Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2019/20) — Lecture 15 — slide 1

Examples of SAT, k-SAT

Example of a SAT question:
(X1 \/Xg \/)?5) AN ()Z4 \/)?7) A\ (X5 V X7V Xq \/Xg).

» For the formula above, easy to see there is a (many) satisfying
assignment(s) to the x; variables (any with x;y =1, x4 =0, x =1
would do, for example).

» In general, the SAT problem is NP-complete (we believe there is
no polynomial-time algorithm).
Example of a 2-SAT question:
(X1 \/)Zg) VAN ()?1 \/)?3) A\ (X1 \/Xz) VAN (X4 \/)33) A\ (X4 V)?1).

» There is a polynomial-time algorithm (either randomized, as we
see today, or deterministic) to solve 2-SAT.

» The 3-SAT problem, and k-SAT for all kK > 3, are all
NP-complete.

RC (2019/20) — Lecture 15 — slide 3

Logical Formulae and the “satisfiability” question

Definition
Suppose we have a collection of (propositional) logical
variables x, ..., x, for varying n.

A literal is any expression which is either x; or X;, for some i € [n].
A clause is any disjunction of a number of literals.

We say a propositional formula ¢ : {0,1}" — {0, 1} is in Clausal
Normal Form (CNF) if it is of the form

C1/\C2.../\Ch,

where every C; is a clause.

The formula ¢ : {0,1}" — {0, 1} is in k-CNFif it is in CNF and every
clause contains exactly k literals.

The SAT problem, k-SAT problem is the problem of examining a given
CNF (or k-CNF) expression and deciding whether or not it has a
satisfying assignment.

RC (2019/20) — Lecture 15 — slide 2

2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse
its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM(n; Cy A Co A ... A\ Cy)
1. Assign arbitrary values to each of the x; variables.

2. t«0

3. while (t < 2mn? and some clause is unsatisfied) do

4. Choose an arbitrary Cy, from all unsatisfied clauses;

5. Choose one of the 2 literals in Cy, uniformly at random
and flip the value of its variable;

6. if (we end with a satisfying assignment) then

7. return this assignment to the x,... x, else
return FAILED.

©

Note that arbitrary is very different from random.

RC (2019/20) — Lecture 15 — slide 4

2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with
the initial assignment being x; = 0 for all i € [n].

(X1 V) A (X VXB)A (X1 V X)) A (XaV X3) A (X4 V Xq).
» Then (x; V Xo) is the sole unsatisfied clause.

» Flipping the value of x> (say) from 0 to 1, will ensure that
(x1 V x2) now becomes satisfied.

» However, making this flip would also change the assignment
for (x4 V X2), making this clause now unsatisfied.

» This is a balanced consequence overall (number of satisfied
clauses stays the same). Note that a similar scenario would
arise had we instead flipped x; to satisfy (x; \V x2) (we would
have violated (x4 \V Xy) in that case).

However, there are examples where a flip might end up violating
many clauses. So it's not so helpful for us to use “number of
clauses satisfied” as our measure of progress.

RC (2019/20) — Lecture 15 — slide 5

2-SAT Randomized Algorithm - Analysis

To analyse the behaviour of Algorithm 2SATRANDOM when given a
2CNF formula ¢ that is satisfiable, we need some definitions.
Definition

For our given satisfiable 2SAT formula ¢, let S be some satisfying
assignment for ¢.

Let (x{,..., x}) denote the assignment to the logical variables after
the t-th iteration of the loop at 3.

Let X; denote the number of variables of the assignment (x!,..., x})
having the same value as in S.

We work with the X; variable mainly, and bound the time before it
reaches the value n.

RC (2019/20) — Lecture 15 — slide 7

2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment S € {0, 1}" that
makes our 2SAT formula ¢ true (satisfies all the clauses).

Our “measure of progress” will be the number of indices k such that

Xx = Sk, (X1,...,Xn) being the current assignment.
We will analyse the expected number of steps before (x, ..., Xn)
becomes S.

» This of course assumes the formula ¢ has some satisfying
assignment.

» Of course we really have (x{,..., x}) (for time step t), as the
assignment changes as we proceed.

> Note that if ¢ does not have any satisfying assignment,
Algorithm 2SATRANDOM always returns FAILED (as it should)

RC (2019/20) — Lecture 15 — slide 6

2-SAT Randomized Algorithm - Analysis

Some observations:

> If X; ever hits the value 0, and ¢ is not yet satisfied, we are
guaranteed that at the next step, X;,.1 = 1.

PrXip1 =11 ((X; =0) & ¢ not-sat)] = 1.

> Alternatively, suppose X; = j for some value j € {1,...,n—1}
and that ¢ is unsatisfied.

Then on any of the currently unsatisfied clauses, we know the
current assignment x! must differ from S on at least one of the
two variables. Hence with probability at least 1/2, we will
increase the value of X; by 1 (and with probability at most 1/2
decrease the value of X; by 1/2).

PriXs =j+ 11 (X =) & ¢ not-sat)] >1/2;
PriXeet = j— 11 ((X; = j) & d not-sat)] < 1/2.

RC (2019/20) — Lecture 15 — slide 8

2-SAT Randomized Algorithm - Analysis

We want to imagine the progress of 2SATRANDOM as a Markov
chain on the states 0, 1,..., n. Our concern is bounding the expected
number of steps for X; to hit the state n (from an arbitrary starting
point).

» Markov chains should be memoryless, and this is problematic.

» The value for Pr[X1 =/ + 1| ((X; =) & ¢ not-sat)] can be 1/2
or 1 depending on how many variables of the chosen clause
currently disagree with S. This may have been affected by
earlier flips done by the algorithm.

> We choose to “tweak” the probabilities and study the process on
{0,1,..., n} where we have to make the process memoryless.
We consider a slightly different process on {0,1,2,..., n} defined
by the variable Y; on the next slide.

RC (2019/20) — Lecture 15 — slide 9

2-SAT Randomized Algorithm - Analysis

Forany j=0,...,n— 1, define h; to be the expected number of steps
to hit n starting from j.

» h;is the h; , measure from lecture 14 (we omit n because we
have the same target for each j);

» Clearly, the expected number of steps for 2SATRANDOM to find
a satisfying assignment is at most max; h; (may well be better).

> We will bound h; for every j = 0,1,...,n.

RC (2019/20) — Lecture 15 — slide 11

2-SAT Randomized Algorithm - Analysis
1

i ¢y i - ®
1 2

2
1
2

®

The Markov chain Y;

Consider the Markov chain Yg, Yi,..., Ys, ... such that

Yo = Xo;
Pr[Yti1 =1[((Y:=0) & ¢ not-sat)] = T;
Pr(Yi1 =j+11((Y:r=/) &P notsat)] = 1/2
Pr[Yi1 =j—11((Ye=j) &dnot-sat)] = 1/2.

Clearly the expected number of steps for X; to hit nis < that for Y;.

RC (2019/20) — Lecture 15 — slide 10

2-SAT Randomized Algorithm - Analysis

We have h, = 0 and hy = hy + 1 for the “end cases”.

We will use Zj, for 0,1,...,n—1, to be the random variable for the
“number of steps” to reach n from j (h; will be E[Z]).
Forj=1,...,n—1, recalling the steps of the “random walk”, and
using linearity of expectation:
1 1
ElZ] = E(E[ZH] +1)+ E(E[ZPA] +1),
1

This gives us the following system of equations:

hh = hy+1
ho= %H forj=1,...,n—1
hn = 0

RC (2019/20) — Lecture 15 — slide 12

2-SAT Randomized Algorithm - Analysis

We show by induction that for j = 0,...,n—1,
hj = hi 4 +2j+1.

Proof.

Base case: If j =0, 2/ + 1 =1, and we were given hy = hy + 1.
Inductive step: Suppose this was true for j = k — 1 (we had
hk—1 = hx+2(k—1)+ 1, this is our (IH)). Now consider j = k.
By the “middle case” of our system of equations,

he = hk71;‘hk+1+1

- hk+2(k2_1)+1 + hkz“ +1 by our (IH)
& hk+1 2k+1

2 T T2

Subtracting % from each side, this is equivalent to
he = hxeq+2k+1,

as claimed. RC (2019/20) — Lecture 15 — slide 13

Probability of failure

Theorem

Algorithm 2SATRANDOM is parametrized by m, and the algorithm will
perform up to 2mn? iterations of the loop.

Then, when there is a satisfying assignment for ¢, the probability
that 2SATRANDOM does not discover one, is at most2—"™.

Proof.

We use Markov’s Inequality, but not “all-in-one" (which would only
bound our failure below 2= 'm~1,

Instead we group the 2mn? iterations into m “blocks" of 2% each, and
Markov gives failure 2~ for an individual block. Hence failure overall
is at most (2-1)" =2-™. O

RC (2019/20) — Lecture 15 — slide 15

2-SAT Randomized Algorithm - Analysis

Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment,
and that 2SATRANDOM is allowed to carry out as many iterations as
it wants to find a satisfying assignment. Then the expected number of
iterations of 3. to find that assignment is at most n°.

Proof.

We showed that the expected number of iterations is at
most max;—o, ... n—1{h;}. We now know the max is hg.
Applying hx = hx.1 + 2k + 1 iteratively, we have

n—1

ho =) (2k+1)+hy
k=0
n—1

- 2Zk+n+0
k=0

(n—=1)n 2
5 +n=nm.

= 2

RC (2019/20) — Lecture 15 — slide 14

Reading and Doing

Reading
» This material is from Section 7.1 of [MU].

» Section 7.4 from the book is interesting (we were looking at a
random walk on the line today).

Doing
» week 11 tutorial sheet.

> Exercise 7.10 from [MU] requires similar ideas to those used to
prove the result for 2-SAT ... but quite a challenge to get all
details right.

RC (2019/20) — Lecture 15 — slide 16

