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Coupon Collector Problem

“Coupon collecting” is the activity of buying packs, each of which
will have a uniform at random coupon inside. There are be n dif-
ferent types of “coupon” and the goal is to collect one copy of each
. . . then stop buying.

Last time we have showed that the expected number E[X] of purchases to
collect all cards is nH(n) ∼ n ln(n).

Today we examine how likely a example “run” of the purchasing process is
to come close to that expectation.

Concentration inequalities will be vital:

▶ Markov Inequality;

▶ Chebyshev Inequality;

▶ Chernoff Bound / Hoeffding inequality.
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Markov Inequality
The simplest one.

Theorem (3.1, Markov Inequality)
Let X be any random variable that takes only non-negative values. Then for
any a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

Proof.
Define the indicator function I = I(X) by

I(x) =

{
0 x < a;

1 x ≥ a.
;

Then X ≥ a · I(X), and hence I(X) ≤ X
a .

Taking expectation of both sides, and using E[I] = Pr[X ≥ a], we have

Pr[X ≥ a] = E[I] ≤ 1
a
E[X].
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Bounding Coupon Collector purchases - Markov

Recall that X is the number of purchases of the coupon collector problem
and E[X] = n ln n+Θ(n).

Say we want a bound T so that the probability of X ≥ T is at most 1
n .

By Markov ineq., Pr[X ≥ T] ≤ E[X]
T . Thus, we need T to be at least n2 ln n.

This is far from tight!

The power of Markov ineq. is that it does not require any other knowledge
of the random variable. However for specific problems, we can often do
better.

For example, we can bound the variance.
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Variance, Moments of a Random Variable

Definition (3.1)
The kth moment of a random variable X is defined to be E[Xk].

Definition (3.2)
The variance of a random variable is defined to be

Var[X] := E[(X− E[X])2] = E[X2] − E[X]2.
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Covariance of two Random Variables

Definition (3.3)
The covariance of two random variables X and Y is defined as

Cov[X,Y] = E [(X− E[X])(Y− E[Y])] .

Theorem (3.2)
For any two random variables X,Y, we have

Var[X+ Y] = Var[X] + Var[Y] + 2Cov[X,Y].

Proof.
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(pairwise) Independent Random Variables

Theorem (3.3)
If X,Y are a pair of independent random variables, then

E[XY] = E[X] · E[Y].

Corollary (3.4)
If X,Y are a pair of independent random variables, then

Cov[X,Y] = 0

and
Var[X+ Y] = Var[X] + Var[Y].

Proof is straightforward application of Thm 3.3.

RC (2019/20) – Lecture 5 – slide 7

(pairwise) Independent Random Variables

Theorem (3.3)
If X,Y are a pair of independent random variables, then

E[XY] = E[X] · E[Y].

Corollary (3.4)
If X,Y are a pair of independent random variables, then

Cov[X,Y] = 0

and
Var[X+ Y] = Var[X] + Var[Y].

Proof is straightforward application of Thm 3.3.

RC (2019/20) – Lecture 5 – slide 7

Chebyshev Inequality

Theorem (3.2, Chebyshev Inequality)
For every a > 0,

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

Proof.
First we claim for any a > 0,

|X− E[X]| ≥ a ⇔ (X− E[X])2 ≥ a2

Applying Markov Ineq. to the random variable (X− E[X])2, we know

Pr[(X− E[X])2 ≥ a2] ≤ E[(X− E[X])2]
a2

,

and by definition of Var(·), this gives

Pr[|X− E[X]| ≥ a] = Pr[(X− E[X])2 ≥ a2] ≤ Var[X]
a2

.

RC (2019/20) – Lecture 5 – slide 8



Chebyshev Inequality

Theorem (3.2, Chebyshev Inequality)
For every a > 0,

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

Proof.
First we claim for any a > 0,

|X− E[X]| ≥ a ⇔ (X− E[X])2 ≥ a2

Applying Markov Ineq. to the random variable (X− E[X])2, we know

Pr[(X− E[X])2 ≥ a2] ≤ E[(X− E[X])2]
a2

,

and by definition of Var(·), this gives

Pr[|X− E[X]| ≥ a] = Pr[(X− E[X])2 ≥ a2] ≤ Var[X]
a2

.

RC (2019/20) – Lecture 5 – slide 8

Chebyshev Inequality

Theorem (3.2, Chebyshev Inequality)
For every a > 0,

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

Proof.
First we claim for any a > 0,

|X− E[X]| ≥ a ⇔ (X− E[X])2 ≥ a2

Applying Markov Ineq. to the random variable (X− E[X])2, we know

Pr[(X− E[X])2 ≥ a2] ≤ E[(X− E[X])2]
a2

,

and by definition of Var(·), this gives

Pr[|X− E[X]| ≥ a] = Pr[(X− E[X])2 ≥ a2] ≤ Var[X]
a2

.

RC (2019/20) – Lecture 5 – slide 8

Chebyshev Inequality

Theorem (3.2, Chebyshev Inequality)
For every a > 0,

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

Proof.
First we claim for any a > 0,

|X− E[X]| ≥ a ⇔ (X− E[X])2 ≥ a2

Applying Markov Ineq. to the random variable (X− E[X])2, we know

Pr[(X− E[X])2 ≥ a2] ≤ E[(X− E[X])2]
a2

,

and by definition of Var(·), this gives

Pr[|X− E[X]| ≥ a] = Pr[(X− E[X])2 ≥ a2] ≤ Var[X]
a2

.

RC (2019/20) – Lecture 5 – slide 8

Bounding Coupon Collector purchases - Markov

Recall that X is the number of purchases of the coupon collector problem
and E[X] = n ln n+Θ(n).

Using Markov ineq., we can get an upper bound of a “typical” number of
the order n2 ln n, which is not particularly interesting.

We can do better with Chebyshev ineq. . . .
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Bounding Coupon Collector purchases - Chebyshev

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

.

▶ Need to evaluate Var[X], which is Var[X1 + . . .Xn].

Recall that Xi is the number of packets bought to get the i-th new card.

▶ Corollary 3.4: for independent Y,Z, Var[Y+ Z] = Var[Y] + Var[Z].
Are these Xi’s independent?

▶ Xi is independent of the value of Xi−1 or any of the earlier values. Xi

only depends on the values n and i (and not on what cards we have
collected or how long it takes to collect them).

▶ Hence the random variables X1, . . . ,Xn are all mutually independent,
and

Var[X] = Var[X1] + Var[X2] + . . .+ Var[Xn].
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Bounding Coupon Collector purchases - Chebyshev
Each Xi is a geometric random variable with parameter n−(i−1)

n .

Lemma (3.8)
For any geometric random variable X with parameter p, E[X] = p−1 and
Var[X] = 1−p

p2 .

Proof.
We have Var[X] = E[X2] − E[X]2. For geometric variable, E[X]2 = p−2.

For E[X2], we could do direct calculation. We can also consider conditional
expectation. Once again, let Y indicate the outcome of the first trial.

E[X2] = Pr[Y = 1]E[X2 | Y = 1] + Pr[Y = 0]E[X2 | Y = 0]

= p+ (1− p)
∑
x≥1

x2 Pr[X = x | Y = 0]

= p+ (1− p)
∑
x≥2

x2 Pr[X = x− 1]

= p+ (1− p)
∑
x≥1

(x+ 1)2 Pr[X = x] = p+ (1− p)E[(X+ 1)2]
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Bounding Coupon Collector purchases - Chebyshev

Lemma (3.8)
For any geometric random variable X with parameter p, E[X] = p−1 and
Var[X] = 1−p

p2 .

Proof (cont’d).

E[X2] = p+ (1− p)E[(X+ 1)2]

= p+ (1− p)E[X2] + 2(1− p)E[X] + 1− p

= 1+
2(1− p)

p
+ (1− p)E[X2].

We can solve that E[X2] = 2−p
p2 . Thus,

Var[X] = E[X2] − E[X]2 = 1− p
p2 .
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Bounding Coupon Collector purchases - Chebyshev

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

=

∑n
j=1 Var[Xj]

a2
.

Each individual Xj is geometric with parameter n−(j−1)
n , so each Xj has

Var[Xj] =
j− 1
n

(
n

(n+ 1− j)

)2

≤
(

n
n+ 1− j

)2

.

Hence, using the Euler’s series for π2

6 ,

Var[X] ≤ n2
n∑

j=1

(
1

n+ 1− j

)2

= n2
1∑

j=n

(
1
j

)2

≤ π2n2

6
.

RC (2019/20) – Lecture 5 – slide 13

Bounding Coupon Collector purchases - Chebyshev

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

=

∑n
j=1 Var[Xj]

a2
.

Each individual Xj is geometric with parameter n−(j−1)
n , so each Xj has

Var[Xj] =
j− 1
n

(
n

(n+ 1− j)

)2

≤
(

n
n+ 1− j

)2

.

Hence, using the Euler’s series for π2

6 ,

Var[X] ≤ n2
n∑

j=1

(
1

n+ 1− j

)2

= n2
1∑

j=n

(
1
j

)2

≤ π2n2

6
.

RC (2019/20) – Lecture 5 – slide 13

Bounding Coupon Collector purchases - Chebyshev

Pr[|X− E[X]| ≥ a] ≤ Var[X]
a2

=

∑n
j=1 Var[Xj]

a2
.

Each individual Xj is geometric with parameter n−(j−1)
n , so each Xj has

Var[Xj] =
j− 1
n

(
n

(n+ 1− j)

)2

≤
(

n
n+ 1− j

)2

.

Hence, using the Euler’s series for π2

6 ,

Var[X] ≤ n2
n∑

j=1

(
1

n+ 1− j

)2

= n2
1∑

j=n

(
1
j

)2

≤ π2n2

6
.

RC (2019/20) – Lecture 5 – slide 13



Bounding Coupon Collector purchases - Chebyshev

We know Var[X] ≤ π2n2

6 for our coupon collector process.

Suppose we are willing to make 2E[X] (about 2n ln(n)) purchases.

The probability we fail to get all cards is

Pr[X > 2E[X]] = Pr[X− E[X] > E[X]]
= Pr[|X− E[X]| > E[X]]. (as X ≥ 0)

We can upper bound the probability of the bad event |X−E[X]| > E[X] using
Chebyshev Inequality with a = E[X]:

Pr[|X− E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 ≤ π2n2

6n2H(n)2

=
π2

6H(n)2
≤ 2

ln(n)2 .

This improves over 1
2 , which is what Markov gives us.
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The probability we fail to get all cards is

Pr[X > 2E[X]] = Pr[X− E[X] > E[X]]
= Pr[|X− E[X]| > E[X]]. (as X ≥ 0)

We can upper bound the probability of the bad event |X−E[X]| > E[X] using
Chebyshev Inequality with a = E[X]:

Pr[|X− E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 ≤ π2n2

6n2H(n)2

=
π2

6H(n)2
≤ 2

ln(n)2 .

This improves over 1
2 , which is what Markov gives us.
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Bounding Coupon Collector purchases - Union bound

Theorem (1.2, Union bound)
Let E1, E2, . . . be a finite or countably infinite sequence of events,

Pr

∪
i≥1

Ei

 ≤
∑
i≥1

Pr[Ei].

Similar to Markov ineq., there is almost no requirement to the union
bound!
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Bounding Coupon Collector purchases - Union bound

Let Ei be the “bad” event where card i is still missing at time T.

Pr [Ei] ≤
(
1−

1
n

)T

.

Thus, by a union bound,

Pr[X ≥ T] = Pr
[
∪n
i≥1Ei

]
≤ n

(
1−

1
n

)T

.
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Bounding Coupon Collector purchases - Union bound

Once again we use (1− 1/n)n ≤ 1/e. If T = (1+ ε)n ln n,

n
(
1−

1
n

)T

≤ n
((

1−
1
n

)n)(1+ε) ln n

≤ n(e−1)(1+ε) ln n = n−ε.

Thus, for example if ε = 1,

Pr[X ≥ 2n ln n] ≤ n−1.

As E[X] ≥ n ln n,

Pr[X ≥ 2E[X]] ≤ Pr[X ≥ 2n ln n] ≤ n−1.
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Coupon collector bounds

Pr[X ≥ 2E[X]] ≤ 1
2

(Markov)

Pr[X ≥ 2E[X]] ≤ 2
ln(n)2 (Chebyshev)

Pr[X ≥ 2E[X]] ≤ 1
n

(Union bound)

The stronger the bounds are, the more information we use.

Chebyshev also gives (weak) lower bound. Using Chernoff bound for nega-
tively correlated rv, one can show

Pr[X ≤ (1− ε)(n− 1) ln n] ≤ e−nε .

However this is beyond the scope of our course. Check out Chapter 9 and
10 of https://arxiv.org/abs/1801.06733 if you are interested.
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Wrapping up today

Next week we will continue the theme of “bounding deviation from the
mean” by introducing some stronger concentration inequalities called Cher-
noff bounds/Hoeffding ineq.

First, on Friday (to give a break) we will look at a simple random algorithm
to approximately calculate Max Cut, and show how to derandomize it.

▶ Coursework 1 will be available on Thursday.

▶ Tutorials are starting next week. The first tutorial sheet will also be
available soon.
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