Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh
Logical Formulae and the “satisfiability” question

Definition
Suppose we have a collection of (propositional) logical variables x_1, \ldots, x_n for varying n.

A literal is any expression which is either x_i or \overline{x}_i, for some $i \in [n]$.

A clause is any disjunction of a number of literals.

We say a propositional formula $\phi : \{0, 1\}^n \rightarrow \{0, 1\}$ is in Clausal Normal Form (CNF) if it is of the form

$$C_1 \land C_2 \ldots \land C_h,$$

where every C_j is a clause.

The formula $\phi : \{0, 1\}^n \rightarrow \{0, 1\}$ is in k-CNF if it is in CNF and every clause contains exactly k literals.

The SAT problem, k-SAT problem is the problem of examining a given CNF (or k-CNF) expression and deciding whether or not it has a satisfying assignment.
Examples of SAT, k-SAT

Example of a SAT question:

$$(x_1 \lor x_8 \lor \bar{x}_6) \land (\bar{x}_4 \lor \bar{x}_7) \land (x_5 \lor x_7 \lor x_4 \lor x_2).$$

▶ For the formula above, easy to see there is a (many) satisfying assignment(s) to the x_i variables (any with $x_1 = 1$, $x_4 = 0$, $x_2 = 1$ would do, for example).

▶ In general, the SAT problem is NP-complete (we believe there is no polynomial-time algorithm).

Example of a 2-SAT question:

$$(x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1).$$

▶ There is a polynomial-time algorithm (either randomized, as we see today, or deterministic) to solve 2-SAT.

▶ The 3-SAT problem, and k-SAT for all $k > 3$, are all NP-complete.
2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM\((n; C_1 \land C_2 \land \ldots \land C_\ell) \)

1. Assign *arbitrary* values to each of the \(x_i \) variables.
2. \(t \leftarrow 0 \)
3. **while** \((t < 2mn^2 \text{ and some clause is unsatisfied}) \) **do**
4. \hspace{1em} Choose an *arbitrary* \(C_h \) from all unsatisfied clauses;
5. \hspace{1em} Choose one of the 2 literals in \(C_h \) *uniformly at random* and flip the value of its variable;
6. \hspace{1em} **if** (we end with a satisfying assignment) **then**
7. \hspace{2em} return this assignment to the \(x_1, \ldots, x_n \) **else**
8. \hspace{1em} return FAILED.

Note that *arbitrary* is very different from *random.*
2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with the initial assignment being $x_i = 0$ for all $i \in [n]$.

$$(x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1).$$

- Then $(x_1 \lor x_2)$ is the sole unsatisfied clause.
- Flipping the value of x_2 (say) from 0 to 1, will ensure that $(x_1 \lor x_2)$ now becomes satisfied.
- However, making this flip would also change the assignment for $(x_1 \lor \bar{x}_2)$, making this clause now unsatisfied.
- This is a balanced consequence overall (number of satisfied clauses stays the same). Note that a similar scenario would arise had we instead flipped x_1 to satisfy $(x_1 \lor x_2)$ (we would have violated $(x_4 \lor \bar{x}_1)$ in that case).

However, there are examples where a flip might end up violating many clauses. So it’s not so helpful for us to use “number of clauses satisfied” as our measure of progress.
Consider an (unknown so far) satisfying assignment \(S \in \{0, 1\}^n \) that makes our 2SAT formula \(\phi \) true (satisfies all the clauses).

Our “measure of progress” will be the number of indices \(k \) such that \(x_k = S_k \), \((x_1, \ldots, x_n)\) being the current assignment.

We will analyse the expected number of steps before \((x_1, \ldots, x_n)\) becomes \(S \).

- This of course assumes the formula \(\phi \) has some satisfying assignment.

- Note that if \(\phi \) does not have any satisfying assignment, Algorithm 2SATRANDOM always returns FAILED (as it should).
2-SAT Randomized Algorithm - Analysis

To analyse the behaviour of Algorithm 2SATRANDOM when given a 2CNF formula ϕ that is satisfiable, we need some definitions.

Definition

For our given satisfiable 2SAT formula ϕ, let S be some satisfying assignment for ϕ.

Let (x_1^t, \ldots, x_n^t) denote the assignment to the logical variables after the tth iteration of the loop at 3.

Let X_t denote the number of variables of the assignment (x_1^t, \ldots, x_n^t) having the same value as in S.

We work with the X_t variable mainly, and bound the time before it reaches the value n.

RC (2017/18) – Lecture 14 – slide 7
2-SAT Randomized Algorithm - Analysis

Some observations:

▶ If X_t ever hits the value 0, and ϕ is unsatisfied, we are guaranteed that at the next step, $X_{t+1} = 1$.

\[
\Pr[X_{t+1} = 1 \mid ((X_t = 0) \& \phi \text{ unsat})] = 1.
\]

▶ Alternatively, suppose $X_t = j$ for some value $j \in \{1, \ldots, n-1\}$ and that ϕ is unsatisfied.

Then on any of the individual unsatisfied clauses, we know the current assignment x^t must differ from S on at least one of the two variables. Hence with probability at least $1/2$, we will increase the value of X_t by 1 (and with probability at most $1/2$ decrease the value of X_t by $1/2$).

\[
\Pr[X_{t+1} = j + 1 \mid ((X_t = j) \& \phi \text{ unsat})] \geq 1/2;
\]
\[
\Pr[X_{t+1} = j - 1 \mid ((X_t = j) \& \phi \text{ unsat})] \leq 1/2.
\]
We want to imagine the progress of 2SATRANDOM as a Markov chain on the states 0, 1, . . . , n. Our concern is bounding the expected number of steps t for X_t to hit the state n (from an arbitrary starting point).

- Markov chains should be memoryless, and this is problematic.
- The value for $\Pr[X_{t+1} = j + 1 \mid (X_t = j) \& \phi \text{ unsat}]$ can be 1/2 or 1 depending on how many variables of the chosen clause currently disagree with S. This may have been affected by earlier flips done by the algorithm.
- We choose to “tweak” the probabilities and study the process on \{0, 1, . . . , n\} where we have to make the process memoryless. We consider a slightly different process on \{0, 1, 2, . . . , n\} defined by the variable Y_t on the next slide.
Consider the Markov chain $Y_0, Y_1, \ldots, Y_t, \ldots$ such that

$$
\begin{align*}
Y_0 &= X_0; \\
\Pr[Y_{t+1} = 1 \mid ((Y_t = 0) \& \phi \text{ unsat})] &= 1; \\
\Pr[Y_{t+1} = j + 1 \mid ((Y_t = j) \& \phi \text{ unsat})] &= 1/2; \\
\Pr[Y_{t+1} = j - 1 \mid ((Y_t = j) \& \phi \text{ unsat})] &= 1/2.
\end{align*}
$$

Clearly the expected number of steps for X_t to hit n is \leq that for Y_t.

RC (2017/18) – Lecture 14 – slide 10
For any $j = 0, \ldots, n - 1$, define h_j to be the expected number of steps to hit n starting from j.

- h_j is the $h_{j,n}$ measure from lecture 14 (we omit n because this is the same target for each j);
- Clearly, the expected number of steps for 2SATRANDOM to find a satisfying assignment is at most $\max_j h_j$ (may well be better).
- We will bound h_j for every $j = 0, 1, \ldots, n$.

RC (2017/18) – Lecture 14 – slide 11
2-SAT Randomized Algorithm - Analysis

We have $h_n = 0$ and $h_0 = h_1 + 1$ for the “end cases”.

We will use Z_j, for $0, 1, \ldots, n - 1$, to be the random variable for the “number of steps” to reach n from j (h_j will be $E[Z_j]$).

For $j = 1, \ldots, n - 1$, recalling the steps of the “random walk”, and using linearity of expectation:

$$E[Z_j] = \frac{1}{2}(E[Z_{j-1}] + 1) + \frac{1}{2}(E[Z_{j+1}] + 1),$$

$$h_j = \frac{1}{2}(h_{j+1} + 1 + h_{j-1} + 1)$$

This gives us the following system of equations:

$$h_0 = h_1 + 1$$
$$h_j = \frac{h_{j-1} + h_{j+1}}{2} + 1 \quad \text{for } j = 1, \ldots, n - 1$$
$$h_n = 0$$
2-SAT Randomized Algorithm - Analysis

We show by induction that for $j = 0, \ldots, n - 1$,

$$h_j = h_{j+1} + 2j + 1.$$

Proof.

Base case: If $j = 0$, $2j + 1 = 1$, and we were given $h_0 = h_1 + 1$.

Inductive step: Suppose this was true for $j = k - 1$ (we had $h_{k-1} = h_k + 2(k - 1) + 1$, this is our (IH)). Now consider $j = k$.

By the “middle case” of our system of equations,

$$h_k = \frac{h_{k-1} + h_{k+1}}{2} + 1$$

$$= \frac{h_k + 2(k - 1) + 1}{2} + \frac{h_{k+1}}{2} + 1 \quad \text{by our (IH)}$$

$$= \frac{h_k}{2} + \frac{h_{k+1}}{2} + \frac{2k + 1}{2}$$

Subtracting $\frac{h_k}{2}$ from each side, this is equivalent to

$$h_k = h_{k+1} + 2k + 1,$$

as claimed.

RC (2017/18) – Lecture 14 – slide 13
Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment, and that 2SATRandom is allowed to carry out as many iterations as it wants to find a satisfying assignment. Then the expected number of iterations of 3. to find that assignment at most \(n^2 \).

Proof.

We showed that the expected number of iterations is at most \(\max_{j=0,\ldots,n-1}\{h_j\} \). We now know the max is \(h_0 \).

Applying \(h_k = h_{k+1} + 2k + 1 \) iteratively, we have

\[
h_0 = \sum_{k=0}^{n-1} (2k + 1) + h_n
\]

\[
= 2 \sum_{k=0}^{n-1} k + n + 0
\]

\[
= 2 \left(\frac{(n-1)n}{2} \right) + n = n^2.
\]
Probability of failure

Theorem

Algorithm 2SATRANDOM is parametrized by m, and the algorithm will perform up to mn^2 iterations of the loop. Then, when there is a satisfying assignment for ϕ, the probability that 2SATRANDOM does not discover one, is at most 2^{-m}.

Proof.

Markov’s Inequality.

\[\square\]
Reading and Doing

Reading

▶ This material is from Section 7.1 of [MU].
▶ Section 7.4 from the book is interesting (we were looking at a random walk on the line today).

Doing

▶ Exercises 7.3 and 7.7 from [MU].