Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh
The Probabilistic Method

The Probabilistic Method is a nonconstructive method of proof, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a desired kind of mathematical object. It works by showing that if we randomly choose objects from a specified class, the probability that the result has the desired property is greater than zero. This is enough to tell us that there must be at least one object with the desired property in the class.

Note that although this approach uses probability, the result (that some object with the property exists) will be definite, not “in probability”.

Slightly different theme to the rest of the results in this course, as we are concerned with showing existence (rather than constructing the object). However, sometimes we can derandomize/construct.
Graphs and Colourings

A common concept in graph theory is the concept of a colouring of a graph. If we have \(k \) different colours, we usually identify them with the set \(\{1, \ldots, k\} \).

- We can consider the different ways of colouring the vertices of a graph \(G = (V,E) \) with those \(k \) colours.
 - A \textit{k-colouring} is any assignment \(c : V \rightarrow \{1, \ldots, k\} \) of colours to vertices (every \(v \in V \) gets some colour \(c(v) \)).
 - A \textit{proper k-colouring} is any \(c : V \rightarrow \{1, \ldots, k\} \) such that for every \(e = (u,v), e \in E \), we have \(c(u) \neq c(v) \).
 - For a given graph \(G = (V,E) \), it is often of interest to ask \textit{what is the minimum } \(k \text{ needed to properly colour } G \). For sure, we require \(k \leq \text{“max degree of } G +1\text{“} \).
 - Lots of research effort have gone into polynomial-time algorithms to approximate (exact is NP-hard) the minimum \(k \) for a given \(G \). \textbf{Not our concern today}

- Alternatively we can consider the different ways of colouring the edges of a graph \(G = (V,E) \).
Our example - Ramsay numbers

Our focus today is 2-colouring the **edges** of the complete graph K_n.

- K_n is the **complete graph** on n vertices (for every $i, j \in [n], i \neq j$, we have the edge (i,j)).

- We are interested in 2-colourings of K_n, every edge “blue” or “red”. (Clearly this cannot be a proper (edge) colouring if $n \geq 3$).

- Our concern is whether we can colour K_n with our two colours and make sure that we do not have any “all-blue” or “all-red” subgraph which is “too large”.

- The **“Ramsay number”** $R(k,k)$ is the smallest value for n such that in any **two-colouring** of the edges of K_n, there must **either** be a red K_k (“all-red” of size k) **or** a blue K_k (“all-blue” of size k).

The value of $R(k,k)$ increases with k.

class: What is $R(2,2)$? And $R(3,3)$ (board)?
Lower Bound on $R(k, k)$

We prove an *lower bound* on $R(k, k)$ for general k. This was first shown by Erdős in 1947.

Theorem (Theorem 6.1)

Consider $R(k, k)$ for some $k \geq 2$. For any n such that $\binom{n}{k}2^{1 - \binom{k}{2}} < 1$, we have $R(k, k) > n$.

Proof.

Write down the *expected* number of “all red”/“all blue” K_k subgraphs, when the edges of K_n are coloured uniformly at random by red/blue. For a particular K_k subgraph, probability of being *monochromatic* is $2 \cdot 2^{-\binom{k}{2}} = 2^{1 - \binom{k}{2}}$.

There are $\binom{n}{k}$ different K_k subgraphs to consider in K_n.

The *expected number of monochromatic subgraphs* of K_n is therefore

$$\binom{n}{k} \frac{2}{2^{\binom{k}{2}}}.$$
Lower Bound on $R(k, k)$

Theorem (Theorem 6.1)

Consider $R(k, k)$ for some $k \geq 2$. For any n such that $\binom{n}{k} 2^{1 - \binom{k}{2}} < 1$, we have $R(k, k) > n$.

Proof cont’d.

Now if $\binom{n}{k} \frac{2^{\binom{k}{2}}}{\binom{k}{2}} < 1$ (as per the conditions), this implies that the expected number of monochromatic K_k subgraphs is less than 1 when K_n’s edges are randomly two-coloured.

Hence there must be at least one two-colouring of K_n’s edges without any monochromatic K_k subgraph.

So the Ramsey number $R(k, k)$ is larger than any such n.

To be guaranteed a monochromatic K_k we need $\binom{n}{k} \geq 2^{\binom{k}{2} - 1}$
Lower Bound on $R(k, k)$

Corollary

If $k \geq 3$, then for $R(k, k) > \lfloor 2^{k/2} \rfloor$.

Proof.

Just algebraic manipulation.

Consider $\binom{n}{k} \cdot 2^{1-(\frac{k}{2})}$ for the given value of $n = \lfloor 2^{k/2} \rfloor$. This is

$$\frac{n \cdots (n-k+1)}{k!} \cdot 2^{1-(\frac{k}{2})}$$

$$< \frac{n^k}{k!} \cdot 2^{1-\frac{k(k-1)}{2}}$$

$$= \frac{n^k}{k!} \cdot 2^{1+\frac{k}{2}} 2^{-\frac{k \cdot k}{2}}$$

$$= \frac{n^k}{2^{\frac{k^2}{2}}} \cdot \frac{2^{1+\frac{k}{2}}}{k!}$$

$$= \left(\frac{n^k}{2^{\frac{k^2}{2}}}\right)^k \cdot \frac{2^{1+\frac{k}{2}}}{k!}$$

$$< 1 \cdot 1,$$

as required.
Making this method constructive ("derandomization")

In the proof of Theorem 6.1 about random edge-colourings of K_n and the presence of any monochromatic K_ks, we focused on the situation when we have $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$. However, we showed . . .

Corollary

*Let $k \geq 2$. Then for any complete graph K_n, the expected number of monochromatic K_k subgraphs in a uniform random 2-colouring of the edges of K_n is at most $\binom{n}{k} 2^{1-\binom{k}{2}}$.***

Corollary

*Let $k = 4$. Then for any complete graph K_n, the expected number of monochromatic K_4 subgraphs in a uniform random 2-colouring of the edges of K_n is at most $\binom{n}{4} 2^{-5}$.***

Remember the various K_k copies we consider are not necessarily disjoint, expectation is taken over all of them.
Making this method constructive ("derandomization")

Using the second Corollary on slide 8, if the expectation is at most \(\binom{n}{4} 2^{-5} \) (over all random 2-colourings), then there is some specific 2-colouring of \(K_n \) that has \(\leq \binom{n}{4} 2^{-5} \) monochromatic \(K_k \) copies.

We can construct a specific 2-colouring to satisfy this using the method of conditional expectation (and "deferred decisions").

The idea:

- Let \(f \) be a specific edge of \(K_n \).
- A random 2-colouring has probability \(\frac{1}{2} \) of setting \(d \) blue, and probability \(\frac{1}{2} \) of setting \(e \) red.
- The colours of all the other edges are set uniformly and independently with probability \(\frac{1}{2} \).
- Hence, for at least one of the events \(c(f) = \text{red} \), \(c(f) = \text{blue} \), the (conditional) number of expected monochromatic \(K_k \) is \(\leq \binom{n}{4} 2^{-5} \).
- Find a way of determining this colour for \(f \), and iterate.
Making this method constructive ("derandomization")

Theorem

For every integer n, we can construct a specific 2-colouring of K_n such that the expected number of monochromatic K_4 subgraphs is at most $\left(\binom{n}{4}\right)2^{-5}$.

Proof.

To help with the construction, we define a *weight function* w on copies of K_4 which will allow us to measure the expected "value" of colouring particular edges blue or red.

Suppose we are part-way through the construction, and some (but not all) edges have their colour fixed.

- We have some partial colouring $c : F \rightarrow \{\text{blue, red}\}$, where $F \subseteq E(K_n)$.

- We maintain the invariant that the expected number of monochromatic K_k copies, taken over the remaining random 2-colourings for the edges in $E(K_n) \setminus F$, is $\leq \left(\binom{n}{4}\right)2^{-5}$.
Making this method *constructive* ("derandomization")

Theorem

*For every integer n, we can construct a specific 2-colouring of K_n such that the expected number of monochromatic K_4 subgraphs is at most $\binom{n}{4}2^{-5}$.***

Proof cont’d.

The weight function w assigns a non-negative value to every subgraph K which is a copy of K_4 in K_n. Let $c(K)$ be the set of colours already seen on edges of K, at this stage of the partial colouring. Define

$$w(K) = \begin{cases}
0 & \text{if } c(K) = \{\text{blue, red}\}. \\
2^{-5} & \text{if } c(K) = \emptyset \text{ (all edges uncoloured).} \\
2r^{-6} & \text{if } |c(K)| = 1, \text{ and } r \text{ of } K'\text{’s edges have this colour}
\end{cases}$$

The *total weight* of the partially coloured K_n is

$$W_F = \sum_{\text{K a } K_4 \text{ copy in } K_n} w(K).$$
Making this method constructive ("derandomization")

Theorem
For every integer n, we can construct a specific 2-colouring of K_n such that the expected number of monochromatic K_4 subgraphs is at most $\binom{n}{4}2^{-5}$.

Proof cont’d.
Note $w(K)$ is the probability of that particular K becoming a monochromatic copy of K_4 in a uniform random 2-colouring of the edges $E(K_n) \setminus F$.

The expected number of monochromatic K_4 copies in a uniform random 2-colouring of the so-far uncoloured edges, is therefore equal to W_F.

To build our “good" 2-colouring, we start with a fixed ordering $e_1, \ldots, e_{n(n-1)/2}$ of the edges of K_n. W_\emptyset is $\binom{n}{4}2^{-5}$.
Making this method constructive ("derandomization")

Proof.

The Algorithm:

1. for $i \leftarrow 1$ to $n(n - 1)/2$ do

 (F is e_1, \ldots, e_{i-1}, and these edges are coloured)

2. Calculate W_{red}, the effect on W_F of colouring e_i red.

3. Calculate W_{blue}, the effect on W_F of colouring e_i blue.

4. if $W_{\text{red}} < W_{\text{blue}}$ then Set $c(e_i) = \text{red}$, $W \leftarrow W_{\text{red}}$.

5. else Set $c(e_i) = \text{blue}$, $W \leftarrow W_{\text{blue}}$.

6. else Set $F \leftarrow F \cup \{e_i\}$.

- Note that the value of W_F never increases through the iteration of this process. Hence we end up with a colouring c which has fewer than $W_0 = \binom{n}{4}2^{-5}$ monochromatic K_4s.

- e_i can belong to at most n^2 K_4s in K, so the W_{red}, W_{blue} values can be calculated in $\Theta(n^2)$ time.
The theorem on slides 10-13 can be considered to be a “derandomization” of the result on expected number of monochromatic K_4s in K_n.

- We were able to use conditional expectation to construct a specific colouring with less than or equal to the expected number of monochromatics.
- Our algorithm was in fact polynomial-time (about n^2 iterations, each doing $\Theta(n^2)$ work, so roughly $\Theta(n^4)$).

- We can use the method of conditional probabilities to derandomize algorithms like Karger’s MIN-CUT algorithm from lectures 3-4.
Reading and Doing

Reading

▶ You will want to read Sections 6.1, 6.2, 6.3 from the book.
▶ Sections 6.4 and 6.5 also worth reading, though not required.
▶ The Theorem on derandomizing monochromatic K_4 is not in the book.

Doing

▶ Write down the details of how to derandomize Karger’s MIN-CUT algorithm so it always (deterministically) returns a cut of value $\leq \frac{|E|}{2}$. Some similarity to what’s in Section 6.2 (but “min" for us).
▶ Exercise 6.8 from the book (you’ll need Section 6.4).