing first, then increasing from 1/2) f ′(δ) < 0 on (0,1).
By f (0) = 0, this implies that f (δ) ≤ 0 in all of [0,1].
Hence δ− (1 + δ) ln(1 + δ) < −δ2/3, proving 2.
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Chernoff Bounds from the book (other direction)

Theorem (4.5)
Let X1, . . . ,Xn be independent Poisson trials such that Pr[Xi = 1] = pi
for all i ∈ [n]. Let X =

∑n
k=1 Xk , and µ = E[X ]. For any 0 < δ < 1, we

have the following Chernoff bounds:

1.

Pr[X ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ
;

2.
Pr[X ≤ (1 − δ)µ] ≤ e−µδ2/2;

I Proof is similar to Thm 4.4.

I Bound of 2. is slightly better than for the ≥ (1 + δ)µ bound.

I No 3. Why?
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Concentration

Corollary (4.6)
Let X1, . . . ,Xn be independent Poisson trials such that
Pr[Xi = 1] = pi for all i ∈ [n]. Let X =

∑n
k=1 Xk , and µ = E[X ].

Then for any δ,0 < δ < 1,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

I For almost all applications, we will want to work with a
symmetric version like the Corollary.

I We “threw away" a bit in moving from the
(

e±δ

(1±δ)1±δ

)µ
versions, but they are tricky to work with.
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Analysing a collection of coin flips

We have pi = 1/2 for all i ∈ [n].
We have µ = E[X ] = n

2 , Var[X ] = n
4 .

Consider the probability of being further than 5
√

n from µ.

Chebyshev Pr[|X − µ| ≥ 5
√

n] ≤ Var[X ]
25n = 1

100

Chernoff Work out the δ - we need µδ = 5
√

n, so need
δ = 5

√
n/µ = 10

√
n/n = 10√

n . Then by Chernoff

Pr[|X − µ| ≥ 5
√

n] ≤ 2e−µδ2/3 = 2e
−102·n
2·3·√n2 = 2e−16.6....

This is much smaller than the Chebyshev bound
(though note it doesn’t depend on n).

Get much improved bounds because Chernoff uses specialised
analysis for sums of independent Bernoulli variables.
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Unbiased +1/− 1 variables

In fact, for the case of unbiased variables, we can do even better than
2e−µδ2/3.

Theorem (4.7)
Let X1, . . . ,Xn be independent random variables with
Pr[Xi = 1] = 1/2 = Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk . Note

µ = E[X ] = 0. Then for any a > 0,

Pr[X ≥ a] ≤ e−a2/2n.

Proof is in the book.
(uses Taylor series expansions for et ,e−t ).

Constant is just a bit better than with Theorem 4.6. We did the details
of this on the BOARD.
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Set Balancing for statistical experiments

We have an n ×m binary matrix A (entries from {0,1}). We consider
the value of

A · b̄ = c̄,

when b̄ ∈ {−1,+1}m (note c̄ will then be n-dimensional).

Goal is to find b̄ ∈ {−1,+1}m such that the value of
‖A · b̄‖∞ = maxn

j=1 |cj | is minimized.

Solution: choose b̄ ∈ {−1,+1}m by generating bi independently and
uniformly from {−1,+1}. We can show

Theorem (4.11)
For b̄ chosen uar from {−1,+1}m,

Pr[‖Ab̄‖∞ ≥√4m ln(n)] ≤ 2
n
.
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Set Balancing for statistical experiments (added
post-lecture)

I ‖·‖∞ is the absolute value of the largest entry of the tuple. We
want to show that with high probability, every entry of A · b̄ has
absolute value ≤√4m ln(n).

I There are n different entries of c̄ = A · b̄; we will show that for
each entry, we are “small enough” with probability ≥ 1− 2

n2 . Then
Union Bound shows that ‖A · b̄·‖∞ is bounded with prob ≥ 1 − 2

n .

I For any row i of A, there are some entries Si , |Si | ≤ m which are
non-0 (ie, 1). The absolute value of Ai · b̄ is the (absolute)
weighted sum of these 1s, randomly weighted by +1 or -1 . . . so
we have Si random trials of unbiased +1/-1. Setting
a =

√
4m ln(n), Thm 4.7 says the probability we exceed this is at

most
2e−4m ln(n)/2|Si | = 2n−2m/|Si | ≤ 2

n2 ,

as required.
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References

I Chapter 4 of “Probability and Computing"

I We don’t have time to cover the packet routing analysis of 4.5.
But it’s worth reading (but not examinable in the exam).
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