Bounding deviation

We already have . . .

Theorem (3.1, Markov’s Inequality)
Let X be any random variable that takes only non-negative values. Then for any $a > 0$,
\[
\Pr[X \geq a] \leq \frac{E[X]}{a}.
\]

Theorem (3.2, Chebyshev’s Inequality)
For every $a > 0$,
\[
\Pr[|X - E[X]| \geq a] \leq \frac{\text{Var}[X]}{a^2}.
\]

These are generic. Chernoff/Hoeffding bounds (specific) give tighter bounds for sums of independent variables and related distributions.

Chernoff bounds — upper tail

Poisson trials - sequence of Bernoulli variables X_i with varying p_is.

Theorem (4.4, basic form)
Let X_1, \ldots, X_n be independent Bernoulli random variables with parameter p_i for $i \in [n]$. Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Then for any $\delta > 0$,
\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^\mu.
\]

For example, if $\mu = pn$ and $\delta = 1$,
\[
\Pr[X \geq 2\mu] \leq \left(\frac{e}{4}\right)^{pn} = \exp(-\Omega(n)).
\]

Comparing with Chebyshev’s inequality

Theorem (4.4, basic Chernoff)
\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^\mu.
\]

Consider the case where $p_i = p$ and $\mu = pn$. Due to independence, $\text{Var}[X_i] = p - p^2$ and $\text{Var}[X] = (p - p^2)n = \mu(1 - p)$. With Chebyshev’s inequality
\[
\Pr[X \geq (1 + \delta)\mu] \leq \Pr[|X - \mu| \geq \delta\mu] \leq \frac{\mu(1 - p)}{\delta^2\mu^2} = \frac{1 - p}{\delta^2} = O(1/n).
\]

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives us an exponential tail.
Comparing with Chebyshev’s inequality

Theorem (4.4, basic Chernoff)

\[\Pr[|X - \mu| \geq \delta \mu] \leq \left(\frac{e}{(1+\delta)^{1+\delta}} \right)^\mu. \]

Consider the case where \(p_i = p \) and \(\mu = pn \). Due to independence, \(\text{Var}[X_i] = p - p^2 \) and \(\text{Var}[X] = (p - p^2)n = \mu(1 - p) \). With Chebyshev’s inequality

\[\Pr[X \geq (1 + \delta)\mu] \leq \frac{\mu(1 - p)}{\delta^2 \mu^2} = \frac{1 - p}{\delta^2} = O(1/n). \]

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives an exponential tail.

However, both give us constant concentration bound for a window of width \(O(\sqrt{n}) \), although Chernoff’s constant is much better.

Chernoff bounds — upper tail

Proof of Thm 4.4.

The event of interest is

\[X \geq (1 + \delta)\mu \iff e^X \geq e^{(1+\delta)\mu} \]

which, in turn, is equivalent to \(e^X \geq e^{(1+\delta)\mu} \) for any \(t > 0 \).

\[\Pr[X \geq (1 + \delta)\mu] = \Pr[e^X \geq e^{(1+\delta)\mu}] \]

\[\leq \frac{E[e^X]}{e^{(1+\delta)\mu}} \quad \text{(by Markov’s Inequality)} \]

\[\leq \frac{e^{\mu(d-1)}}{e^{(1+\delta)\mu}}. \quad \text{(by the last Lemma)} \]

Chernoff bounds — upper tail

Lemma

Let \(X_1, \ldots, X_n \) and \(X \) be the same as before and \(\mu = E[X] \). For any \(t \in \mathbb{R} \),

\[E[e^{tX}] \leq e^{t^2(\mu)^2}. \]

Proof.

Consider

\[E[e^{tX}] = E \left[e^{t\sum_{i=1}^{n}X_i} \right] = E \left[\prod_{i=1}^{n} e^{tX_i} \right]. \]

The \(X_i \) and hence the \(e^{X_i} \) are mutually independent, so by Thm 3.3, \(E[e^{X_i}] = \prod_{i=1}^{n} E[e^{X_i}] \). Each \(e^{X_i} \) has expectation

\[E[e^{X_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1 = 1 + p_i(e^t - 1) \leq e^{x/(d-1)}, \quad \text{(by } 1 + x \leq e^x \text{ for } x \in \mathbb{R}) \]

\[\Rightarrow \quad E[e^{X}] \leq \prod_{i=1}^{n} e^{x/(d-1)} = e^{\sum_{i=1}^{n} p_i(x/(d-1)) = e^{\mu(x/(d-1))}. \]

This holds for any \(t > 0 \), and we want to pick \(t \) to minimize the right hand side, which is \(\text{RHS} := e^{\mu(t/(d-1))'. \text{ Differentiate the exponent,} \]

\[(\ln \text{RHS})' = \mu e^x - (1 + \delta)\mu. \]

Thus, \(\text{RHS} \) decreases if \(t \leq \ln(1 + \delta) \) and increases if \(t \geq \ln(1 + \delta) \). Its minimum is taken at \(t = \ln(1 + \delta) \).
Chernoff bounds — upper tail

Proof of Thm 4.4 (cont.)

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

$$\Pr[X \geq (1 + \delta)\mu] \leq e^{t(1 - (1 + \delta)\mu)}$$

$$\leq \frac{e^{t(1 + \delta) - t}}{\ln(1 + \delta)}(1 + \delta)\mu$$

$$= \left(\frac{e^\delta}{(1 + \delta)(1 + \delta)}\right)^\mu.$$ \[\square\]

Chernoff bounds — upper tail

Theorem (4.4, full)

Let X_1, \ldots, X_n be independent Bernoulli random variables with parameter p_i for $i \in [n].$ Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X].$

1. For any $\delta > 0,$

$$\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1 + \delta}}\right)^\mu.$$

2. For any $0 < \delta \leq 1,$

$$\Pr[X \geq (1 + \delta)\mu] \leq e^{-\mu\delta^2/3},$$

3. For $R \geq 6\mu,$

$$\Pr[X \geq R] \leq 2^{-R}.$$

Chernoff bounds — upper tail

Proof of Thm 4.4 (2.)

Already have

$$\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1 + \delta)}\right)^\mu.$$

Comparing the RHS with $\leq e^{-\mu\delta^2/3},$ we want

$$\delta - (1 + \delta)\ln(1 + \delta) < -\delta^2/3$$

We will show the following f is always negative for $\delta \in (0, 1)$

$$f(\delta) := \delta - (1 + \delta)\ln(1 + \delta) + \delta^2/3$$

Differentiating,

$$f'(\delta) = 1 - \ln(1 + \delta) - (1 + \delta) - \frac{1}{1 + \delta} + \frac{2\delta}{3}$$

$$= -\ln(1 + \delta) + \frac{2\delta}{3}.$$

Chernoff bounds — upper tail

Proof of Thm 4.4 (2.) cont.

$$f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}.$$

Differentiate again

$$f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3}$$

Note

$$f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2; \\ = 0 & \text{for } \delta = 1/2; \\ > 0 & \text{for } \delta > 1/2. \end{cases}$$
Chernoff bounds — upper tail

Proof of Thm 4.4 (2.) cont.

\[f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}. \]

Differentiate again

\[f''(\delta) = - \frac{1}{1 + \delta} + \frac{2}{3} = - \frac{1}{1 + \delta} + \frac{2}{3} \]

Note

\[f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2; \\ = 0 & \text{for } \delta = 1/2; \\ > 0 & \text{for } \delta > 1/2. \end{cases} \]

Also \(f'(0) = 0, f'(1) \approx -0.026 < 0 \) (check \(\delta = 1 \) in top equation). Since \(f' \) decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that \(f'(\delta) < 0 \) on \((0, 1)\). Hence \(\delta = 1 + \delta \ln(1 + \delta) < -\delta^2/3, \) proving (2.). \(\square \)

Chernoff bounds — upper tail

For \(R \geq 6\mu \),

\[\Pr[X \geq R] \leq 2^{-R}. \]

Proof of Thm 4.4 (3.)

Let \(R = (1 + \delta)\mu \) and thus \(\delta = R/\mu - 1 \geq 5 \). By Thm 4.4 (1)

\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu \\
= \left(\frac{e^{\delta/\mu}}{1 + \delta} \right)^{(1+\delta)\mu} \\
\leq \left(\frac{e}{6} \right)^R \leq 2^{-R} \]

\(\square \)

Chernoff bounds — upper tail

For \(R \geq 6\mu \),

\[\Pr[X \geq R] \leq 2^{-R}. \]

Proof of Thm 4.4 (3.)

Let \(R = (1 + \delta)\mu \) and thus \(\delta = R/\mu - 1 \geq 5 \). By Thm 4.4 (1)

\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu \\
= \left(\frac{e^{\delta/\mu}}{1 + \delta} \right)^{(1+\delta)\mu} \\
\leq \left(\frac{e}{6} \right)^R \leq 2^{-R} \]

Thm 4.4 (1.) is the strongest. The other two are slightly weaker but easy to use.
Chernoff Bounds (lower tail)

Theorem (4.5)
Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

1. $\Pr[X \leq (1-\delta)\mu] \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^{\mu}$;

2. $\Pr[X \leq (1-\delta)\mu] \leq e^{-\mu\delta^2/2}$;

- Proof is similar to Thm 4.4.
- Bound of (2.) is slightly better than the bound for $\geq (1+\delta)\mu$.
- No (3.) Why?

Concentration

Corollary (4.6)
Let X_1, \ldots, X_n be independent Bernoulli rv such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X - \mu| \geq \delta \mu] \leq 2e^{-\mu \delta^2/3}.$$

- For most applications, we will want to work with a symmetric version like the Corollary.
- We “threw away” a bit in moving from the $\left(\frac{e^{\pm \delta}}{(1 \pm \delta)^{1 \pm \delta}} \right)^{\mu}$ versions, but they are tricky to work with.

Analysing a collection of coin flips

Suppose we have $p_i = 1/2$ for all $i \in [n]$.

We have $\mu = E[X] = \frac{n}{2}$, $\Var[X] = \frac{n}{4}$.

Consider the probability of being further than $5\sqrt{n}$ from μ.

Chebyshev $\Pr[|X - \mu| \geq 5\sqrt{n}] \leq \frac{\Var[X]}{25n} = \frac{1}{100}$

Chernoff $\Pr[|X - \mu| \geq 5\sqrt{n}] \leq \frac{\Var[X]}{25n} = \frac{1}{100}$

Choose $\delta = 5\sqrt{n}/\mu = 10\sqrt{n}/n = \frac{10}{\sqrt{n}}$. Then by Chernoff

$$\Pr[|X - \mu| \geq 5\sqrt{n}] \leq 2e^{-\mu \delta^2/3} = 2e^{-\frac{10n^2}{100 \cdot 100 \sqrt{n}}} = 2e^{-16.6\ldots}.$$

This is much smaller than the Chebyshev bound (though note it doesn’t depend on n).

Get much improved bounds because Chernoff uses specialised analysis for sums of independent Bernoulli variables.
Comparison with Chebyshev

For i.i.d. coin flips,
\[\Pr[|X - \mu| > D] \leq p \]

<table>
<thead>
<tr>
<th>Deviation (p)</th>
<th>Constant</th>
<th>(O\left(\frac{1}{n^2}\right))</th>
<th>(\exp(-\Omega(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) for Chebyshev</td>
<td>(\Omega(\sqrt{n}))</td>
<td>(\Omega(\sqrt{n} \cdot n^{\alpha/2}))</td>
<td>(\exp(\Omega(n)))</td>
</tr>
<tr>
<td>(D) for Chernoff</td>
<td>(\Omega(\sqrt{n}))</td>
<td>(\Omega(\sqrt{n \log n}))</td>
<td>(\Omega(n))</td>
</tr>
</tbody>
</table>

Proof of Thm 4.7 cont.

Use the last estimate
\[E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}] \leq e^{t^2 n/2}; \]

Unbiased +1/−1 variables

In fact, for the case of unbiased variables, we can do even better than \(2e^{-\mu \delta^2/3} \).

We first switch to +1/-1 variables.

Theorem (4.7)

Let \(X_1, \ldots, X_n \) be independent random variables with \(\Pr[X_i = 1] = 1/2 = \Pr[X_i = -1] \) for all \(i \in [n] \). Let \(X = \sum_{k=1}^{n} X_k \). Note \(\mu = E[X] = 0 \). Then for any \(a > 0 \),

\[\Pr[X \geq a] \leq e^{-a^2/2n}. \]

Proof.

We will once again consider the moment generating function \(e^{tX} \):

\[E[e^{tX}] = \frac{e^t + e^{-t}}{2} \leq e^{t^2/2}, \]

where the last estimate is due to Taylor expansion.

Unbiased +1/−1 variables

Proof of Thm 4.7 cont.

Use the last estimate
\[E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}] \leq e^{t^2 n/2}; \]

\[\Pr[X \geq a] = \Pr[e^{tX} \geq e^{ta}] \leq \frac{E[e^{tX}]}{e^{ta}} = e^{t^2 n/2 - ta}. \]

Once again, minimizing the exponent gives us \(t = a/n \) and

\[\Pr[X \geq a] \leq e^{-a^2/2n}. \]
Once again, minimizing the exponent gives us $t = a/n$ and

$$\Pr[X \geq a] \leq e^{-a^2/2n}. \quad \Box$$

The lower tail is completely symmetric. Think $-X$.

$$\Pr[X \leq -a] = \Pr[-X \geq a] \leq e^{-a^2/2n}.$$