
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2019/20) – Lecture 15 – slide 1



Logical Formulae and the “satisfiability” question

Definition
Suppose we have a collection of (propositional) logical
variables x1, . . . , xn for varying n.
A literal is any expression which is either xi or x̄i , for some i ∈ [n].
A clause is any disjunction of a number of literals.
We say a propositional formula φ : {0,1}n → {0,1} is in Clausal
Normal Form (CNF) if it is of the form

C1 ∧ C2 . . .∧ Ch,

where every Cj is a clause.
The formula φ : {0,1}n → {0,1} is in k-CNF if it is in CNF and every
clause contains exactly k literals.

The SAT problem, k-SAT problem is the problem of examining a given
CNF (or k -CNF) expression and deciding whether or not it has a
satisfying assignment.

RC (2019/20) – Lecture 15 – slide 2



Examples of SAT, k -SAT
Example of a SAT question:

(x1 ∨ x8 ∨ x̄6)∧ (x̄4 ∨ x̄7)∧ (x5 ∨ x7 ∨ x4 ∨ x2).

I For the formula above, easy to see there is a (many) satisfying
assignment(s) to the xi variables (any with x1 = 1, x4 = 0, x2 = 1
would do, for example).

I In general, the SAT problem is NP-complete (we believe there is
no polynomial-time algorithm).

Example of a 2-SAT question:

(x1 ∨ x̄2)∧ (x̄1 ∨ x̄3)∧ (x1 ∨ x2)∧ (x4 ∨ x̄3)∧ (x4 ∨ x̄1).

I There is a polynomial-time algorithm (either randomized, as we
see today, or deterministic) to solve 2-SAT.

I The 3-SAT problem, and k -SAT for all k > 3, are all
NP-complete.

RC (2019/20) – Lecture 15 – slide 3



2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse
its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM(n;C1 ∧ C2 ∧ . . .∧ C`)

1. Assign arbitrary values to each of the xi variables.
2. t ← 0
3. while (t < 2mn2 and some clause is unsatisfied) do
4. Choose an arbitrary Ch from all unsatisfied clauses;
5. Choose one of the 2 literals in Ch uniformly at random

and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. return this assignment to the x1, . . . xn else
8. return FAILED.

Note that arbitrary is very different from random.

RC (2019/20) – Lecture 15 – slide 4



2-SAT Randomized Algorithm
Imagine Algorithm 2SATRANDOM running on our 2SAT example, with
the initial assignment being xi = 0 for all i ∈ [n].

(x1 ∨ x̄2)∧ (x̄1 ∨ x̄3)∧ (x1 ∨ x2)∧ (x4 ∨ x̄3)∧ (x4 ∨ x̄1).

I Then (x1 ∨ x2) is the sole unsatisfied clause.

I Flipping the value of x2 (say) from 0 to 1, will ensure that
(x1 ∨ x2) now becomes satisfied.

I However, making this flip would also change the assignment
for (x1 ∨ x̄2), making this clause now unsatisfied.

I This is a balanced consequence overall (number of satisfied
clauses stays the same). Note that a similar scenario would
arise had we instead flipped x1 to satisfy (x1 ∨ x2) (we would
have violated (x4 ∨ x̄1) in that case).
However, there are examples where a flip might end up violating
many clauses. So it’s not so helpful for us to use “number of
clauses satisfied” as our measure of progress.

RC (2019/20) – Lecture 15 – slide 5



2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment S ∈ {0,1}n that
makes our 2SAT formula φ true (satisfies all the clauses).

Our “measure of progress” will be the number of indices k such that
xk = Sk , (x1, . . . , xn) being the current assignment.

We will analyse the expected number of steps before (x1, . . . , xn)
becomes S.

I This of course assumes the formula φ has some satisfying
assignment.

I Of course we really have (x t
1, . . . , x

t
n) (for time step t), as the

assignment changes as we proceed.

I Note that if φ does not have any satisfying assignment,
Algorithm 2SATRANDOM always returns FAILED (as it should)

RC (2019/20) – Lecture 15 – slide 6



2-SAT Randomized Algorithm - Analysis

To analyse the behaviour of Algorithm 2SATRANDOM when given a
2CNF formula φ that is satisfiable, we need some definitions.

Definition
For our given satisfiable 2SAT formula φ, let S be some satisfying
assignment for φ.
Let (x t

1, . . . , x
t
n) denote the assignment to the logical variables after

the t-th iteration of the loop at 3.
Let Xt denote the number of variables of the assignment (x t

1, . . . , x
t
n)

having the same value as in S.

We work with the Xt variable mainly, and bound the time before it
reaches the value n.

RC (2019/20) – Lecture 15 – slide 7



2-SAT Randomized Algorithm - Analysis
Some observations:

I If Xt ever hits the value 0, and φ is not yet satisfied, we are
guaranteed that at the next step, Xt+1 = 1.

Pr[Xt+1 = 1 | ((Xt = 0) & φ not-sat)] = 1.

I Alternatively, suppose Xt = j for some value j ∈ {1, . . . ,n − 1}
and that φ is unsatisfied.

Then on any of the currently unsatisfied clauses, we know the
current assignment x t must differ from S on at least one of the
two variables. Hence with probability at least 1/2, we will
increase the value of Xt by 1 (and with probability at most 1/2
decrease the value of Xt by 1/2).

Pr[Xt+1 = j + 1 | ((Xt = j) & φ not-sat)] ≥ 1/2;
Pr[Xt+1 = j − 1 | ((Xt = j) & φ not-sat)] ≤ 1/2.

RC (2019/20) – Lecture 15 – slide 8



2-SAT Randomized Algorithm - Analysis

We want to imagine the progress of 2SATRANDOM as a Markov
chain on the states 0,1, . . . ,n. Our concern is bounding the expected
number of steps for Xt to hit the state n (from an arbitrary starting
point).

I Markov chains should be memoryless, and this is problematic.

I The value for Pr[Xt+1 = j + 1 | ((Xt = j) & φ not-sat)] can be 1/2
or 1 depending on how many variables of the chosen clause
currently disagree with S. This may have been affected by
earlier flips done by the algorithm.

I We choose to “tweak” the probabilities and study the process on
{0,1, . . . ,n} where we have to make the process memoryless.
We consider a slightly different process on {0,1,2, . . . ,n} defined
by the variable Yt on the next slide.

RC (2019/20) – Lecture 15 – slide 9



2-SAT Randomized Algorithm - Analysis

10 2 n

1

11
2

1
2

1
2

1
2

1
2

1
2

The Markov chain Yt

Consider the Markov chain Y0,Y1, . . . ,Yt , . . . such that

Y0 = X0;

Pr[Yt+1 = 1 | ((Yt = 0) & φ not-sat)] = 1;
Pr[Yt+1 = j + 1 | ((Yt = j) & φ not-sat)] = 1/2;
Pr[Yt+1 = j − 1 | ((Yt = j) & φ not-sat)] = 1/2.

Clearly the expected number of steps for Xt to hit n is ≤ that for Yt .

RC (2019/20) – Lecture 15 – slide 10



2-SAT Randomized Algorithm - Analysis

For any j = 0, . . . ,n − 1, define hj to be the expected number of steps
to hit n starting from j .

I hj is the hj,n measure from lecture 14 (we omit n because we
have the same target for each j);

I Clearly, the expected number of steps for 2SATRANDOM to find
a satisfying assignment is at most maxj hj (may well be better).

I We will bound hj for every j = 0,1, . . . ,n.

RC (2019/20) – Lecture 15 – slide 11



2-SAT Randomized Algorithm - Analysis

We have hn = 0 and h0 = h1 + 1 for the “end cases”.

We will use Zj , for 0,1, . . . ,n − 1, to be the random variable for the
“number of steps” to reach n from j (hj will be E[Zj ]).
For j = 1, . . . ,n − 1, recalling the steps of the “random walk”, and
using linearity of expectation:

E[Zj ] =
1
2
(E[Zj−1] + 1) +

1
2
(E[Zj+1] + 1),

hj =
1
2
(hj+1 + 1 + hj−1 + 1)

This gives us the following system of equations:

h0 = h1 + 1

hj =
hj−1 + hj+1

2
+ 1 for j = 1, . . . ,n − 1

hn = 0

RC (2019/20) – Lecture 15 – slide 12



2-SAT Randomized Algorithm - Analysis
We show by induction that for j = 0, . . . ,n − 1,

hj = hj+1 + 2j + 1.

Proof.
Base case: If j = 0, 2j + 1 = 1, and we were given h0 = h1 + 1.
Inductive step: Suppose this was true for j = k − 1 (we had
hk−1 = hk + 2(k − 1) + 1, this is our (IH)). Now consider j = k .
By the “middle case” of our system of equations,

hk =
hk−1 + hk+1

2
+ 1

=
hk + 2(k − 1) + 1

2
+

hk+1

2
+ 1 by our (IH)

=
hk

2
+

hk+1

2
+

2k + 1
2

Subtracting hk
2 from each side, this is equivalent to

hk = hk+1 + 2k + 1,

as claimed. RC (2019/20) – Lecture 15 – slide 13



2-SAT Randomized Algorithm - Analysis
Lemma (Lemma 7.1)
Assume that the given 2CNF formula has a satisfying assignment,
and that 2SATRANDOM is allowed to carry out as many iterations as
it wants to find a satisfying assignment. Then the expected number of
iterations of 3. to find that assignment is at most n2.

Proof.
We showed that the expected number of iterations is at
most maxj=0,...,n−1{hj }. We now know the max is h0.
Applying hk = hk+1 + 2k + 1 iteratively, we have

h0 =

n−1∑

k=0

(2k + 1) + hn

= 2
n−1∑

k=0

k + n + 0

= 2
(n − 1)n

2
+ n = n2.

RC (2019/20) – Lecture 15 – slide 14



Probability of failure

Theorem
Algorithm 2SATRANDOM is parametrized by m, and the algorithm will
perform up to 2mn2 iterations of the loop.
Then, when there is a satisfying assignment for φ, the probability
that 2SATRANDOM does not discover one, is at most 2−m.

Proof.
We use Markov’s Inequality, but not “all-in-one" (which would only
bound our failure below 2−1m−1,
Instead we group the 2mn2 iterations into m “blocks" of 2n2 each, and
Markov gives failure 2−1 for an individual block. Hence failure overall
is at most (2−1)m = 2−m.

RC (2019/20) – Lecture 15 – slide 15



Reading and Doing

Reading

I This material is from Section 7.1 of [MU].

I Section 7.4 from the book is interesting (we were looking at a
random walk on the line today).

Doing

I week 11 tutorial sheet.

I Exercise 7.10 from [MU] requires similar ideas to those used to
prove the result for 2-SAT . . . but quite a challenge to get all
details right.

RC (2019/20) – Lecture 15 – slide 16


