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Markov processes

I A Markov process is a r.v X = {X (t) : t ∈ T }, usually T = N0.

I X (t) (sometimes written as Xt ) is the state of the process at time
t ∈ T , this is an element of some state set Ω, usually a discrete
finite set, sometimes countably infinite.

I A Markov process with the memoryless property is one where
Xt+1 will depends on the previous state Xt , but on none of the
previous states.
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Markov chains

Definition (Definition 7.1)
A discrete-time stochastic process on the state space Ω is said to be
a Markov chain if

Pr[Xt = at | Xt−1 = at−1, . . . ,X0 = a0] = Pr[Xt = at | Xt−1 = at−1].

We will often denote the Markov chain by the name M, and write
M[at−1,at ] to denote the probability Pr[Xt = at | Xt−1 = at−1].

RC (2019/20) – Lecture 14 – slide 3



Markov chains

We can think about the Markov chain M in terms of a matrix of
dimensions |Ω|× |Ω| (if Ω is finite) or of infinite dimension if Ω is
countably infinite.

M[a1,a1] M[a1,a2] . . . M[a1,aj ] . . .
M[a2,a1] M[a2,a2] . . . M[a2,aj ] . . .

...
...

...
...

...
M[aj ,a1] M[aj ,a2] . . . M[aj ,aj ] . . .

...
...

...
...

...


This is often called the transition matrix of the Markov chain.
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Transition matrix

This representation assumes that the states of the Markov chain have
been put in 1-1 correspondance with N. This is certainly possible (as
we assume Ω is countably infinite at worst) but it’s not always the
case that this ordering is particularly natural. In many situations
(especially when Ω is finite but exponentially sized), we’ll avoid
writing down the transition matrix at all - as an example, see the
description of the contingency tables 2× 2 chain later.

Note that for every a ∈ Ω, we have
∑

b∈ΩM[a,b] = 1 (a’s row sums
to 1).
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Iterations of the Markov chain

Suppose we start our Markov process with the initial state X (0) being
some fixed a ∈ Ω.

I The “next state" X (1) is distributed according to a’s row of the
transition matrix M (with probability M[a,b] of X (1) becoming b).

I If we define p̄(0) to be the row vector with p̄a(0) = 1 and all other
entries 0, then we can define the probability distribution p̄(1) by

p̄(1) = p̄(0) ·M,

and the probability that X (1) is b at the next step is pb(1) (which
equals M[a,b]), for every b ∈ Ω.

I The “next state" X (1) is a random variable, and its distribution is
the vector p̄(1) above (with values summing to 1).
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Iterations of the Markov chain

I If we then carry out a second step of the Markov chain, the
random variable X (2) will then be distributed according to p̄(2),
where

p̄(2) = p̄(1) ·M = p̄(0) ·M ·M = p̄(0) ·M2.

I And so on . . .
After t steps of the Markov chain M, the random variable X (t)
will then be distributed according to p̄(t), where

p̄(t) = p̄(0) ·M t .
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Example Markov chain

Let’s look at a concrete example of a Markov chain on the state set
Ω = {0,1,2,3}, with probabilities given by the following transition
matrix:

M =


0 1

4 0 3
4

1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4



0

3

21
1

1
4

1
2

1
3

1
4

1
23

4

1
4

1
6
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Example Markov chain
I Notice that every row of the matrix sums to 1, as required.

I Not the case for the columns (and doesn’t have to be).

I In the graph representation, the “states" are vertices and the
“transitions" of the chain are directed edges (labelled with the
appropriate probability).

I Consider running this Markov chain from 3 ∈ Ω. Then we set
p̄(0) = ( 0 0 0 1 ).

I Evaluating p̄(1) = p̄(0) ·M, we note it will be ( 0 1
2

1
4

1
4 ).

I Evaluating p̄(2) = p̄(0) ·M2, we can compute it as
( 1

4
1
8

23
48

7
48 ).

I And so on . . .

I We would expect these p̄(t) values to be different if we had
started with a different initial state.
However, these alternate t-step distributions can be easily
calculated/compared, if we have pre-computed M t .
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Markov chains for Randomized Algorithms
The graph (and transition matrix) on slide is just a “toy" example. In
our world, we will want to exploit Markov chains to obtain randomized
algorithms.

I In the 2SAT example of Section 7.1, [MU], we are concerned
with assignments (functions) A of boolean values to the n logical
variables (and which will achieve the max number of satisfied
clauses).

I The transitions of the modified Markov chain for 2SAT (Y ) are
designed to model transitions back and forth between “better"
and “worse" assignments.

I However, the states of the Markov chain (Y ) are the natural
numbers 0,1, . . . ,n, with n being the number of variables. This is
a fairly small state space.

I Next Tuesday we will prove that for a 2SAT instance which does
have a satisfying assignment, the expected number of steps
before the Markov chain finds one is at most n2. This is
expected “hitting time”.
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Markov chains for Sampling and Counting

Another application of Markov chains arises when we want to
randomly sample (or approximately count) the number of
combinatorial structures satisfying some constraint.

I In these cases the elements of the state space Ω are individual
combinatorial structures themselves, and this space is often very
large (potentially exponential in the size of the input).

I One example we can imagine is the set of contingency tables
Σr ,c for given row sums r = (r1, . . . , rm) and column sums
c = (c1, . . . , cn).

I With large state spaces of combinatorial elements, we don’t
explicitly “write down" the transition matrix of a Markov chain on
the space - we just give (randomized) rules explaining how we
move (randomly) from one element to another.

I We would then want to prove that the “2× 2" Markov chain
converges to the uniform distribution on Ω = Σr ,c .
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Markov chains for Sampling Contingency tables
We are given row sums r = (r1, . . . , rm) and c = (c1, . . . , cn). A
contingency table is a table X = [Xi,j ] of non-negative integers of
dimensions m × n that satisfies those row/column sums.

X1,1 . . . . . . . . . . . . . . . X1,n r1
...

...
...

...
...

...
...

...
. . . . . . Xi,j . . . Xi,j ′ . . . . . . ri
...

...
...

...
...

...
...

...
. . . . . . Xi ′,j . . . Xi ′,j ′ . . . . . . ri ′

...
...

...
...

...
...

...
...

Xm,1 . . . . . . . . . . . . . . . Xm,n rm

c1 . . . cj . . . cj ′ . . . cn

I The “2× 2" Markov chain selects random rows i , i ′ ∈ [m], i 6= i ′

and random columns j , j ′ ∈ [n], j 6= j ′ at each step, calculates the
mini-sums for the 2× 2 table . . . then chooses a uniform random
replacement that “fits" these mini-sums.
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Irreducibility, recurrence, aperiodicity

To analyse the behaviour (both temporary and long-term) of a Markov
chain M on the state space Ω, we often work from the graph
representation of Ms transitions.

Definition (Definition 7.2)
For a,b ∈ Ω, we say that state b is accessible from state a if there is
some n ∈ N such that Mn[a,b] > 0. If a,b are both accessible from
one another, we say that they communicate, and write a ↔ b.

Definition (Definition 7.3)
A Markov chain M on the finite state space Ω is said to be irreducible
if all states of Ω belong to the same communicating class.
Or equivalently, if we can show that for every X ,Y ∈ Ω, there is some
path Z 0 = X ,Z 1, . . . ,Z ` = Y of states from Ω connecting X and Y ,
such that M[Z j ,Z j+1] > 0 for every 0 ≤ j ≤ `− 1.
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Irreducibility, recurrence, aperiodicity

Let’s consider our example chain:

0

3

21
1

1
4

1
2

1
3

1
4

1
23

4

1
4

1
6

I {0,1,3} forms a maximal communicating class in the graph.

I {2} is an isolated communicating class - we can reach 2 from
{0,1,3}, but 2 has no outgoing transitions.

I Our example is not irreducible.
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Irreducibility, recurrence, aperiodicity

We define the concept of “recurrence" in terms of a parameter r t
Z ,W ,

where

r t
Z ,W =def Pr[X (t) = W and for all 1 ≤ s ≤ t − 1, X (s) 6= W | X (0) = Z ].

Definition (Definition 7.4)
If M is a Markov chain and Z ∈ Ω a state of that chain, we say Z is
recurrent if

∑∞
t=0 r t

Z ,Z = 1, and it is transient if
∑∞

t=0 r t
Z ,Z < 1.

A Markov chain is recurrent if every state is recurrent.
In our example, the only recurrent state is 2.
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Irreducibility, recurrence, aperiodicity

The expected “time to travel" will be important for some analyses. For
a pair of given states Z ,W ∈ Ω, we define this value as

hZ ,W =def

∞∑
t=0

t · r t
Z ,W .

Definition (Definition 7.5)
A recurrent state Z of a Markov chain M is positive recurrent if
hZ ,Z <∞. Otherwise, it is null recurrent.

Lemma (Lemma 7.5)
In a Markov chain M on a finite state space Ω,

1. At least one state is recurrent;

2. All recurrent states are positive recurrent.
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Irreducibility, recurrence, aperiodicity

Definition (Definition 7.6)
A state Z of a Markov chain M is periodic if there exists an integer
k ≥ 2 such that Pr[X (t + s) = Z | X (t) = Z ] is non-zero if and only if s
is divisible by k .
A discrete Markov chain is periodic is any of its states are periodic.
Otherwise (all states aperiodic), we say that M is aperiodic.

Definition (Definition 7.7)
An aperiodic, positive recurrent state Z ∈ Ω of a Markov chain M is
said to be an ergodic state.
The Markov chain is said to be ergodic if all its states are ergodic.

Corollary (Corollary 7.6)
Any finite, irreducible and aperiodic Markov chain is an ergodic chain.
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Ergodic Markov chains

Corollary (Corollary 7.6)
Any finite, irreducible and aperiodic Markov chain is an ergodic chain.

Proof.
By Lemma 7.5 every chain with a finite state space has at least one
recurrent state.
If the chain is irreducible, then all states can be reached from one
another (with positive probability), so all states are hence recurrent.
By Lemma 7.5, this means all states are positive recurrent.
Hence by Definition 7.7 ( we have positive recurrence, irreducibility
and aperiodicity) the chain is ergodic.

Take-away: For Markov chains over a finite state space, we only
need to check aperiodicity and irreducibility (for all pairs of states) to
show ergodicity.
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Ergodic Markov chains

Why do we care about states/Markov chains being ergodic?

Because an ergodic Markov chain has a unique stationary
distribution.

Definition (Definition 7.8)
A stationary distribution of a Markov chain M on Ω is a probability
distribution π̄ on Ω such that

π̄ = π̄ ·M.

Stationary distributions are essentially “settling-down" distributions (in
the limit). The “settling-down" is to a distribution, not a particular state.
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Ergodic Markov chains

Theorem (Theorem 7.7)
Any finite, irreducible and aperiodic Markov chain has the following
properties:

1. The chain has a unique stationary distribution π̄ = (π1, . . . , π|Ω|).

2. For all X ,Y ∈ Ω, limt→∞ M t [X ,Y ] exists and is independent of
X.

3. πY = limt→∞ M t [X ,Y ] = 1
hY,Y

.

We are not going to prove Theorem 7.7 in this course.
We will later see some ways of bounding the number of steps needed
for the chain to approach its stationary distribution.
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Reading and Doing
Reading
I You will want to read Sections 7.1, 7.2, and 7.3 from the book.

I have used M (name of the Markov chain) to refer to the
transition matrix, as opposed to the book’s P.

Doing
I Consider an example of contingency tables where we have

r = (2,2,4), c = (2,3,3). Suppose that we take the following
table as our starting state X :

X =

2 0 0 2
0 2 0 2
0 1 3 4
2 3 3

Work out the subset of contingency tables which can be reached
from X in one transition of the 2× 2 Markov chain. Also work out
the probability of each such transition.

I Tutorial sheet for week 11.
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