Chernoff Bounds from the book

Poisson trials - sequence of Bernoulli variables \(X_i\) with varying \(p_i\)s.

Theorem (4.4)

Let \(X_1, \ldots, X_n\) be independent Poisson trials such that \(\Pr[X_i = 1] = p_i\) for all \(i \in [n]\). Let \(X = \sum_{i=1}^n X_i\), and \(\mu = \mathbb{E}[X]\). We have the following Chernoff bounds:

1. For any \(\delta > 0\),

\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu.
\]

2. For any \(0 < \delta \leq 1\),

\[
\Pr[X \geq (1 + \delta)\mu] \leq e^{-\mu\delta^2/3};
\]

3. For \(R \geq 6\mu\),

\[
\Pr[X \geq R] \leq 2^{-R}.
\]

Lemma

For \(n\) independent Poisson trials \(X_1, \ldots, X_n\) and \(X = \sum_{i=1}^n X_i\),

\[
\mathbb{E}[e^{tX}] \leq e^{\mu(t^2-1)}.
\]

Proof.

To prove the result, we will consider \(\mathbb{E}[e^{tX}]\) for \(t > 0\).

This is \(\mathbb{E}[e^{t(\sum_{i=1}^n X_i)}] = \mathbb{E}[\prod_{i=1}^n e^{tX_i}]\).

The \(X_i\) are mutually independent, so by Thm 3.3, \(\mathbb{E}[e^{tX}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}]\).

Each \(e^{tX_i}\) has expectation

\[
\mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) \cdot 1 \leq e^{t(f^i - 1)} \quad \text{by} \quad 1 + x \leq e^x \quad \text{for} \quad x \in \mathbb{R}
\]

\[
\mathbb{E}[e^{tX}] \leq \prod_{i=1}^n e^{p_i(t^2-1)} = e^{\sum_{i=1}^n p_i(t^2-1)} = e^{\mu(t^2-1)}.
\]
Chernoff Bounds from the book

Proof of Thm 4.4 (1.)
Interested in events when $X \geq (1 + \delta)\mu$.
Identical to when $e^X \geq e^{(1 + \delta)\mu}$, or for any $t > 0$, when $e^{tX} \geq e^{(1 + \delta)\mu}$.

\[
\Pr[X \geq (1 + \delta)\mu] = \frac{\Pr[e^{tX} \geq e^{(1 + \delta)\mu}]}{e^{(1 + \delta)\mu}} \leq \frac{\mathbb{E}[e^{tX}]}{e^{(1 + \delta)\mu}} \quad \text{by Markov's Inequality}
\]

\[
\leq \frac{e^\mu}{e^{(1 + \delta)\mu}} = \left(\frac{e^\delta}{1 + \delta}\right)^\mu.
\]

Now take $t = \ln(1 + \delta)$ (and note this is > 0) to see

\[
\Pr[X \geq (1 + \delta)\mu] \leq \frac{e^\mu}{(1 + \delta)^{(1 + \delta)\mu}} = \left(\frac{e^\delta}{1 + \delta}\right)^\mu.
\]

Chernoff Bounds from the book

Proof of Thm 4.4 (2.) cont'd.
\[
f'(\delta) = -\ln(1 + \delta) + \frac{2\delta}{3}.
\]

Differentiating again
\[
f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3} = -\frac{1}{1 + \delta} + \frac{2}{3}.
\]

Note
\[
f''(\delta) \begin{cases} < 0 & \text{for } 0 < \delta < 1/2 \\ 0 & \delta = 1/2 \\ > 0 & \delta > 1/2 \end{cases}
\]

Also $f'(0) = 0, f'(1) < 0$ (check $\delta = 1$ in top equation), and by f' decreasing first, then increasing from $1/2$ $f''(\delta) < 0$ on $(0, 1)$. By $f(0) = 0$, this implies that $f(\delta) \leq 0$ in all of $[0, 1]$. Hence $\delta - (1 + \delta)\ln(1 + \delta) < -\delta^2/3$, proving 2. \(\square\)

Chernoff Bounds from the book (other direction)

Theorem (4.5)
Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = \mathbb{E}[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

1. \[
\Pr[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-s}}{(1 - \delta)^{1-\delta}}\right)^\mu;
\]

2. \[
\Pr[X \leq (1 - \delta)\mu] \leq e^{-\mu \delta^2/2};
\]

- Proof is similar to Thm 4.4.
- Bound of 2. is slightly better than for the $\geq (1 + \delta)\mu$ bound.
- No 3. Why?
Concentration

Corollary (4.6)
Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$, and $\mu = E[X]$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X - \mu| \geq \delta \mu] \leq 2e^{-\mu \delta^2 / 3}.$$

For almost all applications, we will want to work with a symmetric version like the Corollary.

We “threw away” a bit in moving from the $(e^{\pm \delta} (1 \pm \delta) 1 \pm \delta) \mu$ versions, but they are tricky to work with.

Analysing a collection of coin flips

Suppose we have $p_i = 1/2$ for all $i \in [n]$.
We have $\mu = E[X] = \frac{n}{2}$, $\text{Var}[X] = \frac{n}{4}$.
Consider the probability of being further than $5\sqrt{n}$ from μ.

Chebyshev

$$\Pr[|X - \mu| \geq 5\sqrt{n}] \leq \frac{\text{Var}[X]}{\mu^2} = \frac{1}{100}.$$

Chernoff

Work out the δ - we need $\mu \delta = 5\sqrt{n}$, so need

$$\delta = 5\sqrt{n} / \mu = 10\sqrt{n} / n = \frac{10}{\sqrt{n}}.$$ Then by Chernoff

$$\Pr[|X - \mu| \geq 5\sqrt{n}] \leq 2e^{-\mu \delta^2 / 3} = 2e^{-\frac{100n}{3}} = 2e^{-16.6\ldots}.$$ This is much smaller than the Chebyshev bound (though note it doesn’t depend on n).

Get much improved bounds because Chernoff uses specialised analysis for sums of independent Bernoulli variables.

References

- Chapter 4 of “Probability and Computing”
- We will continue with Chernoff Bounds on Friday
- We may not have time to cover the packet routing analysis of 4.5. But it’s worth reading (but not examinable in the exam).