
Randomness and Computation
or, “Randomized Algorithms”

Heng Guo

(Based on slides by M. Cryan)

RC (2019/20) – Lecture 3 – slide 1

Karger’s contraction algorithm

“GlobalMin-cuts in RNC andOther Ramifications of a SimpleMincut
Algorithm”, by David R. Karger, SODA 1993.

Repeatedly, choose an edge uniformly at random (from the
not-yet contracted edges) and contract its endpoints.
When there are just two “vertices” left, return that cut.

We will show that this algorithm finds the minimum cut with high
probability in time O(n2 log n).

RC (2019/20) – Lecture 3 – slide 2

Example

The min cut has size 2.

RC (2019/20) – Lecture 3 – slide 3

Example

The min cut has size 2.

RC (2019/20) – Lecture 3 – slide 3

Example

The algorithm randomly picks one edge out of 14.

We hope to avoid the min cut.

In this case the “bad” thing happens with probability 2
14 .

RC (2019/20) – Lecture 3 – slide 3

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 3 – slide 3

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 3 – slide 3

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 3 – slide 3

Example

If we contract a cut edge, then we will not find that cut.

RC (2019/20) – Lecture 3 – slide 3

Example

Ideally, we should contract all edges except the min cut.

RC (2019/20) – Lecture 3 – slide 3

Example

Ideally, we should contract all edges except the min cut.

RC (2019/20) – Lecture 3 – slide 3

Implementation of the algorithm

Naive implementation of contractionswould require complicated data struc-
tures to keep track of everything.

An equivalent way of looking at the algorithm is to pick a random permu-
tation of all edges first, and then contracting edges from the first to the
last.

Thus, what we need to find is the shortest prefix of the permutation such
that they induce two connected components.

Finding connected components takes O(m) time. Thus, by a binary search,
this will take time

O(m) + O(m/2) + O(m/4) + · · · = O(m).

Denote by KargerOneTrial one iteration of the above.

RC (2019/20) – Lecture 3 – slide 4

Karger’s contraction algorithm - analysis

Let k be the size of a min cut of G, let S ⊂ V be a specific partition where
CS, the set of edges between S and V \ S, is of cardinality k.

We must have deg(v) ≥ k for every v ∈ V. (Why?)

The algorithm chooses a sequence of random edges e1, e2, …

Let Ej be the event that ej ̸∈ CS. (“Good” event.)

Calculating Pr[E1], there are k “cut-edges” (from CS), and at least k · n/2
edges overall. Hence

Pr[E1] ≥ 1−
2k
kn

≥ 1−
2
n
.

We next calculate Pr[E2 | E1], the probability that the 2nd edge avoids CS,
conditional that the first edge was outside CS.

RC (2019/20) – Lecture 3 – slide 5

Karger’s contraction algorithm - analysis

Let k be the size of a min cut of G, let S ⊂ V be a specific partition where
CS, the set of edges between S and V \ S, is of cardinality k.

We must have deg(v) ≥ k for every v ∈ V. (Why?)

The algorithm chooses a sequence of random edges e1, e2, …

Let Ej be the event that ej ̸∈ CS. (“Good” event.)

Calculating Pr[E1], there are k “cut-edges” (from CS), and at least k · n/2
edges overall. Hence

Pr[E1] ≥ 1−
2k
kn

≥ 1−
2
n
.

We next calculate Pr[E2 | E1], the probability that the 2nd edge avoids CS,
conditional that the first edge was outside CS.

RC (2019/20) – Lecture 3 – slide 5

Karger’s contraction algorithm - analysis

Let k be the size of a min cut of G, let S ⊂ V be a specific partition where
CS, the set of edges between S and V \ S, is of cardinality k.

We must have deg(v) ≥ k for every v ∈ V. (Why?)

The algorithm chooses a sequence of random edges e1, e2, …

Let Ej be the event that ej ̸∈ CS. (“Good” event.)

Calculating Pr[E1], there are k “cut-edges” (from CS), and at least k · n/2
edges overall. Hence

Pr[E1] ≥ 1−
2k
kn

≥ 1−
2
n
.

We next calculate Pr[E2 | E1], the probability that the 2nd edge avoids CS,
conditional that the first edge was outside CS.

RC (2019/20) – Lecture 3 – slide 5

Karger’s contraction algorithm - analysis

Let k be the size of a min cut of G, let S ⊂ V be a specific partition where
CS, the set of edges between S and V \ S, is of cardinality k.

We must have deg(v) ≥ k for every v ∈ V. (Why?)

The algorithm chooses a sequence of random edges e1, e2, …

Let Ej be the event that ej ̸∈ CS. (“Good” event.)

Calculating Pr[E1], there are k “cut-edges” (from CS), and at least k · n/2
edges overall. Hence

Pr[E1] ≥ 1−
2k
kn

≥ 1−
2
n
.

We next calculate Pr[E2 | E1], the probability that the 2nd edge avoids CS,
conditional that the first edge was outside CS.

RC (2019/20) – Lecture 3 – slide 5

Karger’s contraction algorithm - analysis

Pr[E2 | E1]:

▶ Still have all k CS edges (since we assumed E1).

▶ Graph now has (n − 1) “vertices”, each having degree ≥ k (why?);
hence the graph now has at least k · (n− 1)/2 edges overall.

Hence

Pr[E2 | E1] ≥ 1−
2k

(n− 1)k
= 1−

2
n− 1

.

Next we will generalise this bound, namely, for any initial sequence of j
edge-choices satisfying ∩j

i=1Ei, we give a lower bound on

Pr[Ej+1 | E1 ∩ . . . ∩ Ej].

RC (2019/20) – Lecture 3 – slide 6

Karger’s contraction Algorithm - Analysis

For any j = 1, . . . , n − 3, we analyse the conditional probability Pr[Ej+1 |

E1 ∩ . . . ∩ Ej]:

▶ All k CS edges still remain (since we assume E1 ∩ . . . ∩ Ej).

▶ How many edges have been removed? At least j

Not exactly j, as we might have contracted a “parallel edge” earlier on,
which has the effect of removing more than one edge from the graph.

▶ How many vertices have been removed? Exactly j

The graph now has (n − j) “vertices”, and each must have degree ≥ k
(why?); hence the graph now has at least k · (n− j)/2 edges overall.

Therefore

Pr[Ej+1 | E1 ∩ . . . ∩ Ej] ≥ 1−
2k

(n− j)k
= 1−

2
n− j

.

RC (2019/20) – Lecture 3 – slide 7

Karger’s contraction Algorithm - Analysis
We hope that our contraction of random edges will lead us to a scenario
where we are left with two “vertices” without contracting any of the CS

edges (min-cut) on the way.

If we achieve this, then one “vertex” will contain all of S, the other “vertex”
all of V \ S, and the parallel edges between them are exactly the edges in
the min-cut CS.

The probability we get to this nice scenario is the probability that E1 holds,
and (conditioned on that) that E2 also holds, and (conditioned on E1 ∩ E2)
. . .) that E3 also holds, and . . . Formally,

Pr[∩n−2
j=1 Ej] = Pr[E1] · Pr[E2 | E1] · . . . · Pr[En−2 | ∩n−3

i=1 Ei]

=

n−2∏
j=1

Pr[Ej | ∩j−1
i=1Ei]

≥
n−2∏
j=1

(
1−

2
n− (j− 1)

)
=

n∏
j=3

(
1−

2
j

)

RC (2019/20) – Lecture 3 – slide 8

Karger’s contraction Algorithm - Analysis

Expanding
∏n

j=3

(
1− 2

j

)
, we have

n∏
j=3

j− 2
j

=

(
1
3

)(
2
4

)(
3
5

)(
4
6

)
. . .

(
n− 4
n− 2

)(
n− 3
n− 1

)(
n− 2

n

)
=

2
n(n− 1)

So the probability that a single “run” of KargerOneTrial generates a cut
which is minimal for the original graph is at least 2

n(n−1) .

Could be more in practice. (WHY?)

RC (2019/20) – Lecture 3 – slide 9

Karger’s contraction Algorithm - Analysis

Expanding
∏n

j=3

(
1− 2

j

)
, we have

n∏
j=3

j− 2
j

=

(
1
3

)(
2
4

)(
3
5

)(
4
6

)
. . .

(
n− 4
n− 2

)(
n− 3
n− 1

)(
n− 2

n

)
=

2
n(n− 1)

So the probability that a single “run” of KargerOneTrial generates a cut
which is minimal for the original graph is at least 2

n(n−1) .

Could be more in practice. (WHY?)

RC (2019/20) – Lecture 3 – slide 9

Karger’s contraction Algorithm - Repeated iterations

We can improve our result by running KargerOneTrial many times, and
returning the minimum of all the different cuts.

If we do k trials, the probability that none is amin cut is atmost
(
1− 2

n(n−1)

)k
.

We can relate this to e using (1+ 1
n)

n < e < (1+ 1
n)

n+1:

⇒ e−1 >
(
1+ 1

n−1

)−n
=

(
1− 1

n

)n
.

Thus
(
1− 2

n(n−1)

) n(n−1)
2

< e−1. Taking k = c · n(n−1)
2 · ln(n), we get

(
1−

2
n(n− 1)

)k

=

(
1−

2
n(n− 1)

) n(n−1)
2

c ln(n)

< (e−1)c ln(n) =
1
nc .

RC (2019/20) – Lecture 3 – slide 10

Karger’s contraction Algorithm - Repeated iterations

We can improve our result by running KargerOneTrial many times, and
returning the minimum of all the different cuts.

If we do k trials, the probability that none is amin cut is atmost
(
1− 2

n(n−1)

)k
.

We can relate this to e using (1+ 1
n)

n < e < (1+ 1
n)

n+1:

⇒ e−1 >
(
1+ 1

n−1

)−n
=

(
1− 1

n

)n
.

Thus
(
1− 2

n(n−1)

) n(n−1)
2

< e−1. Taking k = c · n(n−1)
2 · ln(n), we get

(
1−

2
n(n− 1)

)k

=

(
1−

2
n(n− 1)

) n(n−1)
2

c ln(n)

< (e−1)c ln(n) =
1
nc .

RC (2019/20) – Lecture 3 – slide 10

Wrapping up

▶ Probability tools used in our analysis were simple: we have used con-
ditional probability iteratively:

Pr[∩n−2
j=1 Ej] = Pr[∩n−2

j=2 Ej | E1] · Pr[E1]

= Pr[∩n−2
j=3 Ej | E1 ∩ E2] · Pr[E1 ∩ E2 | E1] · Pr[E1]

= . . .

(also used simple inequalities relating (1+ 1
x)

x and e)

▶ No approximation guarantee - analysis does not address the quality
of CS when it fails to be optimum.

RC (2019/20) – Lecture 3 – slide 11

#Min-Cut

We have shown that for a particular cut C, the probability of finding C is at
least 2

n(n−1) . This implies that |C| ≤ n(n−1)
2 , where C is the set of all Min-Cut.

Let FC be the event of finding C. For C ̸= C ′, Pr[FC ∩ FC ′] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,
∑

C∈C Pr[FC] ≥
∑

C∈C
2

n(n−1) = 2|C|
n(n−1) .

Thus, |C| ≤ n(n−1)
2 .

A u.a.r. cut is minimum with probability |C|

2n−1 ≤ n(n−1)
2(2n−1) = O

(
n2

2n

)
. Hence

Karger’s algorithm succeeds with probability exponentially higher than a
random cut.

This is tight! Consider a cycle of length n.

RC (2019/20) – Lecture 3 – slide 12

#Min-Cut

We have shown that for a particular cut C, the probability of finding C is at
least 2

n(n−1) . This implies that |C| ≤ n(n−1)
2 , where C is the set of all Min-Cut.

Let FC be the event of finding C. For C ̸= C ′, Pr[FC ∩ FC ′] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,
∑

C∈C Pr[FC] ≥
∑

C∈C
2

n(n−1) = 2|C|
n(n−1) .

Thus, |C| ≤ n(n−1)
2 .

A u.a.r. cut is minimum with probability |C|

2n−1 ≤ n(n−1)
2(2n−1) = O

(
n2

2n

)
. Hence

Karger’s algorithm succeeds with probability exponentially higher than a
random cut.

This is tight! Consider a cycle of length n.

RC (2019/20) – Lecture 3 – slide 12

#Min-Cut

We have shown that for a particular cut C, the probability of finding C is at
least 2

n(n−1) . This implies that |C| ≤ n(n−1)
2 , where C is the set of all Min-Cut.

Let FC be the event of finding C. For C ̸= C ′, Pr[FC ∩ FC ′] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,
∑

C∈C Pr[FC] ≥
∑

C∈C
2

n(n−1) = 2|C|
n(n−1) .

Thus, |C| ≤ n(n−1)
2 .

A u.a.r. cut is minimum with probability |C|

2n−1 ≤ n(n−1)
2(2n−1) = O

(
n2

2n

)
. Hence

Karger’s algorithm succeeds with probability exponentially higher than a
random cut.

This is tight! Consider a cycle of length n.

RC (2019/20) – Lecture 3 – slide 12

#Min-Cut

We have shown that for a particular cut C, the probability of finding C is at
least 2

n(n−1) . This implies that |C| ≤ n(n−1)
2 , where C is the set of all Min-Cut.

Let FC be the event of finding C. For C ̸= C ′, Pr[FC ∩ FC ′] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,
∑

C∈C Pr[FC] ≥
∑

C∈C
2

n(n−1) = 2|C|
n(n−1) .

Thus, |C| ≤ n(n−1)
2 .

A u.a.r. cut is minimum with probability |C|

2n−1 ≤ n(n−1)
2(2n−1) = O

(
n2

2n

)
. Hence

Karger’s algorithm succeeds with probability exponentially higher than a
random cut.

This is tight! Consider a cycle of length n.

RC (2019/20) – Lecture 3 – slide 12

#Min-Cut

We have shown that for a particular cut C, the probability of finding C is at
least 2

n(n−1) . This implies that |C| ≤ n(n−1)
2 , where C is the set of all Min-Cut.

Let FC be the event of finding C. For C ̸= C ′, Pr[FC ∩ FC ′] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,
∑

C∈C Pr[FC] ≥
∑

C∈C
2

n(n−1) = 2|C|
n(n−1) .

Thus, |C| ≤ n(n−1)
2 .

A u.a.r. cut is minimum with probability |C|

2n−1 ≤ n(n−1)
2(2n−1) = O

(
n2

2n

)
. Hence

Karger’s algorithm succeeds with probability exponentially higher than a
random cut.

This is tight! Consider a cycle of length n.

RC (2019/20) – Lecture 3 – slide 12

Other use of random contraction

Each edge fails with prob. p independently. Can we
compute or approximate

Pr[Gp is connected]?

Exact evaluation is #P-complete (Valiant, 1979), so a
polynomial-time algorithm is unlikely.

Based on random contractions, Karger (1999)
gave the first polynomial-time randomised ap-
proximation algorithm for Unreliability, namely
1− Pr[Gp is connected].

The first efficient algorithm for Reliability was found
by G. and Jerrum (2018). However it is based a vari-
ant of the constructive version of the Lovász Local
Lemma.

RC (2019/20) – Lecture 3 – slide 13

Expectation vs. Whp

There are two typical kinds of guarantees we will work with.

▶ Expectation. This includes the expected running time, expected
output, etc.

▶ With high probability (whp or w.h.p.). The meaning of this can
vary. Sometimes itmeans probability 1−o(1), which for example
would include 1− 1

log n . Sometimes it is stronger, namely 1−n−c.

RC (2019/20) – Lecture 3 – slide 14

Reading

Our next topic will be the “Coupon Collector” problem.

▶ Some of you may have seen the “Coupon Collector” problem in lower
level classes.

▶ We will re-visit it, but as well as deriving the expected value, we will
also bound the variance (2nd moment), and look at the implications of
that.

▶ You might want to read sections 2.3, 2.4 and 3.3 of [MU] in advance (if
your probability is rusty, also read 2.1, 2.2, 3.1 and 3.2)

RC (2019/20) – Lecture 3 – slide 15

