Randomness and Computation
or, “Randomized Algorithms”
Mary Cryan
School of Informatics
University of Edinburgh

Examples of SAT, k-SAT
Example of a SAT question:
\[(x_1 \lor x_8 \lor \overline{x_6}) \land (\overline{x_4} \lor \overline{x_7}) \land (x_5 \land x_7 \land \overline{x_4} \lor \overline{x_2}).\]

\blacktriangleright For the formula above, easy to see there is a (many) satisfying assignment(s) to the x_i variables (any with $x_1 = 1$, $x_4 = 0$, $x_2 = 1$ would do, for example).

\blacktriangleright In general, the SAT problem is NP-complete (we believe there is no polynomial-time algorithm).

Example of a 2-SAT question:
\[(x_1 \lor \overline{x}_2) \land (\overline{x}_7 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1).
\]

\blacktriangleright There is a polynomial-time algorithm (either randomized, as we see today, or deterministic) to solve 2-SAT.

\blacktriangleright The 3-SAT problem, and k-SAT for all $k > 3$, are all NP-complete.

2-SAT Randomized Algorithm
We will design a simple randomized algorithm for 2-SAT, and analyse its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM(n; $C_1 \land C_2 \land \ldots \land C_t$)
1. Assign arbitrary values to each of the x_i variables.
2. $t \leftarrow 0$
3. while ($t < 2mn^2$ and some clause is unsatisfied) do
4. \hspace{1cm} Choose an arbitrary C_i from all unsatisfied clauses;
5. \hspace{1cm} Choose one of the 2 literals in C_i uniformly at random and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. \hspace{1cm} return this assignment to the x_1, \ldots, x_n else
8. return FAILED.

Note that arbitrary is very different from random.
2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with the initial assignment being $x_i = 0$ for all $i \in [n]$.

\[
(x_1 \lor x_2) \land (x_1 \lor \bar{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x_5}) \land (x_4 \lor \bar{x_1}).
\]

- Then $(x_1 \lor x_2)$ is the sole unsatisfied clause.
- Flipping the value of x_2 (say) from 0 to 1, will ensure that $(x_1 \lor x_2)$ now becomes satisfied.
- However, making this flip would also change the assignment for $(x_1 \lor \bar{x_3})$, making this clause now unsatisfied.
- This is a balanced consequence overall (number of satisfied clauses stays the same). Note that a similar scenario would arise had we instead flipped x_1 to satisfy $(x_1 \lor \bar{x_2})$ (we would have violated $(x_4 \lor \bar{x_1})$ in that case).

However, there are examples where a flip might end up violating many clauses. So it’s not so helpful for us to use “number of clauses satisfied” as our measure of progress.

RC (2016/17) – Lecture 15 – slide 5

2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment $S \in \{0, 1\}^n$ that makes our 2SAT formula ϕ true (satisfies all the clauses).

Our “measure of progress” will be the number of indices k such that $x_k = S_k$, (x_1, \ldots, x_n) being the current assignment.

We will analyse the expected number of steps before (x_1, \ldots, x_n) becomes S.

- This of course assumes the formula ϕ has some satisfying assignment.
- Note that if ϕ does not have any satisfying assignment, Algorithm 2SATRANDOM always returns FAILED (as it should).

RC (2016/17) – Lecture 15 – slide 6

2-SAT Randomized Algorithm - Analysis

Some observations:

- If X_t ever hits the value 0, and ϕ is unsatisfied, we are guaranteed that at the next step, $X_{t+1} = 1$.

$$\Pr[X_{t+1} = 1 \mid ((X_t = 0) \& \phi \text{ unsat})] = 1.$$

- Alternatively, suppose $X_t = j$ for some value $j \in \{1, \ldots, n-1\}$ and that ϕ is unsatisfied.

Then on any of the individual unsatisfied clauses, we know the current assignment x' must differ from S on at least one of the two variables. Hence with probability at least 1/2, we will increase the value of X_t by 1 (and with probability at most 1/2 decrease the value of X_t by 1/2).

$$\Pr[X_{t+1} = j + 1 \mid ((X_t = j) \& \phi \text{ unsat})] \geq 1/2;$$

$$\Pr[X_{t+1} = j - 1 \mid ((X_t = j) \& \phi \text{ unsat})] \leq 1/2.$$

RC (2016/17) – Lecture 15 – slide 8
2-SAT Randomized Algorithm - Analysis

We want to imagine the **progress of 2SATRANDOM** as a Markov chain on the states 0, 1, ..., n. Our concern is bounding the **expected number of steps** t for X_j to hit the state n (from an arbitrary starting point).

- Markov chains should be **memoryless**, and this is problematic.
- The value for Pr({X_{t+1} = j + 1} | (X_t = j) & φ unsat) can be 1/2 or 1 depending on how many variables of the chosen clause currently disagree with S. This may have been affected by earlier flips done by the algorithm.
- We choose to “tweak” the probabilities and study the process on {0, 1, 2, ..., n} defined by the variable Y_t on the next slide.

For any j = 0, ..., n - 1, define h_j to be the expected number of steps to hit n ... of equations:

h_0 = h_1 + 1
h_j = h_{j-1} + h_{j+1}
2 + 1 for j = 1, ..., n - 1
h_n = 0

Clearly, the expected number of steps for 2SATRANDOM to find a satisfying assignment is at most max_j h_j (may well be better).

▶ We will bound h_j for every j = 0, 1, ..., n.

The Markov chain Y_t

Consider the Markov chain Y_0, Y_1, ..., Y_n, such that

\[Y_0 = X_0; \]
\[\Pr(Y_{t+1} = 1 | (Y_t = 0) & \phi \text{ unsat}) = 1; \]
\[\Pr(Y_{t+1} = j + 1 | (Y_t = j) & \phi \text{ unsat}) = 1/2; \]
\[\Pr(Y_{t+1} = j - 1 | (Y_t = j) & \phi \text{ unsat}) = 1/2. \]

Clearly the expected number of steps for X_t to hit n is ≤ that for Y_t.

For any j = 0, ..., n - 1, define h_j to be the expected number of steps to hit n starting from j.

▶ h_j is the h_{j,n} measure from lecture 14 (we omit n because this is the same target for each j);

▶ Clearly, the expected number of steps for 2SATRANDOM to find a satisfying assignment is at most max_j h_j (may well be better).

▶ We will bound h_j for every j = 0, 1, ..., n.

We have h_n = 0 and h_0 = h_1 + 1 for the “end cases”.

We will use Z_j, for 0, 1, ..., n - 1, to be the random variable for the “number of steps” to reach n from j (h_j will be E[Z_j]).

For j = 1, ..., n - 1, recalling the steps of the “random walk”, and using linearity of expectation:

\[E[Z_j] = \frac{1}{2}(E[Z_{j-1}] + 1) + \frac{1}{2}(E[Z_{j+1}] + 1), \]
\[h_j = \frac{1}{2}(h_{j+1} + 1 + h_{j-1} + 1) \]

This gives us the following system of equations:

\[h_0 = h_1 + 1 \]
\[h_j = \frac{h_{j-1} + h_{j+1}}{2} + 1 \quad \text{for } j = 1, ..., n - 1 \]
\[h_n = 0 \]
2-SAT Randomized Algorithm - Analysis

We show by induction that for \(j = 0, \ldots, n - 1 \),
\[
h_j = h_{j+1} + 2^j + 1.
\]

Proof.

Base case: If \(j = 0, 2j + 1 = 1 \), and we were given \(h_0 = h_1 + 1 \).

Inductive step: Suppose this was true for \(j = k - 1 \) (we had \(h_{k-1} = h_k + 2(k-1) + 1 \), this is our (IH)). Now consider \(j = k \).

By the “middle case” of our system of equations,
\[
h_k = \frac{h_{k-1} + h_{k+1}}{2} + 1
\]
\[
= \frac{h_k + 2(k - 1) + 1}{2} + \frac{h_{k+1}}{2} + 1 \quad \text{by our (IH)}
\]
\[
= \frac{h_k}{2} + \frac{h_{k+1}}{2} + \frac{2k + 1}{2}
\]

Subtracting \(\frac{h_k}{2} \) from each side, this is equivalent to
\[
h_k = h_{k+1} + 2k + 1,
\]
as claimed.

Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment, and that 2SATRANDOM is allowed to carry out as many iterations as it wants to find a satisfying assignment. Then the expected number of iterations of 3. to find that assignment at most \(n^2 \).

Proof.

We showed that the expected number of iterations is at most \(\sum_{j=0}^{n-1} h_j \). We now know the max is \(h_0 \).

Applying \(h_k = h_{k+1} + 2k + 1 \) iteratively, we have
\[
h_0 = \sum_{k=0}^{n-1} (2k + 1) + h_n
\]
\[
= 2 \sum_{k=0}^{n-1} k + n + 0
\]
\[
= 2 \frac{(n-1)n}{2} + n = n^2.
\]

Probability of failure

Theorem

Algorithm 2SATRANDOM is parametrized by \(m \), and the algorithm will perform up to \(mn^2 \) iterations of the loop. Then, when there is a satisfying assignment for \(\phi \), the probability that 2SATRANDOM does not discover one, is at most \(2^{-m} \).

Proof.

Markov’s Inequality.

Reading and Doing

Reading

- This material is from Section 7.1 of [MU].
- Section 7.4 from the book is interesting (we were looking at a random walk on the line today).

Doing

- Exercises 7.3 and 7.7 from [MU].