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Markov chain and mixing times

On Tuesday we saw an example of a Markov chain on the state
space ΩIS of Independent Sets of a given graph G = (V ,E).

We showed that that Markov chain had a unique stationary
distribution over the state space ΩIS, and that this stationary
distribution was the uniform distribution on ΩIS (in the limit, as we run
the chain for many many steps, we converge to a distribution where
each individual IS is equally likely).

We showed a similar result for our contingency tables chain in cwk2.

However, for practical use (to draw a random sample) we need to
know How many steps of the Markov chain do we need to take before
we are close to uniform?
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Mixing time

Definition (Definition 12.1)
Let D1 be a probability distribution over the (countable) state
space Ω, and let D2 be another probability distribution over the same
state space. We define the variation distance between D1 and D2 as

‖D1 − D2‖ =
1
2

∑

x∈Ω
|D1(x) − D2(x)|.

Note variation distance is sometimes defined without the 1
2 . I am

being consistent with the book here.

When we run the Markov chain M starting from some fixed x ∈ Ω, the
distribution of the “current state" after t steps is the x-th row of M t ,
often written as M t [x , ·].
We will want to know how large we need to take t in order to have the
variation distance of M t [x , ·] within ε of the stationary distribution.
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Mixing time

Definition (Definition 12.2)
Let M be an ergodic Markov chain over the state space Ω and let π̄
be its stationary distribution. We define ∆x(t), ∆(t) as

∆x(t) = ‖M t [x , ·] − π̄‖, ∆(t) = max
x∈Ω

∆x(t).

We also define

τx(ε) = min{t : ∆x(t) ≤ ε}, τ(ε) = max
x∈Ω

τx(ε).

When we have an upper-bound for τ(ε) (usually in terms of ln( 1
ε
) and

a size parameter of our state space), we call τ(·) the mixing time.
For any ergodic Markov chain, ‖M t+k [x , ·] − π̄‖ ≤ ‖M t [x , ·] − π̄‖ for
any k ≥ 1 (Section 12.3 of book). Hence we stay within ε variation
distance after τ(ε) steps have been taken.
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Mixing time

I As (theoretical) computer scientists, it is important to us to have
sampling algorithms that run in polynomial time in the size of
description of Ω and in ln( 1

ε
) - the FPAUS.

I If using a Markov chain, we need to show that its mixing
time τ(ε) is a polynomial function in the size of the description
of Ω, and in ln( 1

ε
).

If we can show this, the Markov chain is said to be rapidly mixing
(even if the polynomial has high (constant) exponents :-) ).

I There are two main techniques for upper-bounding mixing time:
coupling (including path coupling) and conductance/canonical
paths.

I Coupling gives nice tight bounds when we can design a coupling
that achieves our result. Canonical paths/conductance gives
worse bounds, but it tends to work on a larger pool of Markov
chains.
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Path Coupling

A simpler version of coupling called path coupling only requires the
coupling to be designed for similar states of the Markov chain.

Lemma (Bubley and Dyer 1997)
Let M be a Markov chain on Ω and let d be an integer-valued metric
on Ω×Ω taking values in {0,1, . . . ,D} for some D. Let S be a subset
of Ω×Ω such that for all (X (t),Y (t)) ∈ Ω×Ω there is a path

X0 = X (t),X1, . . . ,X` = Y (t)

such that (Xi ,Xi+1) ∈ S for all i ,0 ≤ i < ` and
d(X (t),Y (t)) =

∑`−1
i=0 d(Xi ,Xi+1). Suppose we have a coupling

(X ,Y )→ (X ′,Y ′) of M on all pairs in S such that

E[d(X ′,Y ′)] ≤ βd(X ,Y ).
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Path Coupling
Lemma (Bubley and Dyer 1997 (cont’d))
Then if β < 1, the mixing time τ(ε) of M satisfies

τ(ε) ≤ ln(Dε−1)

1 − β
.

If β = 1 and there is some α > 0 such that
Pr[d(X ′,Y ′) 6= d(X ,Y )] ≥ α for all (X ,Y ) ∈ Ω×Ω, then

τ(ε) ≤
⌈

eD2

α

⌉
dln(ε−1)e.

I This version of coupling simplifies matters over standard
coupling because we only have to get the coupling to work for
pairs of similar states.

I To get an FPAUS have to show that β (or α) are “inverse
polynomial" in size of the state space description.
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New Markov chain for Independent sets

It is very difficult to show that the Markov chain for IS of Lecture 18 is
rapid mixing, despite it’s simplicity. Consider a new Markov chain M
for Independent sets:

Algorithm GENERATEIS2(G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose e = (u, v) uniformly at random from E .
4. with prob. 1

3 , set
5. Xi+1 ← Xi \ {u, v }
6. with prob. 1

3 , set
7. Xi+1 ← (Xi \ {u}) ∪ {v } if this is an IS, else Xi+1 ← Xi

8. with prob. 1
3 , set

9. Xi+1 ← (Xi \ {v }) ∪ {u} if this is an IS, else Xi+1 ← Xi
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New Markov chain for Independent sets (coupling)
We will design a coupling for this new Markov chain, then apply the
path coupling result of Bubley/Dyer.

For any two ISs, X ,Y , we define d(X ,Y ) = |X ⊕ Y | (recall X ⊕ Y is
the difference set of X ,Y ). We can construct a sequence of states of
length d(X ,Y ) connecting X to Y in our new Markov chain exactly
the same way as we showed irreducibility of the Lecture 18 chain.

We define S = {(X ,Y ) : |X ⊕ Y | = 1}.

For any pair of states X ,Y (whether (X ,Y ) ∈ S or not) we say a
vertex v ∈ V is bad if v ∈ X ⊕ Y , and otherwise we say v is good.

Now consider X ,Y such that Y = X ∪ {x} (for some x /∈ X ). These of
course are the pairs of S.

We will show that applying the näive coupling (same edge and
transition chosen for X and Y ), that if the max-degree of G is 4, that

E[d(X ′,Y ′)] ≤ d(X ,Y ).

(β = 1)
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New Markov chain for Independent sets (coupling)

I If the edge e chosen has the “difference vertex" x as one of its
endpoints, then we are guaranteed that X ′ will be equal to Y ′

(the same transitions are possible in X and Y , so we can
“couple" them exactly, making X ′ identical to Y ′).

I If neither endpoint of the edge e chosen is adjacent to x , then
the surrounding neighbourhoods of u, v are identical in X and Y ,
and hence can couple our actions exactly. However we will have
d(X ′,Y ′) = 1 after this (since x won’t change).

I If the edge e chosen is adjacent to x , then there is a possibility
that d(X ′,Y ′) could increase on line 6,7 or 8,9 (since the
transition might succeed in X but not in Y ).
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New Markov chain for Independent sets (coupling)

Consider y ∈ V , y a neighbour of x . Three cases. We will show the
expected contribution to d(X ′,Y ′) from y is 0, for each case.

case (a): y has two or more neighbours in the independent set X
(and three or more in Y ).

y

z3

z1

z2
x

Then for this y , we have two adjacent neighbours in the IS for both X
and Y . If we choose (y , z) for any of the neighbours (y , z), the move
adding y is blocked. Hence y never changes, and these moves
contribute 0 extra to d(X ′,Y ′).
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New Markov chain for Independent sets (coupling)

Consider y ∈ V , y a neighbour of x . Three cases.

case (b): y has no neighbours in the independent set X (and just
one, x , in Y ).

y

z3

z1

z2
x

In this case, if we try e = (y , z) for any z ∈ Nbd(y) \ {x}, then with
probability 1

3 we attempt the move to add y . This will definitely fail
in X (x blocks it) but will definitely succeed in Y (no neighbours in the
IS). So there is a contribution of 1. 13 to d(X ′,Y ′) for each (y , z)
adjacent to y , z 6= x .
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New Markov chain for Independent sets (coupling)
Consider y ∈ V , y a neighbour of x . Three cases.

case (b) cont’d: y has no neighbours in the independent set X (and
just one, x , in Y ).

y

z3

z1

z2
x

There are at most 4 neighbours for y , so at most 3 non-x neighbours,
hence we have an extra expected contribution of 1 to d(X ′,Y ′)
from ys adjacent edges that are not (x , y).

However, we might alternatively choose e = (x , y), and then we
reduce d(X ′,Y ′) by 1 with probability 1.

Hence the net contribution of edges adjacent to y to d(X ′,Y ′) is 0.
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New Markov chain for Independent sets (coupling)
Consider y ∈ V , y a neighbour of x . Three cases.

case (c): y has exactly one neighbour in the independent set X (and
two in Y ).

In this case, if we try e = (x , y) as our edge, then we reduce
d(X ′,Y ′) by 1 with probability only 2

3 . This is because we can either
drop {x , y } identically in X ,Y , and also can drop y , add x identically
in X ,Y , achieving “coupling" (d(X ′,Y ′) = 1).

y

z3

z1

z2
x

However if we try to drop x , add y , this will fail in both X and Y ,
keeping d(X ′,Y ′) as 1.
So overall on the edge (x , y) we have a − 2

3 contribution to
alter d(X ′,Y ′).

RC (2018/19) – Lecture 19 – slide 14



New Markov chain for Independent sets (coupling)

Consider y ∈ V , y a neighbour of x . Three cases.

case (c) cont’d: y has exactly one neighbour in the independent
set X (and two in Y ).

For (y , z), z being the neighbour in X , we can cause both y and z to
become bad if we choose (y , z) and attempt to add y and drop z
(prob. 1

3 ). This will succeed in X , but fail in Y . adding 2 (with
probability 1

3 ) extra to d(X ′,Y ′).
For the other two options for (y , z), the move succeeds in both,
adding 0 extra to d(X ′,Y ′). Also the moves on (y , z ′) for z ′ /∈ Y have
identical actions on X ,Y , with 0 extra contribution to d(X ′,Y ′).

Hence in case (c), we also have d(X ′,Y ′) ≤ (X ,Y ).
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New Markov chain for Independent sets (coupling)

We have shown that for each y ∈ Nbd(x), the expected contribution
to d(X ′,Y ′) − d(X ,Y ) from “edges adjacent to y" is 0.

We know that moves on edges with no endpoint in Nbd(x) have 0
contribution to d(X ′,Y ′) − d(X ,Y ).

Hence we have shown

E[d(X ′,Y ′)] ≤ d(X ,Y ),

giving β = 1 for path coupling on our S.

We can easily show that α ≥ 1
3m for our chain.

Hence Bubley-Dyer implies that the Markov chain can be used as an
FPAUS for independent sets (when max degree of G is 4).

RC (2018/19) – Lecture 19 – slide 16



Reading and Doing
Reading:

I Sections 12.1 and 12.6 of the book relate to this lecture. Note
that the argument in 12.6 ends by showing that the coupling on
the S pairs can be extended to a coupling (which is given to us
by Bubley/Dyer).

I Section 12.2 describes standard coupling (worth a read if you’re
interested) and gives the formal definition of “a coupling" (which I
left out of these slides). Section 12.3 shows that variation
distance is non-increasing with t for ergodic chains.

Doing:

I Show that today’s new Markov chain on slide 8 also has the
uniform distribution on Independent sets of G, in a similar way to
how we did the original Markov chain on Tuesday.

I Can you think about a path coupling argument for contingency
tables with two rows? (tricky)
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