Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh
Matrix multiplication verification

Assume that the values in the $n \times n$ matrices A, B, C are integers over some field like \mathbb{F}_2 (also known as $GF(2)$), or indeed any \mathbb{F}_p for prime $p > 2$, or even the standard field over \mathbb{Z}.

The algorithm is parametrized by some natural number $k > 1$.

Algorithm $\text{MMVERIFY}(n, A, B, C)$

1. for $j = 1, \ldots, k$ do
2. Generate \bar{x} uniformly at random from $\{0, 1\}^n$
3. Calculate $\bar{y}_B = B \cdot \bar{x}$ in $\Theta(n^2)$ time.
4. Calculate $\bar{y}_{AB} = A \cdot \bar{y}_B$ in $\Theta(n^2)$ time.
5. Calculate $\bar{y}_C = C \cdot \bar{x}$ in $\Theta(n^2)$ time.
6. if $\bar{y}_{AB} \neq \bar{y}_C$
7. return “no”
8. return “yes”
Analysing MMVerify

We have already (Friday 19th) shown that each of steps 3., 4., 5. can be done in $\Theta(n^2)$ for a specific vector x of length n. Now for the analysis ...

We will show “One-sided error” (like polynomial identity testing)

$AB \equiv C$: In this case, we know that $AB \cdot \bar{x} = C\bar{x}$ for every $\bar{x} \in \{0, 1\}^n$. Hence MMVERIFY is guaranteed to return the value “yes”.

$AB \not\equiv C$: We will now show that in this case, that when a vector \bar{x} is drawn uniformly at random (uar) from $\{0, 1\}^n$, the probability that $AB \cdot \bar{x} = C \cdot \bar{x}$ is at most $1/2$.

Then we will consider the effect of doing k trials.
Consider the two $n \times n$ matrices AB and C. They are non-identical, so there must be at least one cell (i^*, j^*) such that the values $(AB)_{i^*j^*}$ and $C_{i^*j^*}$ are different.

Let $D = (AB - C)$. Then equivalently, we have $D_{i^*j^*} \neq 0$.

Consider row i^* of D, and consider its product with a vector $\bar{x} \in \{0, 1\}^n$:

$$\sum_{j=1}^{n} D_{i^*j} \cdot x_j.$$

This gives the value for position i^* in the length-n vector computed by $D \cdot \bar{x}$. We will show that this will be 0 with probability at most $1/2$.

Analysing MMVerify: $AB \not\equiv C$
When drawing a random $\bar{x} \in \{0, 1\}^n$ uniformly at random (u.a.r.), each \bar{x} has equal probability ($1/2^n$).

This is equivalent to choosing the value $x_i \in \{0, 1\}$ independently with probability $1/2$, for each $i \in [n] = \{1, \ldots, n\}$.

Use this in the analysis (principle of deferred decisions).

Write $\sum_{j=1}^n D_{i^*j} \cdot x_j$ as

$$\left(\sum_{j \in [n] \setminus \{j^*\}} D_{i^*j} \cdot x_j \right) + D_{i^*j^*} \cdot x_{j^*}$$

Think about sampling \bar{x} (deferred decisions) as $\{0, 1\}^{n-1}$ vector first, followed by the value for x_{j^*} last.
Analysing MMVerify: $AB \not\equiv C$

After sampling the $\{0, 1\}^{n-1}$ vector for positions $\{x_j \mid j \in [n] \setminus \{j^*\}\}$, we now have a fixed value for

$$\sum_{j \in [n]\setminus\{j^*\}} D_{i^*j} \cdot x_j.$$

Then no matter which field we are in (\mathbb{Z} with standard arithmetic, \mathbb{F}_p for some prime $p > 2$, even \mathbb{F}_2 . . .) there is at most one value which could be added to this to get 0 (may be 0, may be 1, may be some other non-zero value).

Also, we know $D_{i^*j^*} \neq 0$. Sampling x_{j^*} last, we will get $D_{i^*j^*} \cdot x_{j^*} = D_{i^*j^*}$ (which is non-zero) with prob. 1/2, and $D_{i^*j^*} \cdot x_{j^*} = 0$ with prob. 1/2. Hence

$$\Pr \left[\sum_{j=1}^{n} D_{i^*j} \cdot x_j = 0 \right] \leq 1/2$$

RC (2017/18) – Lecture 3 – slide 6
Analysing MMVerify: \(AB \not\equiv C \)

Notice that the \(k \) repeated trials fit into the paradigm of “sampling with replacement”.

Let \(E_j \) be the event that the \(j \)-th sampled \(\bar{x} \) satisfies \(D \cdot \bar{x} = 0 \) (ie \(AB \cdot \bar{x} = C \cdot \bar{x} \).

\(E_1, \ldots, E_k \) are all pairwise independent. Thus, applying Defn 1.3 repeatedly,

\[
\Pr[\cap_{j=1}^{k} E_j] = \prod_{j=1}^{k} \Pr[E_j].
\]

We have already shown that \(\Pr[E_j] \leq 1/2 \).

Hence \(\Pr[\cap_{j=1}^{k} E_j] \), the probability that the algorithm returns “yes” is at most \(1/2^k \) (in the case of \(AB \not\equiv C \)).

(note: I don’t like/approve-of the stuff with Bayes in the book)
Karger’s Min-Cut Algorithm

We are given an undirected graph \(G = (V, E) \) with \(|V| = n \), and are interested in computing a “min cut”; that is, a partition of \(E \) into two non-empty sets \(S, V \setminus S \), such that the following quantity is minimized:

\[
\{ e = (u, v) : u \in S, v \in V \setminus S \}
\]

There are many deterministic algorithms which can solve this problem in polynomial-time (discuss). Karger’s algorithm (faster) uses random sampling:

Repeatedly, choose an edge uniformly at random (from the not-yet contracted edges) and conjoin its endpoints.

When there are just two “vertices” left, return that cut.
Karger’s Min-Cut Algorithm - Example

Min degree of any vertex is 3. This means the min cut of the graph is no larger than 3.
Karger’s Min-Cut Algorithm - Example

The green lines are marking groups of vertices which form “minimum-sized” cuts in the graph. The analysis of Karger’s algorithm involves showing there is good probability a randomly-chosen edge avoids the cut boundary.

Let’s focus on the larger "S" as our target to achieve the min cut value of 3, for the analysis.
Let’s focus on the larger "S" as our target to achieve the min cut value of 3, for the analysis.

Our hope is that the random process will avoid the magenta edges with some decent probability.
Karger’s Min-Cut Algorithm - Example

Randomly choosing our first edge to contract ...

First choice of edge is uniformly at random from all 15 edges, as it happens we avoid the magenta ones (not surprising as there are only 3, probability of hitting one of them is only $1/5$)
Karger’s Min-Cut Algorithm - Example

Second choice of edge is uniformly at random from remaining 14 edges, again we avoid the magenta ones (not surprising as there are only 3, probability of hitting one of them is only 3/14)
Karger’s Min-Cut Algorithm - Example

Again we have lost another vertex (only 6 now) and another edge (only 13 now). Note that the probability we avoided magenta for two steps was \((12/15)*(11/14)\) which is \(22/35\).

Notice that when we contract an edge, we are putting those vertices into the same "side" of our eventual cut. So we never want to contract a magenta edge. But our algorithm does not know which are the cut edges.
Karger’s Min-Cut Algorithm - Example

Want to avoid ever contracting one of the cut edges (as has happened in this step) as we end up with a composite vertex which has hidden one of the cut edges (and apart from hiding this particular cut, we probably have reduced the chance of finding a good one).
Karger’s Min-Cut Algorithm - Example

This is the "hoped-for" scenario for the final stage of our algorithm (just two vertices left). We have all the S vertices on one side, all of $\backslash S$ on the other, and the number of edges between them is hence the (true) min-cut.

Analysis of Karger’s Min Cut coming Friday.