Randomness and Computation

or, "Randomized Algorithms"

Mary Cryan

School of Informatics University of Edinburgh

RC (2019/20) – Lecture 14 – slide 1

Markov processes

- ▶ A *Markov process* is a r.v $\mathbf{X} = \{X(t) : t \in T\}$, usually $T = \mathbb{N}^{0}$.
- X(t) (sometimes written as X_t) is the state of the process at time t ∈ T, this is an element of some state set Ω, usually a discrete finite set, sometimes countably infinite.
- A Markov process with the *memoryless property* is one where X_{t+1} will depends on the previous state X_t, but on none of the previous states.

Markov chains

Definition (Definition 7.1)

A discrete-time stochastic process on the state space Ω is said to be a *Markov chain* if

 $\Pr[X_t = a_t \mid X_{t-1} = a_{t-1}, \dots, X_0 = a_0] = \Pr[X_t = a_t \mid X_{t-1} = a_{t-1}].$

We will often denote the Markov chain by the name *M*, and write $M[a_{t-1}, a_t]$ to denote the probability $Pr[X_t = a_t | X_{t-1} = a_{t-1}]$.

RC (2019/20) – Lecture 14 – slide 3

Markov chains

We can think about the *Markov chain M* in terms of a matrix of dimensions $|\Omega| \times |\Omega|$ (if Ω is finite) or of infinite dimension if Ω is countably infinite.

ſ		$M[a_1,a_2] \ M[a_2,a_2]$		$M[a_1, a_j]$ $M[a_2, a_j]$	
	:	:	:	:	:
	<i>M</i> [<i>a_j</i> , <i>a</i> ₁]	$M[a_j, a_2]$	•	$M[a_j, a_j]$	
	÷	÷	÷	÷	:

This is often called the *transition matrix* of the Markov chain.

। RC (2019/20) – Lecture 14 – slide 2

Transition matrix

This representation assumes that the *states* of the Markov chain have been put in 1-1 correspondance with \mathbb{N} . This is certainly possible (as we assume Ω is countably infinite at worst) but it's not *always* the case that this ordering is particularly *natural*. In many situations (especially when Ω is finite but exponentially sized), we'll avoid writing down the *transition matrix* at all - as an example, see the description of the contingency tables 2 × 2 chain later.

Note that for every $a \in \Omega$, we have $\sum_{b \in \Omega} M[a, b] = 1$ (*a*'s row sums to 1).

RC (2019/20) – Lecture 14 – slide 5

Iterations of the Markov chain

Suppose we start our Markov process with the initial state X(0) being some fixed $a \in \Omega$.

- The "next state" X(1) is distributed according to a's row of the transition matrix M (with probability M[a, b] of X(1) becoming b).
- ► If we define $\bar{p}(0)$ to be the row vector with $\bar{p}_a(0) = 1$ and all other entries 0, then we can define the probability distribution $\bar{p}(1)$ by

 $\bar{p}(1) = \bar{p}(0) \cdot M,$

and the probability that X(1) is *b* at the next step is $p_b(1)$ (which equals M[a, b]), for every $b \in \Omega$.

► The "next state" X(1) is a random variable, and its distribution is the vector p

(1) above (with values summing to 1).

RC (2019/20) – Lecture 14 – slide 6

Iterations of the Markov chain

▶ If we then carry out a second step of the Markov chain, the random variable X(2) will then be distributed according to $\bar{p}(2)$, where

$$\bar{p}(2) = \bar{p}(1) \cdot M = \bar{p}(0) \cdot M \cdot M = \bar{p}(0) \cdot M^2.$$

And so on ...

After *t* steps of the Markov chain *M*, the random variable X(t) will then be distributed according to $\bar{p}(t)$, where

$$\bar{\boldsymbol{p}}(t) = \bar{\boldsymbol{p}}(0) \cdot \boldsymbol{M}^t.$$

RC (2019/20) – Lecture 14 – slide 7

Example Markov chain

Let's look at a concrete example of a Markov chain on the *state set* $\Omega = \{0, 1, 2, 3\}$, with probabilities given by the following *transition matrix*:

RC (2019/20) – Lecture 14 – slide 8

Example Markov chain

- Notice that every row of the matrix sums to 1, as required.
- Not the case for the columns (and doesn't have to be).
- In the graph representation, the "states" are vertices and the "transitions" of the chain are directed edges (labelled with the appropriate probability).
- Consider running this Markov chain from $3 \in \Omega$. Then we set $\bar{p}(0) = (\begin{array}{ccc} 0 & 0 & 0 \end{array})$.
- Evaluating $\bar{p}(1) = \bar{p}(0) \cdot M$, we note it will be $(\begin{array}{cc} 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{array})$.
- Evaluating $\bar{p}(2) = \bar{p}(0) \cdot M^2$, we can compute it as $(\frac{1}{4}, \frac{1}{8}, \frac{23}{48}, \frac{7}{48})$.
- And so on ...
- We would expect these $\bar{p}(t)$ values to be different if we had started with a different initial state.

However, these alternate *t*-step distributions can be easily calculated/compared, if we have pre-computed M^t .

RC (2019/20) – Lecture 14 – slide 9

Markov chains for Randomized Algorithms

The graph (and transition matrix) on slide is just a "toy" example. In our world, we will want to exploit Markov chains to obtain randomized algorithms.

- In the 2SAT example of Section 7.1, [MU], we are concerned with assignments (functions) A of boolean values to the n logical variables (and which will achieve the max number of satisfied clauses).
- The transitions of the modified Markov chain for 2SAT (Y) are designed to model transitions back and forth between "better" and "worse" assignments.
- However, the states of the Markov chain (Y) are the natural numbers 0, 1, ..., n, with n being the number of variables. This is a fairly small state space.
- Next Tuesday we will prove that for a 2SAT instance which does have a satisfying assignment, the expected number of steps before the Markov chain finds one is at most n². This is expected "hitting time".

・ロト・日本・ 小田・ 山田・ 山口・

RC (2019/20) – *Lecture* 14 – *slide* 10

Markov chains for Sampling and Counting

Another application of Markov chains arises when we want to *randomly sample* (or *approximately count*) the number of combinatorial structures satisfying some constraint.

- In these cases the elements of the state space Ω are individual combinatorial structures themselves, and this space is often very large (potentially exponential in the size of the input).
- One example we can imagine is the set of *contingency tables* $\Sigma_{r,c}$ for given row sums $r = (r_1, \ldots, r_m)$ and column sums $c = (c_1, \ldots, c_n)$.
- With large state spaces of combinatorial elements, we don't explicitly "write down" the transition matrix of a Markov chain on the space - we just give (randomized) rules explaining how we move (randomly) from one element to another.
- We would then want to prove that the "2 × 2" Markov chain converges to the uniform distribution on Ω = Σ_{r,c}.

RC (2019/20) – Lecture 14 – slide 11

Markov chains for Sampling Contingency tables

We are given row sums $r = (r_1, ..., r_m)$ and $c = (c_1, ..., c_n)$. A *contingency table* is a table $X = [X_{i,j}]$ of non-negative integers of dimensions $m \times n$ that satisfies those row/column sums.

► The "2 × 2" Markov chain selects random rows $i, i' \in [m], i \neq i'$ and random columns $j, j' \in [n], j \neq j'$ at each step, calculates the mini-sums for the 2 × 2 table ... then chooses a uniform random *replacement* that "fits" these mini-sums.

RC (2019/20) – Lecture 14 – slide 12

Irreducibility, recurrence, aperiodicity

To analyse the behaviour (both temporary and long-term) of a Markov chain M on the state space Ω , we often work from the *graph representation* of Ms transitions.

Definition (Definition 7.2)

For $a, b \in \Omega$, we say that state *b* is accessible from state *a* if there is some $n \in \mathbb{N}$ such that $M^n[a, b] > 0$. If *a*, *b* are both accessible from one another, we say that they *communicate*, and write $a \leftrightarrow b$.

Definition (Definition 7.3)

A Markov chain *M* on the finite state space Ω is said to be *irreducible* if all states of Ω belong to the same communicating class. Or *equivalently*, if we can show that for every $X, Y \in \Omega$, there is some path $Z^0 = X, Z^1, \ldots, Z^{\ell} = Y$ of states from Ω connecting *X* and *Y*, such that $M[Z^j, Z^{j+1}] > 0$ for every $0 \le j \le \ell - 1$.

RC (2019/20) – Lecture 14 – slide 13

Irreducibility, recurrence, aperiodicity

Let's consider our example chain:

- \blacktriangleright {0, 1, 3} forms a maximal communicating class in the graph.
- {2} is an isolated communicating class we can reach 2 from {0, 1, 3}, but 2 has no outgoing transitions.
- Our example is not irreducible.

RC (2019/20) – Lecture 14 – slide 15

Irreducibility, recurrence, aperiodicity

The expected "time to travel" will be important for some analyses. For a pair of given states $Z, W \in \Omega$, we define this value as

$$h_{Z,W} =_{def} \sum_{t=0}^{\infty} t \cdot r_{Z,W}^t.$$

Definition (Definition 7.5)

A recurrent state Z of a Markov chain M is positive recurrent if $h_{Z,Z} < \infty$. Otherwise, it is null recurrent.

Lemma (Lemma 7.5)

In a Markov chain M on a finite state space Ω ,

- 1. At least one state is recurrent;
- 2. All recurrent states are positive recurrent.

RC (2019/20) – Lecture 14 – slide 16

RC (2019/20) – Lecture 14 – slide 14

Irreducibility, recurrence, aperiodicity

We define the concept of "recurrence" in terms of a parameter $r_{Z,W}^t$, where

 $r_{Z,W}^t =_{def} \Pr[X(t) = W \text{ and for all } 1 \le s \le t - 1, X(s) \ne W \mid X(0) = Z].$

Definition (Definition 7.4)

If *M* is a Markov chain and $Z \in \Omega$ a state of that chain, we say *Z* is *recurrent* if $\sum_{t=0}^{\infty} r_{Z,Z}^t = 1$, and it is *transient* if $\sum_{t=0}^{\infty} r_{Z,Z}^t < 1$. A Markov chain is recurrent if every state is recurrent. In our example, the only recurrent state is 2.

Irreducibility, recurrence, aperiodicity

Definition (Definition 7.6)

A state Z of a Markov chain M is *periodic* if there exists an integer $k \ge 2$ such that $\Pr[X(t+s) = Z \mid X(t) = Z]$ is non-zero *if and only if s* is divisible by k.

A discrete Markov chain is *periodic* is any of its states are periodic. Otherwise (all states aperiodic), we say that *M* is *aperiodic*.

Definition (Definition 7.7)

An aperiodic, positive recurrent state $Z \in \Omega$ of a Markov chain *M* is said to be an *ergodic* state. The Markov chain is said to be *ergodic* if *all* its states are ergodic.

Corollary (Corollary 7.6)

Any finite, irreducible and aperiodic Markov chain is an ergodic chain.

RC (2019/20) – Lecture 14 – slide 17

Ergodic Markov chains

Corollary (Corollary 7.6)

Any finite, irreducible and aperiodic Markov chain is an ergodic chain.

Proof.

By Lemma 7.5 every chain with a finite state space has *at least one* recurrent state.

If the chain is irreducible, then all states can be reached from one another (with positive probability), so *all states are hence recurrent*. By Lemma 7.5, this means all states are positive recurrent. Hence by Definition 7.7 (we have positive recurrence, irreducibility

and aperiodicity) the chain is ergodic. \Box

Take-away: For Markov chains over a *finite* state space, we only need to check *aperiodicity* and *irreducibility* (for all pairs of states) to show *ergodicity*.

Ergodic Markov chains

Why do we care about states/Markov chains being ergodic?

Because an ergodic Markov chain has a *unique stationary distribution*.

Definition (Definition 7.8)

A stationary distribution of a Markov chain M on Ω is a probability distribution $\bar{\pi}$ on Ω such that

 $\bar{\pi} = \bar{\pi} \cdot M.$

Stationary distributions are essentially "settling-down" distributions (in the limit). The "settling-down" is to a *distribution*, not a particular state.

RC (2019/20) – Lecture 14 – slide 19

Ergodic Markov chains

Theorem (Theorem 7.7)

Any finite, irreducible and aperiodic Markov chain has the following properties:

- 1. The chain has a unique stationary distribution $\bar{\pi} = (\pi_1, \dots, \pi_{|\Omega|})$.
- 2. For all $X, Y \in \Omega$, $\lim_{t\to\infty} M^t[X, Y]$ exists and is independent of X.

3.
$$\pi_Y = \lim_{t\to\infty} M^t[X, Y] = \frac{1}{h_{Y,Y}}$$
.

We are not going to prove Theorem 7.7 in this course.

We will later see some ways of *bounding the number of steps needed* for the chain to approach its stationary distribution.

Reading and Doing

Reading

You will want to read Sections 7.1, 7.2, and 7.3 from the book. I have used *M* (name of the Markov chain) to refer to the transition matrix, as opposed to the book's *P*.

Doing

Consider an example of contingency tables where we have r = (2, 2, 4), c = (2, 3, 3). Suppose that we take the following table as our starting state X:

Work out the subset of contingency tables which can be reached from X in *one transition* of the 2×2 Markov chain. Also work out the probability of each such transition.

► Tutorial sheet for week 11.

RC (2019/20) – Lecture 14 – slide 21