
Randomness and Computation
or, “Randomized Algorithms”

Heng Guo

(Based on slides by M. Cryan)

RC (2019/20) – Lecture 2 – slide 1

Tuesday’s lecture: Verification of polynomial identities

On Tuesday we considered the problem of taking two polyno-
mials of degree d , F (x) written as a product of “monomials”
and G(x) as an expansion of x i terms, and testing whether F (x)
is identical to G(x).

The basic algorithm takes a single uniform random sample x1
from the set {1, . . . , 100d } and calculates whether F (x1) and
G(x1) are equal. This testing algorithm gives a correct answer
with probability at least 1

100 (“one-sided” error).

▶ The sample drawn to perform the test is just a single value
chosen uniformly from {1, . . . , 100d } . . . easy probability dis-
tribution to understand.

▶ To refine the algorithm, we can do k trials and “power up”
the error to just 1

100
k
.

RC (2019/20) – Lecture 2 – slide 2

Matrix multiplication verification

Given three n×n matrices A,B,C, we want to verify whether

AB
?≡ C.

Recall that the “high-school/Uni” algorithm for evaluating AB would
take Θ(n3) time. The best algorithm is Θ(n2.3728639) or so.

We will show how to verify (with high probability) in Θ(n2) time.

We will exploit the fact that Av can be computed in O(n2) time for a
matrix A and a vector v .

RC (2019/20) – Lecture 2 – slide 3

Matrix multiplication verification

Assume that the values in the matrix are integers over some field like
F2 (also known as GF (2)), or indeed any Fp for prime p > 2, or even
the standard field over Z.

The algorithm is parametrized by some natural number k > 1.

Algorithm MMVERIFY(n,A,B,C)

1. for j = 1, . . . , k do
2. Generate x̄ uniformly at random from {0,1}n

3. Calculate ȳB = B · x̄ in Θ(n2) time.
4. Calculate ȳAB = A · ȳB in Θ(n2) time.
5. Calculate ȳC = C · x̄ in Θ(n2) time.
6. if ȳAB ̸= ȳC

7. return “no”
8. return “yes”

RC (2019/20) – Lecture 2 – slide 4

Analysing MMVerify

For the analysis, we will show . . .

“One-sided error”

AB ≡ C: In this case, we know that AB · x̄ = Cx̄ for every x̄ ∈
{0,1}n. Hence MMVERIFY is guaranteed to return the
value “yes”.

AB ̸≡ C: We will now show that in this case, when a vector x̄ is
drawn u.a.r. from {0,1}n, the probability that AB ·x̄ = C ·x̄
is at most 1/2.

After this analysis, we will calculate the effect of doing k trials.

RC (2019/20) – Lecture 2 – slide 5

Analysing MMVerify: AB ̸≡ C

Consider the two n × n matrices AB and C. They are non-identical,
so there must be at least one cell (i∗, j∗) such that the values (AB)i∗ j∗

and Ci∗ j∗ are different.

Let D = (AB − C). Then equivalently, we have Di∗ j∗ ̸= 0.

Consider row i∗ of D, and consider its product with a vector x̄ ∈ {0,1}n:

n∑
j=1

Di∗ j · xj .

This gives the value for position i∗ in the length-n vector computed by
D · x̄ .

We will show that this will be 0 with probability at most 1/2.

RC (2019/20) – Lecture 2 – slide 6

Analysing MMVerify: AB ̸≡ C

When drawing a random x̄ ∈ {0,1}n uniformly at random (u.a.r.), each x̄
has equal probability (1/2n).

This is equivalent to choosing the value xi ∈ {0,1} independently with
probability 1/2, for each i ∈ [n] = {1, . . . , n}.

Use this in the analysis (principle of deferred decisions).
Write

∑n
j=1 Di∗ j · xj as ∑

j∈[n]\{j∗}

Di∗ j · xj

+ Di∗ j∗ · xj∗

Think about sampling x̄ (deferred decisions) as {0,1}n−1 vector first,
followed by the value for xj∗ last.

RC (2019/20) – Lecture 2 – slide 7

Analysing MMVerify: AB ̸≡ C

After sampling the {0,1}n−1 vector for positions {xj | j ∈ [n] \ j∗}, we
now have a fixed value for

Y :=
∑

j∈[n]\{j∗}

Di∗ j · xj .

Then no matter which field we are in (Z with standard arithmetic, Fp
for some prime p > 2, even F2 . . .) there is at most one value (namely
−Y) which could be added to this to get 0 (maybe 0, maybe 1, maybe
some other non-zero value).

Also, we know Di∗ j∗ ̸= 0. Sampling xj∗ last, we will get Di∗ j∗ ·xj∗ = Di∗ j∗

(which is non-zero) with prob. 1/2, and Di∗ j∗ · xj∗ = 0 with prob. 1/2.

RC (2019/20) – Lecture 2 – slide 8

Law of total probability

Theorem (1.6)

Suppose the probability space Ω is partitioned into mutually disjoint
events E1, E2, . . . En. (Namely Ei ∩ Ej = ∅ and ∪n

i=1Ei = Ω.)
For any event B,

Pr[B] =

n∑
i=1

Pr[B ∩ Ei] =

n∑
i=1

Pr[B | Ei]Pr[Ei].

RC (2019/20) – Lecture 2 – slide 9

Analysing MMVerify: AB ̸≡ C
As Di∗ j∗ ̸= 0,

Di∗ j∗ · xj∗ =

{
Di∗ j∗ w.p. 1/2;
0 w.p. 1/2.

For a fixed Y , let EY be the event that Y =
∑

j∈[n]\{j∗} Di∗ j · xj . Hence,
by the law of total probability,

Pr

 n∑
j=1

Di∗ j · xj = 0

=

∑
Y

Pr
[
Di∗ j∗ · xj∗ = −Y

∣∣∣EY

]
Pr[EY]

≤ 1/2
∑

Y

Pr[EY]

= 1/2.

RC (2019/20) – Lecture 2 – slide 10

All trials of MMVerify: AB ̸≡ C

Previous slides present the analysis of what happens (AB ̸≡ C case)
on a single sample from {0,1}n (tested in lines 2-7 of MMVERIFY).

▶ The Algorithm is set up to return “no” (and terminate) on the first
trial where it discovers a mismatch between AB · x̄ and C · x̄ .

▶ It only returns “yes” if it passed through all iterations of the loop
with all trials giving a match.

▶ “Every trial gives a match” is the bad event for analysing the AB ̸≡
C case.

RC (2019/20) – Lecture 2 – slide 11

All trials of MMVerify: AB ̸≡ C

Notice that the k repeated trials fit into the paradigm of “sampling with
replacement”.

Since all of the trials are independent, the probability that all k re-
peated trials fail is at most 2−k .

(note: we will skip the Bayes stuff in the book)

RC (2019/20) – Lecture 2 – slide 12

More generally . . .

Selecting random inputs is a good way for testing / verification.

RC (2019/20) – Lecture 2 – slide 13

Min-Cut

Given an undirected graph G = (V ,E), we want to find a
“min cut”; that is, a partition of E into two non-empty sets S,
V \ S, such that the following quantity is minimized:

|{e = (u, v) : u ∈ S, v ∈ V \ S}|

There are many deterministic algorithms which can solve this problem
in polynomial-time.

RC (2019/20) – Lecture 2 – slide 14

Algorithms for Min-Cut
Let n = |V | and m = |E |.

▶ Classical “network flow” algorithm solves the (s, t)-cut problem.
To solve min-cut, we can run (s, t)-cut algorithm n − 1 times.
Namely fix a “source” s and run through all possible t .
This would take O(mn2) time.

▶ Best deterministic algorithm pre Karger is due to Stoer and Wag-
ner (1997) in time O(mn + n2 log(n)).

▶ Karger (1993) gave a beautiful O(mn2 log n) randomised (and
parallel) algorithm, and in 1998 a O(m(log n)3) randomised al-
gorithm.

▶ Heavily inspired by Karger’s work, Kawarabayashi and Thorup
(2014) found a deterministic algorithm that runs in O(m(log n)12)
time.

▶ This is still a very active research area. For example, in Nov ’19,
Gawrychowski, Mozes, and Weimann claimed a O(m(log n)2) ran-
domised algorithm.

RC (2019/20) – Lecture 2 – slide 15

Karger’s contraction algorithm

Karger (1993) uses random sampling:

Repeatedly, choose an edge uniformly at random (from
the not-yet contracted edges) and contract its end-
points.
When there are just two “vertices” left, return that cut.

We will show that this algorithm finds the minimum cut with high
probability in time O(n2 log n).

RC (2019/20) – Lecture 2 – slide 16

Example

The min cut has size 2.

RC (2019/20) – Lecture 2 – slide 17

Example

The min cut has size 2.

RC (2019/20) – Lecture 2 – slide 17

Example

The algorithm randomly picks one edge out of 14.

We hope to avoid the min cut.

In this case the “bad” thing happens with probability 2
14 .

RC (2019/20) – Lecture 2 – slide 17

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 2 – slide 17

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 2 – slide 17

Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.

RC (2019/20) – Lecture 2 – slide 17

Example

If we contract a cut edge, then we will not find that cut.

RC (2019/20) – Lecture 2 – slide 17

Example

Ideally, we should contract all edges except the min cut.

RC (2019/20) – Lecture 2 – slide 17

Example

Ideally, we should contract all edges except the min cut.

RC (2019/20) – Lecture 2 – slide 17

Implementation of the algorithm

Naive implementation of contractions would require complicated data
structures to keep track of everything.

An equivalent way of looking at the algorithm is to pick a random per-
mutation of all edges first, and then contracting edges from the first to
the last.

Thus, what we need to find is the shortest prefix of the permutation
such that they induce two connected components.

Finding connected components takes O(m) time. Thus, by a binary
search, this will take time

O(m) + O(m/2) + O(m/4) + · · · = O(m).

RC (2019/20) – Lecture 2 – slide 18

