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Discrete random variables

Our main focus in RC is on random variables, especially discrete random
variables (when X can take on a finite or countable number of values).

Not all random variables have bounded expectation. Expectation is finite if∑
i |i| Pr[X = i] converges as a series; otherwise unbounded.

(note that EX cannot be unbounded unless it has infinite support).

Theorem (2.1, Linearity of Expectation)
For any finite collection of discrete random variables X1, . . . ,Xk with finite
expectations,

E

 k∑
j=1

Xj

 =

k∑
j=1

E[Xj].

Theorem 2.1 holds regardless of whether the random variables are indepen-
dent or not.
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Linearity of Expectation

Consider a uniformly at random permutation of n elements. What is the
expected number of fixed points (x such that σ(x) = x)?

Let Xi be the indicator variable of the event σ(i) = i, and X =
∑n

i=1 Xi. Then

EXi =
(n− 1)!

n!
=

1
n
.

Thus,

EX =

n∑
i=1

EXi = 1.
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Discrete random variables . . .

Lemma (2.2)
For any discrete random variable X, any constant c, E[c · X] = c · E[X].

Definition (2.2)
A collection X1, . . . ,Xk of random variables are said to be mutually indepen-
dent if and only if, for every subset I ⊆ {1, . . . , k}, and every tuple of values
ai, i ∈ I, we have

Pr [∩i∈I(Xi = ai)] =
∏
i∈I

Pr[Xi = ai].
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Independence

“Mutually independent” is stronger than “pairwise independent” - a col-
lection of random variables can be pairwise independent but not mutually
independent.

Example
Two fair coins, values 1 and 0.

A value of the first flip;

B value of the second flip;

C absolute difference of two values.

Pairwise independence works out but

Pr[(A = 1) ∩ (B = 1) ∩ (C = 1)] = ?
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Variance and second moment

Definition
The k-th moment is defined as

E[Xk] :=
∑

i

ik Pr[X = i].

The variance is defined as

Var[X] := E[(X− E[X])2] =
∑

i

(i− E[X])2 Pr[X = i].
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Variance

Lemma
For any discrete random variable X, E[X2] ≥ E[X]2.

Proof.
Consider the variance Var[X] = E[(X − E[X])2]. Since it only takes non-
negative values, Var[X] ≥ 0. Moreover,

Var[X] = E[X2 − 2E[X] · X+ E[X]2]
= E[X2] − E[2E[X] · X] + E[X]2 (Thm 2.1)

= E[X2] − 2E[X] · E[X] + E[X]2 (Lemma 2.2)

= E[X2] − E[X]2.

By Var[X] ≥ 0, we have E[X2] ≥ E[X]2.
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Jensen’s Inequality

Definition
A function f : R → R is said to be convex if it is the case that for every
x1, x2 ∈ R and every λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

Lemma (2.3)
For any f which is twice differentiable, f is convex around x if and only if
f ′′(x) ≥ 0.

Theorem (2.4, Jensen’s Inequality)
If f is a convex function, then

E[f(X)] ≥ f(E[X]).
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Jensen’s Inequality

Theorem (2.4, Jensen’s Inequality)
If f is a convex function, then

E[f(X)] ≥ f(E[X]).

Proof.
Let µ = E[X]. Assuming that f is twice differentiable on its domain, then
Taylor’s expansion implies ∀x, there is some c between µ and x such that

f(x) = f(µ) + f ′(µ)(x− µ) + f ′′(c)
(x− µ)2

2
.

By convexity of f, we know f ′′(·) ≥ 0 throughout domain, so f(x) ≥ f(µ) +
f ′(µ)(x− µ) for all x. Take expectation and apply Thm 2.1, Lem 2.2,

E[f(X)] ≥ E[f(µ)] + E[f ′(µ)(X− µ)]

= f(µ) + f ′(µ) · (E[X] − E[X]),

so the f ′ term disappears and E[f(X)] ≥ f(µ) = f(E[X]).
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Simple distributions

Definition
The Bernoulli distribution (biased coin-flip) is the random variable Y such
that Y = 1 with probability p and Y = 0 with probability 1− p.

Notice E[Y] = p when Y is Bernoulli.

Definition (2.5)
The binomial distribution for n, p, written B(n, p), is the random variable X
which takes values in {0, 1, . . . , n} with the probabilities

Pr[X = j] =

(
n
j

)
pj(1− p)n−j.

We can prove E[X] = np for X being B(n, p) in two ways:

▶ Directly, using Definition 2.5 and simplifying/summing the series.

▶ Binomial distributionB(n, p) is the probabilities of getting j flips from n
independent trials of a Bernoulli. Then use linearity of expectation.
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Conditional Expectation

Definition (2.6)
For two random variables X,Y,

E[X | Y = y] =
∑
x

x · Pr[X = x | Y = y],

summation being taken over all x in the support of X.

Definition (2.7)
We also use the expression E[X | Y], where X,Y are random variables.

E[X | Y] itself is a random variable and a function of Y. If Y = y, it takes
value E[X | Y = y]. In other words, it takes value x with probability∑

y:E[X|Y=y]=x

Pr[Y = y].
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Conditional Expectation

Observation
For any finite collection of discrete random variables X1, . . . ,Xn with finite
expectations, and for any random variable X,

E

[(
n∑

i=1

Xi

)
| Y = y

]
=

n∑
i=1

E[Xi | Y = y].

Lemma (2.5)
For any random variables X and Y, such that E[X | Y = y] is always bounded

E[E[X | Y]] = E[X].
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Conditional Independence

Proof.

E[E[X | Y]] =
∑
y

Pr[Y = y]E[X | Y = y]

=
∑
y

Pr[Y = y]
∑
x

x Pr[X = x | Y = y]

=
∑
y

∑
x

x Pr[Y = y] Pr[X = x | Y = y]

=
∑
y

∑
x

x Pr[X = x ∩ Y = y]

=
∑
x

∑
y

x Pr[X = x ∩ Y = y]

=
∑
x

x Pr[X = x] = E[X].
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Geometric distributions

Imagine we flip a biased coin many times (success with prob. p), and stop
when we see the first success (heads, or alternatively 1). What is the distri-
bution of the number of flips?

Definition (2.8)
A geometric random variable X with parameter p is given by the following
probability distribution on N:

Pr[X = j] = (1− p)j−1p.

Should verify that
∑∞

j=1 Pr[X = j] = 1.

Lemma (2.8)
For a geometric random variable X with parameter p, and for any j > 0, k ≥ 0,

Pr[X = j+ k | X > k] = Pr[X = j].
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Geometric distributions

Lemma (2.9)
For any discrete random variable X that only takes non-negative integer values,
we have the following:

E[X] =

∞∑
i=1

Pr[X ≥ i].

Proof.
Consider the indicator variables Yi = 1X≥i. Then X =

∑∞
i=1 Yi. Take expec-

tation and use linearity.

Observation
If X is a geometric random variable X with parameter p, then for any i ≥ 0,
Pr[X ≥ i] = (1− p)i−1.

Proof.
The event that X ≥ i is exactly the event that the first (i− 1) trials all fail.
(You can also directly calculate it.)
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Geometric distributions

Lemma
If X is a geometric random variable X with parameter p, then E[X] = p−1.

Proof.
By Lemma 2.9, we have E[X] =

∑∞
i=1 Pr[X ≥ i].

For a geometric random variable, parameter p,

E[X] =
∞∑
i=1

(1− p)i−1 =

∞∑
i=0

(1− p)i

=
1

1− (1− p)
=

1
p
.
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Alternatively

Let Y be the indicator variable of whether the first flip succeeds.

E[X] = E[E[X | Y]] (Lemma 2.5)

= Pr[Y = 1]E[X | Y = 1] + Pr[Y = 0]E[X | Y = 0]

= p+ (1− p)
∞∑
i=1

i Pr[X = i | X > 1]

= p+ (1− p)
∞∑
i=1

i Pr[X = i− 1] (Lemma 2.8)

= p+ (1− p)
∞∑
i=1

(i− 1) Pr[X = i− 1] + (1− p)
∞∑
i=1

Pr[X = i− 1]

= p+ (1− p)E[X] + 1− p = 1+ (1− p)E[X].

We can solve that E[X] = 1
p .
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Coupon Collector Problem

“Coupon collecting” is the activity of buying cereal-packets, each of
which will have a coupon inside. There are be n different types of
“coupon” (eg cards with a photo of a footballer) and the goal is to
collect one copy of each . . . then stop buying.

How many packets do we (expect to) need to buy?

Assumptions:

▶ Items are randomly and identically distributed in packets (one card
per packet). So when buying a box the probability of any particular
card being inside is 1/n.
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Coupon Collector Analysis

How to analyse the process?

Could evaluate expected number of purchases to get card i. For any i, the
“number of steps” Yi is a geometric random variable with parameter 1/n
such that E[Yi] = 1

(1/n) = n.

But the total number the purchases in expectation is not the summation of
all Yi (WHY?). Worse, they are also not independent! Better to find another
angle and not focused on any particular card . . .

▶ At any stage of the process (having found some cards already), analyse
the “further purchases” to get a card not seen before.

▶ Let Xi be the number of packets bought (after having i − 1 different
cards) to get the ith new card.

▶ Let X be the number of packets bought to get all cards.

▶ Clearly X =
∑n

i=1 Xi.
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Coupon Collector Analysis

Xi can also be modelled as a geometric random variable; if we own i − 1
different cards, and buy one more packet, the (conditional) probability pi

that we get a new card is pi =
n−(i−1)

n .

Linearity of E[·] says E[X] =
∑n

i=1 E[Xi].

By Lemma on geometric random variables E[Xi] =
n

n−(i−1) for every i.

Hence E[X] =
∑n

i=1
n

n−(i−1) =
∑1

i=n
n
i = n(

∑n
i=1

1
i ).

H(n) =
∑n

i=1
1
i is a crude “Riemann sum” to approximate

∫n
x=1

1
x .

Can show
∫n
x=1

1
x <

∑n
i=1

1
i and

∑n
i=2

1
i <

∫n
x=1

1
x (Fig 2.1 in book).

Hence ln(n) <
∑n

i=1
1
i ≤ ln(n) + 1.

So the expected time E[X] to collect all cards is ∼ n ln(n).
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Is “expected” the same as “typical”?

All we know (for Coupon collecting) is the “average” (weighted over random
choices) number of cards.

We don’t know how likely one “run” of the process is to come close to that
value.

Concentration inequalities help us bound the deviation from the mean:

▶ Markov’s Inequality;

▶ Chebyshev’s Inequality;

▶ Chernoff Bound / Hoeffding inequality.
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