Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan
School of Informatics
University of Edinburgh

Examples of SAT, k-SAT
Example of a SAT question:
\[(x_1 \lor x_8 \lor \overline{x}_6) \land (\overline{x}_4 \lor \overline{x}_7) \land (x_5 \lor x_7 \lor x_4 \lor x_2).\]

▶ For the formula above, easy to see there is a (many) satisfying assignment(s) to the \(x_i\) variables (any with \(x_1 = 1, x_4 = 0, x_2 = 1\) would do, for example).

▶ In general, the SAT problem is NP-complete (we believe there is no polynomial-time algorithm).

Example of a 2-SAT question:
\[(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1).\]

▶ There is a polynomial-time algorithm (either randomized, as we see today, or deterministic) to solve 2-SAT.

▶ The 3-SAT problem, and k-SAT for all \(k > 3\), are all NP-complete.

2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse its performance by analogy to a Markov chain.

Algorithm 2SATRandom(\(n; C_1 \land C_2 \land \ldots \land C_t\))

1. Assign arbitrary values to each of the \(x_i\) variables.
2. \(t \leftarrow 0\)
3. while \((t < 2mn^2 \text{ and some clause is unsatisfied})\) do
 4. Choose an arbitrary \(C_h\) from all unsatisfied clauses;
 5. Choose one of the 2 literals in \(C_h\) uniformly at random and flip the value of its variable;
6. if (we end with a satisfying assignment) then
 7. return this assignment to the \(x_1, \ldots, x_n\) else
 8. return FAILED.

Note that arbitrary is very different from random.
2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with the initial assignment being \(x_i = 0 \) for all \(i \in [n] \).

\[
(x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor x_1).
\]

- Then \((x_1 \lor x_2) \) is the sole unsatisfied clause.
- Flipping the value of \(x_2 \) (say) from 0 to 1, will ensure that \((x_1 \lor x_2) \) now becomes satisfied.
- However, making this flip would also change the assignment for \((x_1 \lor x_2) \), making this clause now unsatisfied.
- This is a balanced consequence overall (number of satisfied clauses stays the same). Note that a similar scenario would arise had we instead flipped \(x_1 \) to satisfy \((x_1 \lor x_2) \) (we would have violated \((x_4 \lor \bar{x}_3) \) in that case).

However, there are examples where a flip might end up violating many clauses. So it’s not so helpful for us to use “number of clauses satisfied” as our measure of progress.

2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment \(S \in \{0, 1\}^n \) that makes our 2SAT formula \(\phi \) true (satisfies all the clauses).

Our “measure of progress” will be the number of indices \(k \) such that \(x_k = S_k \), \((x_1, \ldots, x_n) \) being the current assignment.

We will analyse the expected number of steps before \((x_1, \ldots, x_n) \) becomes \(S \).

- This of course assumes the formula \(\phi \) has some satisfying assignment.
- Note that if \(\phi \) does not have any satisfying assignment, Algorithm 2SATRANDOM always returns FAILED (as it should).

2-SAT Randomized Algorithm - Analysis

To analyse the behaviour of Algorithm 2SATRANDOM when given a 2CNF formula \(\phi \) that is satisfiable, we need some definitions.

Definition

For our given satisfiable 2SAT formula \(\phi \), let \(S \) be some satisfying assignment for \(\phi \).

Let \((x_1', \ldots, x_n') \) denote the assignment to the logical variables after the \(i \)th iteration of the loop at 3.

Let \(X_t \) denote the number of variables of the assignment \((x_1', \ldots, x_n') \) having the same value as in \(S \).

We work with the \(X_t \) variable mainly, and bound the time before it reaches the value \(n \).

Some observations:

- If \(X_t \) ever hits the 0, and \(\phi \) is unsatisfied, we are guaranteed that at the next step, \(X_{t+1} = 1 \).

\[
\Pr[X_{t+1} = 1 \mid ((X_t = 0) \& \phi \text{ unsat})] = 1.
\]

- Alternatively, suppose \(X_t = j \) for some value \(j \in [1, \ldots, n-1] \) and that \(\phi \) is unsatisfied.

Then on any of the individual unsatisfied clauses, we know the current assignment \(x' \) must differ from \(S \) on at least one of the two variables. Hence with probability at least \(1/2 \), we will increase the value of \(X_t \) by 1 (and with probability at most \(1/2 \) decrease the value of \(X_t \) by 1/2).

\[
\Pr[X_{t+1} = j + 1 \mid ((X_t = j) \& \phi \text{ unsat})] \geq 1/2; \quad \Pr[X_{t+1} = j - 1 \mid ((X_t = j) \& \phi \text{ unsat})] \leq 1/2.
\]

RC (2017/18) – Lecture 14 – slide 5

RC (2017/18) – Lecture 14 – slide 6

RC (2017/18) – Lecture 14 – slide 7

RC (2017/18) – Lecture 14 – slide 8
2-SAT Randomized Algorithm - Analysis

We want to imagine the progress of 2SAT RANDOM as a Markov chain on the states 0, 1, ..., n. Our concern is bounding the expected number of steps t for \(X_t \) to hit the state n (from an arbitrary starting point).

- Markov chains should be memoryless, and this is problematic.
- The value for \(\Pr[X_{t+1} = j + 1 \mid (X_t = j) \& \phi \text{ unsat}] \) can be 1/2 or 1 depending on how many variables of the chosen clause currently disagree with \(S \). This may have been affected by earlier flips done by the algorithm.
- We choose to “tweak” the probabilities and study the process on \(\{0, 1, 2, ..., n\} \) defined by the variable \(Y_t \) on the next slide.

For any \(j = 0, ..., n - 1 \), define \(h_j \) to be the expected number of steps to hit n starting from \(j \).

We have \(h_n = 0 \) and \(h_0 = h_1 + 1 \) for the “end cases”.

We will use \(Z_j \), for 0, 1, ..., \(n - 1 \), to be the random variable for the number of steps \(t \) for \(X_t \) to hit n. Our concern is bounding the expected number of steps for \(2\text{SAT RANDOM} \) to find a satisfying assignment is at most \(\max_j h_j \) (may well be better).

We will bound \(h_j \) for every \(j = 0, 1, ..., n \).

The Markov chain \(Y_t \)

Consider the Markov chain \(Y_0, Y_1, ..., Y_t, ... \) such that

\[
Y_0 = X_0; \\
\Pr[Y_{t+1} = 1 \mid (Y_t = 0) \& \phi \text{ unsat}] = 1; \\
\Pr[Y_{t+1} = j + 1 \mid (Y_t = j) \& \phi \text{ unsat}] = 1/2; \\
\Pr[Y_{t+1} = j - 1 \mid (Y_t = j) \& \phi \text{ unsat}] = 1/2.
\]

Clearly, the expected number of steps for \(X_t \) to hit n is \(\leq \) that for \(Y_t \).
2-SAT Randomized Algorithm - Analysis

We show by induction that for $j = 0, \ldots, n - 1$,

$$h_j = h_{j+1} + 2j + 1.$$

Proof.

Base case: If $j = 0$, $2j + 1 = 1$, and we were given $h_0 = h_1 + 1$.

Inductive step: Suppose this was true for $j = k - 1$ (we had $h_{k-1} = h_k + 2(k - 1) + 1$, this is our (IH)). Now consider $j = k$.

By the “middle case” of our system of equations,

$$h_k = \frac{h_{k-1} + h_{k+1}}{2} + 1$$

$$= \frac{h_k + 2(k - 1) + 1}{2} + \frac{h_{k+1}}{2} + 1 \quad \text{by our (IH)}$$

$$= \frac{h_k}{2} + \frac{h_{k+1}}{2} + \frac{2k + 1}{2}$$

Subtracting $\frac{h_k}{2}$ from each side, this is equivalent to

$$h_k = h_{k+1} + 2k + 1,$$

as claimed.

2-SAT Randomized Algorithm - Analysis

Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment, and that 2SATRANDOM is allowed to carry out as many iterations as it wants to find a satisfying assignment. Then the expected number of iterations of 3, to find that assignment at most n^2.

Proof.

We showed that the expected number of iterations is at most $\max_{j=0,\ldots,n-1}(h_j)$. We now know the max is h_0. Applying $h_k = h_{k+1} + 2k + 1$ iteratively, we have

$$h_0 = \sum_{k=0}^{n-1} (2k + 1) + h_n$$

$$= 2 \sum_{k=0}^{n-1} k + n + 0$$

$$= 2 \frac{(n-1)n}{2} + n = n^2.$$

Probability of failure

Theorem

Algorithm 2SATRANDOM is parametrized by m, and the algorithm will perform up to mn^2 iterations of the loop.

Then, when there is a satisfying assignment for ϕ, the probability that 2SATRANDOM does not discover one, is at most 2^{-m}.

Proof.

Markov’s Inequality.

Reading and Doing

Reading

▶ This material is from Section 7.1 of [MU].

▶ Section 7.4 from the book is interesting (we were looking at a random walk on the line today).

Doing

▶ Exercises 7.3 and 7.7 from [MU].