
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2019/20) – Lecture 13 – slide 1

The Lovász Local lemma
In our work so far on the probabilistic method, we have often been
concerned with avoiding “bad events”, our goal to prove existence of
some structure that manages to avoid all the bad events.

Life (“life” meaning the proof of these results) would be easier if we
were dealing with collections of bad events which were independent.

Recall that the collection of events E1, . . . ,EN are mutually
independent if for every {Fi : 1 ≤ i ≤ N} such that Fi is either Ei or Ei ,

Pr[∩N
i=1Fi] =

N∏

i=1

Pr[Fi].

With mutual independence, we would only need the condition
Ei ∈ (0,1) for all i to guarantee a structure without any bad events.

Unfortunately usually (monochromatic Kk , 4-cliques in Gn,p) we have
to deal with situations where the bad events may be dependent (eg
two vertex subsets f , f ′ each of size 4, may intersect).

RC (2019/20) – Lecture 13 – slide 2

The Lovász Local lemma

Definition (6.1)
A dependency graph for a set of events E1, . . . ,EN is a graph
G = (V ,E) such that V = {1, . . . ,N} and for each i = 1, . . . ,N, the
event i is mutually independent with the events {Ej | (i , j) /∈ E}. The
degree of the dependency graph is the max degree vertex of G.

Theorem (6.11, Lovász Local Lemma)
Let E1, . . . ,EN be a set of events and assume we
know p ∈ (0,1),d ∈ N such that all the following conditions hold:

1. For all i , Pr[Ei] ≤ p;

2. The degree of the dependency graph on {E1, . . . ,EN } is ≤ d;

3. 4dp ≤ 1

Then
Pr
[
∩N

i=1Ei
]
> 0.

RC (2019/20) – Lecture 13 – slide 3

Proof of Lovász Local Lemma
The proof depends on showing the following claim by induction:

For s = 0,1, . . . ,n − 1, if |S| ≤ s, Pr[
⋂

j∈S Ēj] > 0, and for
every k ∈ [n] \ S,

Pr[Ek |
⋂

j∈S

Ēj] ≤ 2p.

After the claim is shown, it is not hard to obtain our result as follows:

Pr

n⋃

j=1

Ēj

 =

n∏

i=1

Pr

Ēi |

i−1⋂

j=1

Ēj

=

n∏

i=1

1 − Pr

Ei |

i−1⋂

j=1

Ēj

=

n∏

i=1

(1 − 2p) > 0.

The last step uses the fact that 4dp ≤ 1 (hence certainly 2p < 1).
RC (2019/20) – Lecture 13 – slide 4

LLL: proof of Key Claim

Claim: Under the conditions of the LLL, if we take any
s = 0, . . . ,n − 1, and any S ⊆ [n], |S| = s, then for any k /∈ S we have

Pr

Ek |

⋂

j∈S

Ēj

 ≤ 2p.

Base case (s = 0): Follows from assumption that Pr[Ej] ≤ p for all j .

Induction step: Assume true for 0,1, . . . , s − 1. Next show for s.

First need to show Pr[
⋂

j∈S Ēj] is > 0 (to be able to evaluate
conditional expectation).
If s = 1 follows from assumptions (Pr[Ēj] > 1 − p).
For s > 1, then we can use claim for (s − 1), . . . ,0 to show
Pr[
⋂

j∈S Ēj] ≥ (1 − 2p)s > 0.

RC (2019/20) – Lecture 13 – slide 5

LLL: proof of Key Claim (cont’d.)

Induction step (cont’d): We want to show Pr
[
Ek |

⋂
j∈S Ēj

]
≤ 2p.

Consider Ek ’s node in the dependency graph, and let
S1 = {j ∈ S : Ej is a neighbour of Ek }, S2 = S \ S1.

If S2 = S, then Ek is mutually independent of all events in S. Done!
Else |S2| < s, and there are some mutually dependent events (those
in S1) with Ek in the “conditional".
We re-write the conditional

⋂
j∈S Ēj as FS1 ∩ FS2 , with

FS1 =def

⋂

j∈S1

Ēj FS1 =def

⋂

j∈S1

Ēj

RC (2019/20) – Lecture 13 – slide 6

LLL: proof of Key Claim (cont’d.)

Induction step (cont’d): (|S2| < s case) Our target quantity
Pr
[
Ek |

⋂
j∈S Ēj

]
is equal to

Pr[Ek | FS1 ∩ FS2] =
Pr[Ek ∩ FS1 ∩ FS2]

Pr[FS1 ∩ FS2]
.

We can use a trick to re-write top/bottom as

Pr[Ek ∩ FS1 ∩ FS2] = Pr[Ek ∩ FS1 | FS2] · Pr[FS2]

Pr[FS1 ∩ FS2] = Pr[FS1 | FS2] · Pr[FS2]

We can cancel the common factor (well-defined - see end slide 5).

We will then argue about Pr[Ek ∩ FS1 | FS2] (“top") and Pr[FS1 | FS2]
(“bottom") separately.

RC (2019/20) – Lecture 13 – slide 7

LLL: proof of Key Claim (cont’d.)
Induction step (cont’d): (|S2| < s case) We have re-written our target
quantity as

Pr[Ek ∩ FS1 | FS2]

Pr[FS1 | FS2]
.

“top": For sure, we have Pr[Ek ∩ FS1 | FS2] ≤ Pr[Ek | FS2].
But Ek is mutually independent of all of FS2 events (by definition
of S2). Hence Pr[Ek | FS2] = Pr[Ek], which by assumption is < p.

“bottom": We have Pr[FS1 | FS2] where |S2| < s. So . . . can use our
I.H. with any individual events of FS1 .

Pr[FS1 | FS2] = Pr

⋂

i∈S1

Ēi |
⋂

j∈S2

Ēj

≥ 1 −
∑

i∈S1

Pr

Ei |

⋂

j∈S2

Ēj

RC (2019/20) – Lecture 13 – slide 8

LLL: proof of Key Claim (cont’d.)

Induction step (cont’d): (|S2| < s case) We have re-written our target
quantity as

Pr[Ek ∩ FS1 | FS2]

Pr[FS1 | FS2]
≤ p

Pr [FS1 | FS2]
.

“top": For sure, we have Pr[Ek ∩ FS1 | FS2] ≤ Pr[Ek | FS2].
We have shown

Pr[FS1 | FS2] ≥ 1 −
∑

i∈S1

Pr

Ei |

⋂

j∈S2

Ēj

Now (because |S2| < s, and fits our I.H.), we have that
Pr
[
Ei |

⋂
j∈S2

Ēj

]
≤ 2p for all i ∈ S1.

We also know that S1 (items dependent with Ek) has ≤ d items.
Hence we have Pr[FS1 | FS2] ≥ 1 − 2p · d , which is ≥ 1

2 .

RC (2019/20) – Lecture 13 – slide 9

LLL: proof of Key Claim (wrapping-up.)

Induction step (cont’d): (|S2| < s case) We have re-written our target
quantity as

Pr[Ek ∩ FS1 | FS2]

Pr[FS1 | FS2]
≤ p

Pr [FS1 | FS2]
.

We now have Pr [FS1 | FS2] ≥ 1
2 .

Hence we get
Pr[Ek ∩ FS1 | FS2]

Pr[FS1 | FS2]
≤ p

1
2

= 2p,

as required.

We had already proved that this “claim" gives us the LLL.

RC (2019/20) – Lecture 13 – slide 10

SAT and k -SAT (standard probabilistic method)

Recall that in propositional logic, a Boolean variable xi can take on 0
or 1 values, a literal is either xi or xi , and for the set of
variables {xi | 1 ≤ j ≤ n} a SAT problem is any conjunction (AND) of a
set of clauses, each individual clause being a disjunction (OR) of
literals. For example,

{x4, x7, x8}, {x1, x3, x5}, {x1, x2, x6}, {x3, x8, x4}

is an instance of SAT. Since all clauses are of length 3, the one above
is also an instance of 3-SAT.

Suppose we have m clauses, with ki literals in the i th clause,
1 ≤ i ≤ m. Then on a uniform random assignment of boolean values
to the n variables, the probability clause i is satisfied is (1 − 2−ki).
(2ki is the probability we would set all ki literals of this clause to be
false.)

RC (2019/20) – Lecture 13 – slide 11

SAT and k -SAT (standard probabilistic method)

Suppose we have m clauses, with ki literals in the i th clause,
1 ≤ i ≤ m. Then on a uniform random assignment of boolean values
to the n variables, the expected number of satisfied clauses is∑m

i=1(1 − 2−ki).

I This is at least m · (1 − 2−k), where k = minm
i=1 ki .

I If the instance is k -SAT (all clauses length k), the expected
number of satisfied clauses is exactly this.

I Hence (by probabilistic method) there is at least one assignment
to {x1, . . . , xn} with at least

∑m
i=1(1 − 2−ki) satisfied clauses.

I Can’t get any condition guaranteeing “satisfiability" (all m
clauses) even for k -SAT as m · (1 − 2−k) is strictly less than m.
Would need to do a different kind of analysis.

RC (2019/20) – Lecture 13 – slide 12

k -SAT with Lovász Local Lemma
Now consider the “bad events" Ei to be the event where clause i
becomes unsatisfied, and consider the dependency graph.

Theorem (6.13)
If we have a k-SAT formula where no variable appears in more than
T = 2k

4k clauses, then that formula has some satisfying assignment.

Proof We assume a uniform random assignment to all the xj and
let Ei be the event that all the k variables get the “wrong" assignment.
Pr[Ei] ≤ 2−k for all i .

The event Ei is mutually dependent of any Ei ′ such that clause i ′

shares no logical variables with clause i . For each of the variables in
clause i , they may appear in T = 2k

4k clauses, so taking all k variables,
there are at most k · T = 2k

4 clauses which share some variable(s)
with clause i . So d ≤ 2k

4 .

Then 4dp ≤ 4 · 2k

4 · 2−k = 1, and the LLL implies there is some
assignment where none of the bad events occur (ie, all clauses are
satisfiable).

RC (2019/20) – Lecture 13 – slide 13

LLL: can we de-randomize?

The only negative aspect of using LLL is that we don’t get an explicit
randomized process linked to the existence result. So we don’t have
a handle on how we might go about finding such a object.

There are ways to convert a LLL result into an explicit construction,
but usually you need a lower dependency value.

We won’t cover this (see Sections 6.8, 6.10 of the book)

RC (2019/20) – Lecture 13 – slide 14

Notes

Reading

I Section 6.6 of the book presents the “Conditional Expectation
Inequality" and shows how to shorten the proof of the “no clique
with 4 vertices" half of Theorem 6.8 - ie, 6.8(b) of Lecture 12.

I Section 6.7 from the book deals with the Lovasz Local Lemma.

Doing

I Coursework 2 is due 24th March at 4pm (GMT).

I The final tutorial sheet will be shipped soon, tutorials will take
place in week 11 (Tues 31st March, Wed 1st April).

RC (2019/20) – Lecture 13 – slide 15

