
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2018/19) – Lecture 16 – slide 1

The Monte Carlo Method

We’ve already met the concept of a Monte Carlo Algorithm,
which uses randomness during its computation to compute
a value which is an approximation to the correct answer (sat-
isfying some approximation guarantee, with high probability)
The Monte Carlo Method is a method for estimating values
which exploits a relationship between (approximate) count-
ing and (almost-uniform) sampling.

RC (2018/19) – Lecture 16 – slide 2

The Monte Carlo Method

I Most common scenario for the Monte Carlo Method arises when
the value we want to estimate is the count of the number of
combinatorial structures satisfying a given criterion.

I We will usually rely on a close relationship between the problem
of counting the number of combinatorial structures and sampling
one of the structures uniformly at random.
I Of course, in this setting, “the set of structures" means the

set of structures according to some input. With contingency
tables this input would be the number of rows m, and the
number of columns n, and the specific lists of row sums
r = (r1, . . . , rm) and column sums c = (c1, . . . , cn).

I A Markov chain can sometimes be employed to do the sampling.

I Other example “count the different combinatorial structures"
include the set of proper k -colourings (of a given input graph
G = (V ,E)), the number of satisfying assignments (of a given
DNF formula φ), etc.

RC (2018/19) – Lecture 16 – slide 3

Monte Carlo Method - cute example
(−1,1)

(−1,−1) (1,−1)

(1,1)

(0,0)

1

Suppose we live in a world where π’s value is unknown. We estimate:

Algorithm ESTIMATEPI(m)

1. count ← 0
2. for i ← 1 to m
3. draw (X ,Y) uniformly at random from the square

ie draw each of X ,Y uniformly at random from the
continuous distribution on [−1,1]

4. if X 2 + Y 2 ≤ 1 then
5. count ← count + 1
6. return 4·count

m RC (2018/19) – Lecture 16 – slide 4

Monte Carlo Method - cute example

Can let Zi be the indicator variable for the “i-th" (X ,Y) lying inside the
circle. Then for Z =

∑m
i=1 Zi ,

E[Z] =

m∑

i=1

E[Zi] = m
π · 12

22 =
πm
4
.

Hence Z ′ = 4Z
m is an estimate for the unknown value π.

Better estimate the higher m is. By Chernoff (4.6) if we have m
samples, then for arbitrary ε ∈ (0,1),

Pr[|Z ′ − E[Z ′]| ≥ επ] = Pr
[∣∣Z −

πm
4
∣∣ ≥ επm

4

]

= Pr[|Z − E[Z]| ≥ εE[Z]]

≤ 2e−ε2πm/12.

RC (2018/19) – Lecture 16 – slide 5

Monte Carlo Method - cute example

Definition (Definition 11.1)
A randomized algorithm for estimating a (positive) quantity V (usually
depending on certain input parameters) is said to give an (ε, δ)
approximation if its output X satisfies

Pr[|X − V | ≤ εV] ≥ 1 − δ.

We know that for given ε ∈ (0,1), that if we take m samples, then
Algorithm ESTIMATEPI gives an

(ε,2e−ε2πm/12)

approximation.

We need 2e−ε2πm/12 ≤ δ, equivalent to having e−ε2πm/12 ≤ δ
2 ,

equivalent to having ε2πm
12 ≥ ln(2

δ
), equivalent to m ≥ 12 ln(2

δ
)

πε2 .

RC (2018/19) – Lecture 16 – slide 6

Monte Carlo Method

Theorem (Theorem 11.1)
Let X1, . . . ,Xm be independent and identically distributed indicator
random variables (ie Bernoulli with a fixed parameter), and
µ =
∑m

i=1 E[Xi]. Then if m ≥ 3 ln(2
δ
)

ε2µ
, we have

Pr

(
∣∣ 1
m

m∑

i=1

Xi − µ
∣∣ ≥ εµ

)
≤ δ.

So for this m, sampling gives a (ε, δ)-approximation of µ.

Definition (Definition 11.2)
A fully polynomial randomized approximation scheme (FPRAS) for a
problem is a randomized algorithm for which, given an input x and
any parameters ε, δ with 0 < ε, δ < 1 the algorithm outputs an
(ε, δ)-approximation to the true value V (x) in time polynomial in 1

ε
, in

ln(1
δ
) and in the size of x .

RC (2018/19) – Lecture 16 – slide 7

Monte Carlo Method

The Monte Carlo Method involves taking a sequence of inde-
pendent and identical samples X1, . . . ,Xm such that E[Xi] =
V, with m set large enough (see Theorem 10.1) to guarantee
we have an (ε, δ)-approximation.

The book discusses the reasons for using the Monte Carlo method.
They discuss the situation of wanting to find “approximate" solutions
for computational problems which are NP-hard to solve exactly (don’t
believe that NP-hard problems have polynomial-time algorithms).

More common in fact is the use of Monte Carlo in approximating the
“count" of]P-complete (“hard to count exactly in polynomial time")
problems like proper k -colourings, contingency tables, etc. These will
be from situations where the decision problem (“finding one") is
polynomial-time.

RC (2018/19) – Lecture 16 – slide 8

The DNF counting problem
An alternative normal form for propositional logical formulae is
Disjunctive Normal Form (DNF), where each clause is now a
conjunction (∧) or literals, and we have disjunctions (∨) at the
top-level. For example:

(x1 ∧ x̄2 ∧ x3)∨ (x2 ∧ x4)∨ (x̄1 ∧ x3 ∧ x4).

We are interested in counting the number of satisfying assignments
to a given DNF formula.

I It is NP-hard to compute the exact number of satisfying
assignments for a DNF, as this would solve the (NP-hard)
problem of SAT (we can easily construct a DNF for the negation
of the SAT formula φ, which has 2n satisfying assignments⇔ φ
was unsatisfiable).

I Hence counting DNF assignments is]P-complete.

I However, a DNF usually has some/many satisfying assignments,
and we aim to approximately count.

RC (2018/19) – Lecture 16 – slide 9

The DNF counting problem - Naïve Approach

For a given DNF formula F over n variables, let c(F) denote the
number of satisfying assignments to x1, . . . , xn.

c(F) will be 0 only if it is the case that every clause contains xi and x̄i
for some i . Easy to notice this before we start. We eliminate any of
these definitely unsatisfiable clauses before we start.

Naïve approach to counting DNF assignments is to sample m uniform
random assignments to x1, . . . , xn (from the set {0,1}n) and check
whether F is satisfied for each sample. The random variable Xi will
be 1 if the i-th trial satisfies F , 0 otherwise). Then we estimate the
fraction of these to satisfy F as

∑m
i=1 Xi
m , then we return

2n
∑m

i=1 Xi

m

as the estimate of the total number of satisfying assignments.

RC (2018/19) – Lecture 16 – slide 10

The DNF counting problem - Naïve Approach

In order for

2n
∑m

i=1 Xi

m
to be an (ε, δ) − approximation for c(F), we require that we have

∣∣2n
∑m

i=1 Xi

m
− c(F)

∣∣ ≤ ε · c(F) which happens⇔

∣∣
m∑

i=1

Xi −
mc(F)

2n

∣∣ ≤ ε · mc(F)

2n

and by Chernoff this holds⇔ we have

m ≥ 3 · 2n ln(2
δ
)

ε2c(F)
.

But if it is the case that c(F) is much much smaller than 2n, then we
need a huge number of samples (logical . . . needle in haystack).

RC (2018/19) – Lecture 16 – slide 11

The DNF counting problem

Problem with using the Naïve Monte Carlo method is that it is
infeasible (for any application) if the number of solutions is a small
fraction of the sampled set.

For DNF this happens (say) when we have a small number of very
large clauses. A random assignment is very unlikely to hit the good
assignments.

On Friday, we will see a Monte Carlo algorithm which incorporates
knowledge about “satisfying assignments per clause" to give an
FPRAS for DNF.

RC (2018/19) – Lecture 16 – slide 12

Reading and Doing

Reading

I Sections 11.1, 11.2 from the book (11.2 is prep for Tuesday
19th).

I We will continue with the DNF counting problem on Tuesday.

Doing

I Exercises 11.3, 11.4 from the book.

RC (2018/19) – Lecture 16 – slide 13

