
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2018/19) – Lecture 17 – slide 1

The DNF counting problem

On Tuesday we showed that using the Naïve Monte Carlo method is
infeasible (for any application, but specifically for DNF) if the number
of solutions is a small fraction of the sampled set.

For DNF this happens (say) when we have a small number of very
large clauses. A random assignment is very unlikely to hit the good
assignments.

However, we can develop an FPRAS for DNF if we refine our view of
the sampling.

RC (2018/19) – Lecture 17 – slide 2

FPRAS for DNF counting
Our formula is

F = C1 ∨ C2 ∨ . . .∨ Ct ,

where every Ci is a conjunction of literals.

I Every individual clause Ci may have positive literals (xj for
some j ∈ [n]) and negative literals (x̄j for some j ∈ [n]).

I In order to satisfy Ci we need every positive xj in Ci to get the
value 1, and every negative literal x̄j in Ci to get the value 0.
I If Ci contains the literals xj , x̄j for the same j ∈ [n] (an

opposing pair of literals), there is no assignment in {0,1}n

which can satisfy clause Ci .
I If Ci does not contain any opposing pair of literals, then Ci

is satisfied by any assignment a ∈ {0,1}n which sets

aj =





1 Ci contains the positive literal xj
0 Ci contains the negative literal x̄j

0/1 neither xj nor x̄j appear in Ci

.

I Assuming Ci has `i literals and no opposing pair, then there
are exactly 2n−`i satisfying assignments for Ci .

RC (2018/19) – Lecture 17 – slide 3

FPRAS for DNF counting
Our formula is

F = C1 ∨ C2 ∨ . . .∨ Ct ,

where every Ci is a conjunction of literals.

For every clause Ci , we define SCi to be the set of 2n−`i assignments
a ∈ {0,1}n which satisfy Ci . We define

U =def {(i ,a) | 1 ≤ i ≤ t and a ∈ SCi }.

Notice a few things:

I The SCi sets are not disjoint, as a satisfying assignment for one
clause may also satisfy a different clause/clauses.

I So usually the number of satisfying assignments
∣∣⋃t

i=1 SCi
∣∣

for F is strictly less than |U | =
∑t

i=1 |SCi |.

I However, any satisfying assignment can be shared by at most t
clauses, so we also have t ·

∣∣⋃t
i=1 SCi

∣∣ ≥ |U | =
∑t

i=1 |SCi |.

RC (2018/19) – Lecture 17 – slide 4

Sampling DNF satisfying assignments

The t-approximate relationship between the cardinalities
∣∣⋃t

i=1 SCi
∣∣

and
∑t

i=1 |SCi | will help us sample.

We will assign “ownership" of a satisfying assignment a ∈ {0,1}n to
the lowest-indexed clause i such that a ∈ SCi . Let ŜCi be the set of
all a ∈ {0,1}n assignments that satisfy clause Ci but do not satisfy Ci ′

for any i ′, i ′ < i .

Then the number of satisfying assignments of F is exactly
∑t

i=1 |ŜCi |.
Also we have

t∑

i=1

|ŜCi | ≤
t∑

i=1

|SCi | ≤ t ·
t∑

i=1

|ŜCi |.

And also we know the size of each |SCi | is exactly 2n−`i ; hence we
can easily compute the value of |U | =

∑t
i=1 |SCi |.

RC (2018/19) – Lecture 17 – slide 5

Sampling DNF satisfying assignments
If we knew the value of the

∑t
i=1 |ŜCi |∑t
i=1 |SCi |

,

then we could just multiply this by the pre-computed |U | to get the
exact number of satisfying assignments. But we don’t know this.

Sampling: We will sample Uniformly at random from U (m times),
then check whether each sample also belongs to

⋃t
i=1 ŜC i .

I Can’t just choose i uniformly from all the indices 1 ≤ i ≤ t .

I Have to weight each i according to the size of SCi , which is the
easily computable value 2n−`i .

I Choose i with probability 2n−`i

(
∑t

h=1 2n−`h)
, then choose some a ∈ SCi

(toss n − `i coins). Every element of U is generated with
probability 1

(
∑t

h=1 2n−`h)
.

Then check whether a belongs to any SCi ′ with i ′ < i .

RC (2018/19) – Lecture 17 – slide 6

FPRAS for DNF counting

Algorithm APPROXDNF(n;m;C1 ∨ . . .∨ Ct)

1. count ← 0
2. cardU ← 0
3. for i ← 1 to t
4. cardU ← cardU + 2n−|Ci |

5. for k ← 1 to m
6. Choose i with probability 2n−|Ci |

cardU .

7. Sample a ∈ SCi by setting the literals of Ci to the required
values, then randomly generating the other n − |Ci | bits.

8. if (a does not satisfy Ci ′ for any i ′ < i) then
9. count ← count + 1

10. return count
m · (cardU).

RC (2018/19) – Lecture 17 – slide 7

FPRAS for DNF counting

Theorem (Theorem 11.2)
Our DNF counting algorithm gives a fully-polynomial randomized
approximation scheme for the DNF counting problem if we set
m = d 3t

ε2 ln(2
δ
)e.

Proof.
We will have an FPRAS if we can ensure that the value returned by

APPROXDNF lies within (1± ε) of
∑t

i=1 |ŜC i |

|U|
=

∑t
i=1 |ŜC i |∑t
i=1 |SC i |

.

We know that
∑t

i=1 |ŜC i |

|U|
≥ 1

t .

The individual samples (i chosen first, then a) are indicator variables
with probability ≥ 1

t of being 1.
Hence, by Chernoff, the probability of being more than ε from the true
value after m samples is at most

2e−ε2m/(3t) ≤ 2e−ε2 1
ε2 ln(2

δ
) = 2e− ln(2

δ
) = δ.

Note m is polynomial in 1
ε
, ln(1

δ
) and the size of the input.

RC (2018/19) – Lecture 17 – slide 8

From Sampling to Approximate Counting

We have seen an example of how uniform sampling from the target
set can be used to obtain an FPRAS to approximately count the
elements.

This is generally achievable for structures we want to count/sample
(but not usually as straightforward as for DNF).

I Won’t always have an immediately-samplable “superset" like U
whose cardinality is bigger by a low factor like T .
May need a series of sampling phases.

I Won’t always be able to do exact uniform sampling from the
bigger set, that may sometimes be almost-uniform instead.

RC (2018/19) – Lecture 17 – slide 9

From Sampling to Approximate Counting

Definition (Definition 11.3)
Let ω be the (random) output of a sampling algorithm for a finite
sample space Ω. Then a sampling algorithm is said to generate an
ε-uniform sample of Ω if for every S ⊂ Ω,

∣∣Pr[ω ∈ S] − |S|

|Ω|

∣∣ ≤ ε.

A sampling algorithm is a fully-polynomial almost uniform sampler
(FPAUS) for a problem if, given input x and a parameter ε > 0, it
generates a ε-uniform sample of Ω(x) after running in time
polynomial in ln(1

ε
) and the size of x .

RC (2018/19) – Lecture 17 – slide 10

From Sampling to Approximate Counting (Independent
Sets)

Imagine that we have an “off the shelf" FPAUS for sampling
independent sets of an input graph. We show how to create an
FPRAS from this.

Definition
For a given undirected graph G = (V ,E), the subset I ⊆ V is said to
be an independent set if for every e ∈ E ,e = (u, v), at most one
of u, v lie in I.

Definition
For a given graph G = (V ,E) consider some ordering e1,e2, . . . ,em
of the edges of E . For every i = 1, . . . ,m, set Ei = ∪i

j=1{ej }, and
Gi = (V ,Ei). Let Ω(Gi) be the number of Independent sets in Gi .

Observe that G0 is an n-vertex graph with no edges, and Gm is G.
Each Gi+1 is Gi with an extra edge added.

RC (2018/19) – Lecture 17 – slide 11

From Sampling to Approximate Counting (Independent
Sets)

Now consider the following telescoping product on the I.S.s of the
different graphs:

|Ω(G)| =
|Ω(Gm)|

|Ω(Gm−1)|
× |Ω(Gm−1)|

|Ω(Gm−2)|
× |Ω(Gm−2)|

|Ω(Gm−3)|
×. . .× |Ω(G1)|

|Ω(G0)|
×|Ω(G0)|.

I |Ω(G0)| = 2n as every subset of V is an I.S. for G0 (G0 has no
edges to worry about).

I We will show how to obtain close approximate values for each
ratio ri =

|Ω(Gi)|
|Ω(Gi−1)|

, for i = 1, . . . ,m.

I If we write r̃i for our approximation of the ratio ri , our estimate for
the number of I.S.s will be

2n
m∏

i=1

r̃i .

RC (2018/19) – Lecture 17 – slide 12

From Sampling to Approximate Counting (Independent
Sets)

We will compute a r̃i that is within ± ε
2m of the true value with

probability at least 1 − δ
m , for each i ,1 ≤ i ≤ m.

Our algorithm uses the assumed FPAUS as a subroutine in step 4.

Algorithm ESTIMRATIO(Gi−1 = (V ,Ei−1);ei)

1. count ← 0
2. Gi ← (V ,Ei−1 ∪ {ei })

3. for k ← 1 to M = d1296m2ε−2 ln(2m
δ
)e

4. Generate a ε
6m -uniform sample from Ω(Gi−1).

5. if (the sample generated is also an I.S for Gi) then
6. count ← count + 1
7. return r̃i ← count

M

RC (2018/19) – Lecture 17 – slide 13

From Sampling to Approximate Counting (Independent
Sets)

It is possible to show the following:

Lemma (Lemma 11.4)
When m ≥ 1 and 0 < ε ≤ 1, Algorithm ESTIMRATIO yields a
(ε2m ,

δ
m)-approximation for the quantity ri .

Longish proof so not doing in class.

With m runs of Algorithm ESTIMRATIO (one for each |Ω(Gi)|
|Ω(Gi−1)|

) we
have estimates ˜rm, ˜rm−1, . . . , r̃2, r̃1.

I By Lemma 11.4, Pr[|r̃i − ri | >
ε

2m] ≤ δ
m , for every 1 ≤ i ≤ m.

Hence (Union Bound on bad events) with probability 1 − δ, all r̃i
are within ε

2m of their true values.

I So with probability 1 − δ, we have

(
1 −

ε

2m

)m
≤

m∏

i=1

r̃i

ri
≤
(

1 +
ε

2m

)m
.

RC (2018/19) – Lecture 17 – slide 14

From Sampling to Approximate Counting (Independent
Sets)

(
1 −

ε

2m

)m
≤

m∏

i=1

r̃i

ri
≤
(

1 +
ε

2m

)m
.

Easy to show (for ε < 1) that (1 − ε
2m)m ≥ (1 − ε) and

(1 + ε
2m)m ≤ (1 + ε), hence we have

(1 − ε) ≤ ∏m
i=1

r̃i
ri
≤ (1 + ε),

(1 − ε)

m∏

i=1

ri ≤
∏m

i=1 r̃i ≤ (1 + ε)

m∏

i=1

ri

Hence the approximate value 2n∏m
i=1 r̃i computed is within (1± ε) of

the true value with probability ≥ 1 − δ, and we have an FPRAS.

RC (2018/19) – Lecture 17 – slide 15

Reading and Doing

Reading:

I Section 11.3 from the book.

Doing:

I Exercise 11.6 from the book.

I Supposed we wanted to come up with a “telescoping product"
for the number of contingency tables Σr ,c . Can you think of a
way of doing this? We need two things:

I We need the number of ratios (to be approximated) in the
sequence to be (smallish) polynomial in the input.

I We need each ratio to be an inverse polynomial in the size
of the input (and preferably not too small).

“Size of input" for c-tables is in terms of n,m and
lg(max{maxi ri ,maxj cj }).

RC (2018/19) – Lecture 17 – slide 16

