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new topic: The Probabilistic Method cont’d.
In Lecture 11 (continuing today) we saw the application of the
Probabilistic Method:

I To allow us to set bounds on certain parameters that will ensure
a randomly-drawn combinatorial object (from whatever pool of
possible objects we are focusing on) has some desirable
property with probability > 0.
(our example property was that the edge 2-colouring of Kn graph
would be without any monochromatic Kk subgraphs, assuming n
is large enough wrt a lower bound)

I The “probabilistic method” then allows us to infer that at
least one of the combinatorial objects (from our pool) must
have the desired property.

I Sometimes we can also derandomize this existence proof and
actually construct an object satisfying the desired property.
(need to have a de-composable (wrt deferred decisions) for
drawing the random object, then apply conditional probabilities)
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The Probabilistic Method cont’d.

Previous slide refers to “having some desirable property with
probability > 0”.

In practice, often the approach will be to evaluate with an expectation
rather than a probability.

Many of the examples of the probabilistic method we meet in RC
involve showing that we can construct a combinatorial object (from
some pool) that avoids having some banned sub-structure.

I We can consider the expected number of the banned
substructures, when we draw an object from the sample pool;

I Sometimes it will be possible to evaluate the expected number of
banned-substructures. If this is < 1, then the probability that
there are some combinatorial objects that avoid all
banned-substructures is > 0.
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Second Moment Method

Examples of the probabilistic method so far only worked with
expectation. If we had E[·] < 1 for the number of banned
sub-structures, we knew there must be some object that has none of
the banned sub-structures at all.

However, if we have E[·] > 1, things are less clear. There are
definitely objects containing the banned sub-structures, but how likely
they are is not clear.

Early on in the course we gave the definition of the second moment of
a discrete random variable X , this being E[X 2]. Then variance is
E[X 2] − E[X ]2.

The second moment (with Chebyshev) can help us show that a
typical sample is likely to have X close to E[X ].
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Second Moment Method
Theorem (Theorem 6.7)
For any integer-valued random variable X with positive expectation,
we have

Pr[X = 0] ≤ Var[X ]

(E[X ])2 .

Proof.
Really just a special case of Chebyshev’s Inequality. We are
interested in Pr[X = 0], which is equal to Pr[E[X ] − X = E[X ]]. Also,

Pr[E[X ] − X = E[X ]] ≤ Pr[E[X ] − X ≥ E[X ]] ≤ Pr[|E[X ] − X | ≥ E[X ]].

Then this final Pr[·] fits the form for Chebyshev’s Inequality with
a = E[X ], so applying Chebyshev gives us

Pr[|E[X ] − X | ≥ E[X ]] ≤ Var[X ]

(E[X ])2)
,

and this right-hand side also bounds Pr[X = 0].
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Threshold for 4-cliques in Gn,p

We are interested in the random model Gn,p, where we draw a
random graph on n vertices by independently doing a Bernoulli trial
for each potential edge (u, v),u ∈ V , v ∈ V \ {u}, adding the edge
with probability p, omitting that edge if the trial returns 0.

We are interested in whether the drawn graph G← Gn,p contains a
4-clique or not.

Clearly the graph is more likely to have a 4-clique if p has a higher
value (and G← Gn,p is likely to have more edges).

We will show that there is a threshold for “G← Gn,p having a
4-clique” when p is either side of Θ(n−2/3).
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Threshold for 4-cliques in Gn,p

Random model Gn,p, interested in whether G← Gn,p contains a
4-clique.

Theorem (6.8(a))
Suppose we have some probability sequence p = p(n) such that
p(n) = o(n−2/3).
Then for any ε > 0, for sufficiently large n, the graph G← Gn,p will
contain a 4-clique with probability less than ε.

Proof. Recall that p = p(n),p(n) = o(n−2/3) means that for every
δ > 0, there is some nδ ∈ N such that p(n) < δ · n−2/3 for all n ≥ nδ.

Let X denote the number of 4-cliques in G← Gn,p.

Then E[X ] = E[
∑

f⊆[n],|f |=4 Xf ], where Xf = 1 if those 4 vertices form a
clique, 0 otherwise.

Linearity of exp. gives E[X ] =
∑

f⊆[n],|f |=4 E[Xf ].
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Threshold for 4-cliques in Gn,p

Proof of 6.8 (a) cont’d.
Now we compute E[Xf ] for a specific subset f = {u, v ,w , x}.

These 4 vertices form a clique⇔ all 6 edges are in G← Gn,p. This
happens with probability p6.

This value of E[Xf ] is independent of the particular f , and there are
exactly

(n
4

)
subsets satisfying f ⊆ [n], |f | = 4. Hence

E[X ] =
(n

4

)
p6 = n(n−1)(n−2)(n−3)

24 · p6.

Now consider δ = (24ε)1/6 in the definition of o(n−2/3); then for
n ≥ nδ we have p ≤ δ · n−2/3, then p6 ≤ 24ε(n−2/3)6 = 24εn−4. Then
E[X ] ≤ n(n−1)(n−2)(n−3)

24 · p6 < ε.

Certainly Pr[X ≥ 1] ≤ E[X ] ≤ ε, as claimed.
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Threshold for 4-cliques in Gn,p

Theorem (6.8(b))
Suppose we have some probability sequence p = p(n) such that
p(n) = ω(n−2/3).
Then for any ε > 0, for sufficiently large n the graph G← Gn,p will
contain a 4-clique with probability greater than 1 − ε.

Proof. Recall that p = p(n),p(n) = ω(n−2/3) means that for every
δ > 0, there is some nδ ∈ N such that p = p(n) > δ · n−2/3 for all
n ≥ nδ.

Let X denote the number of 4-cliques in G← Gn,p.

We know that E[X ] =
(n

4

)
p6 and by a similar argument to before, if

n > nδ of ω(n−2/3) then E[X ] =
(n

4

)
· p6 = ω(1)→∞ as n→∞.

This means E[X ]; however, it doesn’t imply a lower bound for
Pr[X > 0]; need to examine the second moment.
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Threshold for 4-cliques in Gn,p

Proof of 6.8(b) cont’d.
We want to calculate Var[X ], however, not all the Xf variables are
independent, so can’t apply Var[X ] =

∑
f⊆[n],|f |=4 Var[Xf ].

We can apply the result from our early lectures to rewrite:

Var[X ] ≤ E[X ] +
∑

f⊆[n],|f |=4


 ∑

g⊆[n],g 6=f ,|g|=4

Cov[Xf Xg ]


 .

case (a): |f ∩ g| ≤ 1:
In this case f and g share no edges at all; and E[Xf Xg ] is E[Xf ]E[Xg ],
hence Cov[Xf Xg ] = 0. Most likely case, there are(n

4

)(n−4
4

)
+ n ·

(n−1
3

)(n−4
3

)
pairs like this. But their contribution to the

“double sum” is 0, we can ignore.

case (b): |f ∩ g| = 2:
Then f and g share one edge, and E[Xf Xg ] = p11, and hence
Cov[Xf Xg ] = p11 − (p6)2 ≤ p11. There are

(n
2

)(n−2
2

)(n−4
2

)
pairs like this.
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Threshold for 4-cliques in Gn,p

Proof of 6.8(b) cont’d.
case (c): |f ∩ g| = 3:
Then f and g share three edges, and E[Xf Xg ] = p3 · (p3)2 = p9.
Hence Cov[Xf Xg ] ≤ p9. There are

(n
3

)
(n − 3)(n − 4) pairs like this.

Putting it all together . . .
∑

f⊆[n],|f |=4

∑

g⊆[n],g 6=f ,|g|=4

E[Xf Xg ] ≤
(n

3

)(n−3
1

)(n−4
1

)
p9 +

(n
2

)(n−2
2

)(n−4
2

)
p11

= O(n4) · p6 + O(n5) · p9 + O(n6) · p11

Note that given p = ω(n−2/3), both of these terms is “little-o" of
(E[X ])2 = Θ(p12 · n8).
Also adding E[X ] = p6

(n
4

)
to the “double sum”, this is also “little-o" of

Θ(p12 · n8); hence Var[X ] is o(p12 · n8), and applying Chebyshev we
find that

Pr[X = 0] ≤ o(p12 · n8)

Θ(p12 · n8)
,

which tends to 0 as n→∞.
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Notes

Reading

I You will want to read Sections 6.4, 6.5, 6.6, 6.7 from the book.

Doing

I Tutorial sheet for 5th, 6th March (week 7).

I You will be getting the coursework 2 specification next week.
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