
Randomness and Computation
or, “Randomized Algorithms”

Heng Guo

(Based on slides by M. Cryan)

RC (2019/20) – Lecture 6 – slide 1

Max-Cut

Of interest is the Max-Cut of a given graph (as well as “Min”):

Given an undirected, unweighted graph G = (V, E) with |V| = n,
|E| = m, compute a “max cut”; that is, a partition of E into two non-
empty sets S, V \ S, such that the following quantity is maximized:

{e = (u, v) : u ∈ S, v ∈ V \ S}

Well-known as one of the classical NP-complete problems, so we believe
there is no polynomial-time algorithm to compute this exactly (not inΘ(n2m),
not in Θ(m5n9) etc).

We will show that every graph G = (V, E) has a cut of size at least |E|/2.

RC (2019/20) – Lecture 6 – slide 2

Max-Cut

Consider the following Algorithm:

Algorithm RandomCut(G = (V, E))

1. S← ∅
2. for every v ∈ V in fixed order do
3. Draw a Bernoulli(1/2) random variable b .

4. if (b = 1) then
5. S← S ∪ {v}

6. return S, V \ S

We are going to analyse this algorithm and show that CS (the number of
edges between S and V \ S) has expected size at least |E|/2.

RC (2019/20) – Lecture 6 – slide 3

Max Cuts in Graphs

Theorem (6.3)
For any given graph G = (V, E), there is some cut (S,V \ S) such that |CS| ≥
|E|/2.

Proof.
Consider the random S drawn by RandomCut. We show that the expected
cardinality of CS, E[|CS|] is |E|/2 when S is a random subset of V.

Let Ie be the indicator variable of whether e is in CS or not. There are 4
possibilities for e = (u, v):

u, v ∈ S; u ∈ S, v ̸∈ S; u ̸∈ S, v ∈ S; u, v ̸∈ S.

Notice that 2 out of the 4 cases lead to e ∈ CS. Thus,

E[Ie] =
1
2
.

RC (2019/20) – Lecture 6 – slide 4

Max Cuts in Graphs

Proof cont.
Hence, summing over all e ∈ E and by linearity of expectation,

E[|CS|] =
∑
e∈E

E[Ie] =
|E|
2
.

If the expected size is |E|/2, then certainly there is at least one cut of at least
that size.

RC (2019/20) – Lecture 6 – slide 5

The probabilistic method

▶ The proof that every graph has a cut of cardinality ≥ |E|/2 is a very
very simple example of the probabilistic method.

▶ With the probabilistic method, we use randomness and the laws of
expectation to prove that certain structures must exist.

RC (2019/20) – Lecture 6 – slide 6

The probabilistic method

The (basic) probabilistic method:

▶ Draw a random object;

▶ The probability of the random object satisfying certain property is
strictly positive;

▶ The desired object must exist!

This is a non-constructive method of proving the existence of combinatorial
objects, pioneered by Paul Erdős.

Although this approach uses probability, the result (that some object with
the property exists) will be definite, not “in probability”.

It only tells us that some object exists, but in many cases, we can find /
construct the object efficiently as well.

More later in the second half of the course.

RC (2019/20) – Lecture 6 – slide 7

De-randomization

▶ Wedid not analyse the probability that RandomCut gives a good
(high cardinality) cut, and are not going to do that.

▶ Can de-randomize the algorithm using conditional probabilities.

RC (2019/20) – Lecture 6 – slide 8

De-randomization

We derandomize via “conditional expectation”.

Our concern is the value of |CS|, and the expected value of this quantity will
change throughout the algorithm (as vertices get added to S or S).

Our random algorithm considered the vertices in fixed order. Let X1, . . .,
Xn be the indicator random variables (Xi = 1 means that vi is added to S,
otherwise it’s added to S).

Our derandomization will construct a specific cut (defined by X1, . . ., Xn) of
size ≥ |E|

2 by making decisions for the vertices one-by-one. At each step we
will ensure we choose xk+1 so that

E[|CS| | X1 = x1, . . . ,Xk+1 = xk+1] ≥ E[|CS| | X1 = x1, . . . ,Xk = xk].

RC (2019/20) – Lecture 6 – slide 9

Derandomization cont’d.

Supposewe have considered v1, . . . , vk so far, andwe have taken decisions x1,
. . ., xk for these vertices.

Suppose (induction hypothesis) we know that

E[|CS| | X1 = x1, . . . ,Xk = xk] ≥ E[|CS|].

Think about the (random) process for adding vk+1. There are two choices
for xk+1, of equal probability. Hence,

E[|CS| | X1 = x1, . . . ,Xk = xk]

=
E[|CS| | X1 = x1, . . . ,Xk = xk,Xk+1 = 1]

2

+
E[|CS| | X1 = x1, . . . ,Xk = xk,Xk+1 = 0]

2
.

So one of these expectations is at least as good as E[|CS| | X1 = x1, . . . ,Xk =

xk], which (by induction) is at least as good as E[|CS|] =
|E|
2 .

RC (2019/20) – Lecture 6 – slide 10

Derandomization cont’d.

How do we decide the value of Xk+1?

We want to compute the conditional expectation

Zi := E[|CS| | X1 = x1, . . . ,Xk+1 = i].

Recall the linearity of conditional expectation, and |CS| =
∑

e∈E Ie. We just
need to compute

Zi,e := E[Ie | X1 = x1, . . . ,Xk+1 = i]

for each e ∈ E, and Zi =
∑

e∈E Zi,e.

RC (2019/20) – Lecture 6 – slide 11

Derandomization cont’d.

Zi,e = E[Ie | X1 = x1, . . . ,Xk+1 = i]

There are three possibilities of the two endpoints of e:

▶ Both have been determined — the conditional expectation is 0 or 1;

▶ One of them is determined — the conditional expectation is 1/2;

▶ None of them is determined — the conditional expectation is 1/2.

Moreover, these values are easy to compute. Thus we can compute Zi,e for
each e, and sum them up to get the desired Zi.

Then we compare Z0 and Z1 and choose the larger.

RC (2019/20) – Lecture 6 – slide 12

Derandomization cont’d.

To decide Xk+1, all we care actually is if Z1 − Z0 ≥ 0, and

Z1 − Z0 =
∑
e∈E

Z1,e − Z0,e.

Back to the possibilities for e:

▶ If neither endpoints of e is vk+1, Z1,e = Z0,e;

▶ If one endpoint of e is vk+1 and the other end is not determined, then
Z1,e = Z0,e =

1
2 .

▶ If one endpoint of e is vk+1 and the other end is determined, thenZ1,e ̸=
Z0,e.

Thus we only need to care about the last case.

RC (2019/20) – Lecture 6 – slide 13

Derandomization cont’d.

For i = 0, 1, let Ai := {vj | i ∈ [k], Xj = i, (vj, vk+1) ∈ E}.

Namely A0/1 is the set of neighbours of vk+1 that are in S or S.

Each vertex in A1 contributes 1 to Z0,

and each vertex in A0 contributes 1 to Z1.

Thus, Z1 − Z0 = |A0|− |A1|.

RC (2019/20) – Lecture 6 – slide 14

What is the de-randomized algorithm?

From the first vertex to the last, assign the current vertex to S or S so as to
maximize the current cut value.

This is just the familiar greedy algorithm!

More generally, the greedy algorithm is guaranteed to be better than the
expectation when all choices are random.

RC (2019/20) – Lecture 6 – slide 15

What is the de-randomized algorithm?

From the first vertex to the last, assign the current vertex to S or S so as to
maximize the current cut value.

This is just the familiar greedy algorithm!

More generally, the greedy algorithm is guaranteed to be better than the
expectation when all choices are random.

RC (2019/20) – Lecture 6 – slide 15

What is the de-randomized algorithm?

From the first vertex to the last, assign the current vertex to S or S so as to
maximize the current cut value.

This is just the familiar greedy algorithm!

More generally, the greedy algorithm is guaranteed to be better than the
expectation when all choices are random.

RC (2019/20) – Lecture 6 – slide 15

Reference and reading

Today’s topic is from Sections 6.2, 6.3 of the book. We will return to the
probabilistic method, and derandomisation, after the reading week.

We will start to work on Chernoff Bounds next week. It’s a good idea to
look at the early sections of Chapter 4.

RC (2019/20) – Lecture 6 – slide 16

Goemans-Williamson algorithm

The best approximation ratio for Max-cut is ≈ 0.878, due to Goemans and
Williamson (1995). Improving upon this ratio would disprove major conjec-
tures in computational complexity!

Max-cut is equivalent to a quadratic integer program:

max
∑

(u,v)∈E

1− xuxv

subject to ∀v ∈ V, xv ∈ {+1,−1}.

We cannot solve this efficiently. Instead, we can solve a relaxation

max
∑

(u,v)∈E

1− ⟨⃗xu, x⃗v⟩

subject to ∀v ∈ V, ∥⃗xv∥2 = 1

∀v ∈ V, x⃗v ∈ Rn.

RC (2019/20) – Lecture 6 – slide 17

Goemans-Williamson algorithm

Solving

max
∑

(u,v)∈E

1− ⟨⃗xu, x⃗v⟩

subject to ∀v ∈ V, ∥⃗xv∥2 = 1

∀v ∈ V, x⃗v ∈ Rn.

gives us a collection of vectors on the unit sphere. The final step is to choose
a random hyperplane through the origin that cuts the sphere in half!

The approximation ratio is at least

min
0≤θ≤π

θ/π

(1− cos θ)/2 ≈ 0.878.

RC (2019/20) – Lecture 6 – slide 18

