Randomness and Computation

or, "Randomized Algorithms"

Mary Cryan

School of Informatics University of Edinburgh

RC (2019/20) – Lecture 15 – slide 1

Logical Formulae and the "satisfiability" question

Definition

Suppose we have a collection of (propositional) logical variables x_1, \ldots, x_n for varying *n*.

A *literal* is any expression which is either x_i or \bar{x}_i , for some $i \in [n]$.

A clause is any disjunction of a number of literals.

We say a propositional formula $\varphi:\{0,1\}^n\to \{0,1\}$ is in Clausal Normal Form (CNF) if it is of the form

$C_1 \wedge C_2 \ldots \wedge C_h,$

where every C_j is a *clause*.

The formula $\phi : \{0, 1\}^n \to \{0, 1\}$ is in *k-CNF* if it is in CNF and every clause contains *exactly k* literals.

The *SAT problem*, *k-SAT problem* is the problem of examining a given CNF (or *k*-CNF) expression and deciding whether or not it has a *satisfying assignment.*

う 2 2 3 4 日 2 4 H 2 4 H

RC (2019/20) – Lecture 15 – slide 2

Examples of SAT, k-SAT

Example of a SAT question:

 $(x_1 \vee x_8 \vee \bar{x_6}) \wedge (\bar{x_4} \vee \bar{x_7}) \wedge (x_5 \vee x_7 \vee x_4 \vee x_2).$

- ► For the formula above, easy to see there is a (many) satisfying assignment(s) to the x_i variables (any with x₁ = 1, x₄ = 0, x₂ = 1 would do, for example).
- In general, the SAT problem is NP-complete (we believe there is no polynomial-time algorithm).

Example of a 2-SAT question:

 $(x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \bar{x_3}) \wedge (x_4 \vee \bar{x_1}).$

- There is a *polynomial-time* algorithm (either *randomized*, as we see today, or *deterministic*) to solve 2-SAT.
- The 3-SAT problem, and k-SAT for all k > 3, are all NP-complete.

RC (2019/20) – Lecture 15 – slide 3

2-SAT Randomized Algorithm

We will design a simple *randomized algorithm* for 2-SAT, and analyse its performance by analogy to a *Markov chain*.

Algorithm 2SATRANDOM($n; C_1 \land C_2 \land \ldots \land C_\ell$)

- 1. Assign *arbitrary* values to each of the x_i variables.
- **2**. *t* ← **0**
- 3. while ($t < 2mn^2$ and some clause is unsatisfied) do
- 4. Choose an *arbitrary* C_h from all unsatisfied clauses;
- 5. Choose one of the 2 literals in C_h uniformly at random and flip the value of its variable;
- 6. if (we end with a satisfying assignment) then
- 7. **return** this assignment to the $x_1, \ldots x_n$ **else**
- 8. return FAILED.

Note that *arbitrary* is very different from *random*.

2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with the initial assignment being $x_i = 0$ for all $i \in [n]$.

 $(x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \bar{x_3}) \wedge (x_4 \vee \bar{x_1}).$

- Then $(x_1 \lor x_2)$ is the sole unsatisfied clause.
- Flipping the value of x₂ (say) from 0 to 1, will ensure that (x₁ ∨ x₂) now becomes satisfied.
- ► However, making this flip would *also* change the assignment for (x₁ ∨ x₂), making this clause now *unsatisfied*.
- ► This is a balanced consequence overall (number of satisfied clauses stays the same). Note that a similar scenario would arise had we instead flipped x₁ to satisfy (x₁ ∨ x₂) (we would have violated (x₄ ∨ x₁) in that case).

However, there are examples where a flip might end up violating **many** clauses. So it's not so helpful for us to use "number of clauses satisfied" as our measure of progress.

RC (2019/20) – Lecture 15 – slide 5

2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment $S \in \{0, 1\}^n$ that makes our 2SAT formula ϕ true (satisfies all the clauses).

Our "measure of progress" will be *the number of indices k such that* $x_k = S_k$, (x_1, \ldots, x_n) being the current assignment.

We will analyse the *expected number of steps* before (x_1, \ldots, x_n) becomes *S*.

- This of course assumes the formula ϕ has some satisfying assignment.
- Of course we really have (x₁^t,...,x_n^t) (for time step t), as the assignment changes as we proceed.

2-SAT Randomized Algorithm - Analysis

To analyse the behaviour of Algorithm 2SATRANDOM when given a 2CNF formula φ that is satisfiable, we need some definitions.

Definition

For our given satisfiable 2SAT formula $\varphi,$ let ${\it S}$ be some satisfying assignment for $\varphi.$

Let (x_1^t, \ldots, x_n^t) denote the assignment to the logical variables after the *t*-th iteration of the loop at 3.

Let X_t denote the number of variables of the assignment (x_1^t, \ldots, x_n^t) having the same value as in S.

We work with the X_t variable mainly, and bound the time before it reaches the value n.

RC (2019/20) – Lecture 15 – slide 7

2-SAT Randomized Algorithm - Analysis

Some observations:

If X_t ever hits the value 0, and φ is not yet satisfied, we are guaranteed that at the next step, X_{t+1} = 1.

 $\Pr[X_{t+1} = 1 \mid ((X_t = 0) \& \phi \text{ not-sat})] = 1.$

Alternatively, suppose X_t = j for some value j ∈ {1,...,n−1} and that φ is unsatisfied.

Then on any of the currently unsatisfied clauses, we know the current assignment x^t must differ from *S* on *at least one* of the two variables. Hence *with probability at least 1/2*, we will increase the value of X_t by 1 (and with probability at most 1/2 decrease the value of X_t by 1/2).

 $\begin{aligned} &\Pr[X_{t+1} = j+1 \mid ((X_t = j) \And \phi \text{ not-sat})] \geq 1/2; \\ &\Pr[X_{t+1} = j-1 \mid ((X_t = j) \And \phi \text{ not-sat})] \leq 1/2. \end{aligned}$

RC (2019/20) – Lecture 15 – slide 8

RC (2019/20) – Lecture 15 – slide 6

2-SAT Randomized Algorithm - Analysis

We want to imagine the *progress of* 2SATRANDOM as a Markov chain on the states 0, 1, ..., n. Our concern is bounding the *expected number of steps for* X_t *to hit the state n* (from an *arbitrary* starting point).

- Markov chains should be *memoryless*, and this is problematic.
- We choose to "tweak" the probabilities and study the process on {0, 1, ..., n} where we have to make the process memoryless.
 We consider a slightly different process on {0, 1, 2, ..., n} defined by the variable Y_t on the next slide.

RC (2019/20) – Lecture 15 – slide 9

2-SAT Randomized Algorithm - Analysis

The Markov chain Y_t

Consider the Markov chain $Y_0, Y_1, \ldots, Y_t, \ldots$ such that

 $\begin{array}{lll} Y_0 &=& X_0;\\ \Pr[Y_{t+1} = 1 \mid ((Y_t = 0) \And \varphi \text{ not-sat})] &=& 1;\\ \Pr[Y_{t+1} = j + 1 \mid ((Y_t = j) \And \varphi \text{ not-sat})] &=& 1/2;\\ \Pr[Y_{t+1} = j - 1 \mid ((Y_t = j) \And \varphi \text{ not-sat})] &=& 1/2. \end{array}$

Clearly the *expected number of steps for* X_t *to hit n* is \leq that for Y_t .

RC (2019/20) – Lecture 15 – slide 10

2-SAT Randomized Algorithm - Analysis

For any j = 0, ..., n - 1, define h_j to be the *expected number of steps* to hit n starting from j.

- *h_j* is the *h_{j,n}* measure from lecture 14 (we omit *n* because we have the same target for each *j*);
- Clearly, the expected number of steps for 2SATRANDOM to find a satisfying assignment is *at most* max_j h_j (may well be better).
- We will bound h_j for every $j = 0, 1, \ldots, n$.

RC (2019/20) – Lecture 15 – slide 11

2-SAT Randomized Algorithm - Analysis

We have $h_n = 0$ and $h_0 = h_1 + 1$ for the "end cases".

We will use Z_j , for 0, 1, ..., n-1, to be the random variable for the "number of steps" to reach *n* from *j* (h_j will be $E[Z_j]$). For j = 1, ..., n-1, recalling the steps of the "random walk", and using linearity of expectation:

$$E[Z_j] = \frac{1}{2}(E[Z_{j-1}] + 1) + \frac{1}{2}(E[Z_{j+1}] + 1),$$

$$h_j = \frac{1}{2}(h_{j+1} + 1 + h_{j-1} + 1)$$

This gives us the following system of equations:

$$h_0 = h_1 + 1$$

$$h_j = \frac{h_{j-1} + h_{j+1}}{2} + 1 \quad \text{for } j = 1, \dots, n-1$$

$$h_n = 0$$

RC (2019/20) – Lecture 15 – slide 12

2-SAT Randomized Algorithm - Analysis

We show by induction that for j = 0, ..., n - 1,

 $h_j = h_{j+1} + 2j + 1.$

Proof.

Base case: If j = 0, 2j + 1 = 1, and we were given $h_0 = h_1 + 1$. Inductive step: Suppose this was true for j = k - 1 (we had $h_{k-1} = h_k + 2(k-1) + 1$, this is our (IH)). Now consider j = k. By the "middle case" of our system of equations,

$$h_{k} = \frac{h_{k-1} + h_{k+1}}{2} + 1$$

= $\frac{h_{k} + 2(k-1) + 1}{2} + \frac{h_{k+1}}{2} + 1$ by our (IH)
= $\frac{h_{k}}{2} + \frac{h_{k+1}}{2} + \frac{2k+1}{2}$

Subtracting $\frac{h_k}{2}$ from each side, this is equivalent to

$$h_k = h_{k+1} + 2k + 1,$$

 $RC (2019/20) - Lecture 15 - slide 13$

2-SAT Randomized Algorithm - Analysis

Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment, and that 2SATRANDOM is allowed to carry out as many iterations as it wants to find a satisfying assignment. Then the expected number of iterations of 3. to find that assignment is at most n^2 .

Proof.

as claimed.

We showed that the expected number of iterations is at most $\max_{j=0,...,n-1}{h_j}$. We now know the max is h_0 . Applying $h_k = h_{k+1} + 2k + 1$ iteratively, we have

$$h_{0} = \sum_{k=0}^{n-1} (2k+1) + h_{n}$$

= $2\sum_{k=0}^{n-1} k + n + 0$
= $2\frac{(n-1)n}{2} + n = n^{2}$.
RC (2019/20) - Lecture 15 - slide 14

Probability of failure

Theorem

Algorithm 2SATRANDOM is parametrized by *m*, and the algorithm will perform up to 2*mn*² iterations of the loop.

Then, when there is a satisfying assignment for ϕ , the probability that 2SATRANDOM does not discover one, is at most 2^{-m} .

Proof.

We use Markov's Inequality, but not "all-in-one" (which would only bound our failure below $2^{-1}m^{-1}$,

Instead we group the $2mn^2$ iterations into m "blocks" of $2n^2$ each, and Markov gives failure 2^{-1} for an individual block. Hence failure overall is at most $(2^{-1})^m = 2^{-m}$.

RC (2019/20) – Lecture 15 – slide 15

Reading and Doing

Reading

- This material is from Section 7.1 of [MU].
- Section 7.4 from the book is interesting (we were looking at a random walk on the line today).

Doing

- week 11 tutorial sheet.
- Exercise 7.10 from [MU] requires similar ideas to those used to prove the result for 2-SAT ... but quite a challenge to get all details right.

RC (2019/20) – Lecture 15 – slide 16