
Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan

School of Informatics
University of Edinburgh

RC (2016/17) – Lectures 11 and 12 – slide 1

Hamiltonian cycles

Definition
Given an undirected graph G = (V ,E) with V = [n], an Hamiltonian
circuit (HC) of G is a permutation π of the vertex set [n] such that for
every i ∈ [n], we have (vπ(i), vπ(i+1)) ∈ E (with n + 1 identified with 1).

I A particular graph G may have many HCs, or in some cases
(more likely for a sparse graph) no HC.

I Similar definition holds for a directed graph (we require
(vπ(i) → vπ(i+1)) for every i ∈ [n]).

I The problem of deciding whether a given graph contains a HC is
NP-complete (also NP-complete for directed graphs). So we
don’t expect there is a deterministic polynomial-time algorithm to
find a HC in an arbitrary graph (or to decide whether there is
one).

RC (2016/17) – Lectures 11 and 12 – slide 2

Examples of Hamiltonian Circuits (or not)

No HC (more than one) HC

Intuitively HCs are more likely in denser graphs

RC (2016/17) – Lectures 11 and 12 – slide 3

Random Graphs - Erdős-Rényi model Gn,p

n vertices.

Some fixed probability p.

For every i ∈ [n], every j ∈ [n] \ {i}

I We flip a coin with biased probability p, add (i , j) to E if the flip is
successful, don’t add it otherwise.

All the (i , j) trials are identical (probability p) and independently
distributed.

En,p[|E |] =
∑

i,j∈[n],i 6=j Pr[(i , j) ∈ E] =
n(n−1)

2 p.

Expected degree of any vertex i is (n − 1)p.

Can use deferred decisions to analyse algorithms/structures on Gn,p.

RC (2016/17) – Lectures 11 and 12 – slide 4

Hamilton cycles in Erdős-Rényi graphs
Theorem (Komlós and Szemerédi (1983))
Suppose we generate G according to Gn,p. Then the existence of a
HC in G is characterised by the value of p in relation to n:

Pr
n,p

[G has a HC] →


0 if pn − ln(n) − ln ln(n)→ −∞
1 if pn − ln(n) − ln ln(n)→ +∞

e−e−c
if pn − ln(n) − ln ln(n)→ c

(in the final case, c being any constant)

I These are all with high probability results, holding with
probability 1 − o(1) (tending to 1 as n→∞).

I This kind of result is described as a sharp threshold.

I There is a polynomial-time algorithm to find the HC in the middle
case (Bollobás, Fenner and Frieze, 1985).

I We will not prove Komlós &Szemerédi’s result, we will show
how to find a HC for p ≥ 40 ln(n)

n (easier).

RC (2016/17) – Lectures 11 and 12 – slide 5

Hamilton cycles in Erdős-Rényi graphs - Extend or
Rotate

Given a graph G = (V ,E) generated according to Gn,p.

Algorithm maintains a current path P of the form v1, . . . , vk , the
current head (hd) is vk .

Intuitively, the algorithm tries to randomly choose an extension edge
(adjacent to the head) which adds a new vertex to the path (if not, we
then “Rotate”).

Three operations are used to “grow" a path (from a starting vertex):

I “Reverse”

I “Rotate”

I “Extend”

UnUsed(v) contains the Adjacent edges to v which have not been
used to extend from v (originally all adjacent edges).
Assume UnUsed(v) is randomly shuffled for each v .

RC (2016/17) – Lectures 11 and 12 – slide 6

Hamilton cycles in Erdős-Rényi graphs - Extend

Algorithm maintains a current path P of the form v1, . . . , vk , the
current head (hd) is vk .

The algorithm chooses the “next” extension edge from UnUsed(vk)
(adjacent to the head), hoping this will add a new vertex to the path.

..............

P

yvkv1 v2 v3

(vk , y) in G, and y not in P => "extend"

Ideal case. Note that (vk , y) is a uniform random choice from Adj(vk),
as the edges were shuffled at the start.

RC (2016/17) – Lectures 11 and 12 – slide 7

Hamilton cycles in Erdős-Rényi graphs - Rotate
Sometimes the randomly chosen extension “loops back” onto P (less
ideal). We don’t iterate through other vk neighbours, we “Rotate”.

..............

P

(vk , y) in G, but y already in P => "rotate"

v2v1 v3 vi vi+1 vk

y

..............

vkv1 v2 v3 vi vi+1

P
y

Add (vk , vi), delete (vi , vi+1), vi+1 is the new "hd"

RC (2016/17) – Lectures 11 and 12 – slide 8

“Reverse, Extend or Rotate” (Algorithm 5.2)

Algorithm REVERSEEXTENDROTATE(G = (V ,E))

1. for v ∈ V do
2. Used(v)← {},UnUsed(v)← {(v ,u) : u ∈ AdjG(v)}.
3. Initialise P with a uniform random vertex, initialise hd also.

// Throughout P is some v1 . . . vk (distinct vertices), hd is vk //
4. while (P is not a HC and UnUsed(hd) 6= {}) do
5. With prob. 1

n , “Reverse” P (and reset hd ← v1)

6. With prob. |Used(vk)|
n , choose (vk , vi) ∈uar Used(hd),

and “Rotate” (and reset hd ← vi+1).

7. With prob. 1 −
(1+|Used(vk)|)

n , take the first edge (vk , y)

from UnUsed(hd), and “Extend” or “Rotate” (depends on y).
Move (vk , y) from UnUsed(vk) to Used(vk).
Update hd to either y (Extend) or vi+1 (Rotate).

8. Check whether P is a HC and return P or “no".

RC (2016/17) – Lectures 11 and 12 – slide 9

Analysing Algorithm 5.2

I Overall, the key operation for building the HC is “Extend”.
“Rotate” and “Reverse” are helper operations which help the
analysis go through (well, “Rotate” also helps us get unstuck).

I Asking quite a lot to get a full HC on a “run” where we
more-or-less just add random edges to extend P. So we’ll need
to run the loop for a super-linear number of steps (Ω(n ln(n)),
see Theorem 5.16, Corollary 5.17).

I Assume for Lemma 5.15, Thm 5.16 that UnUsed(v) is randomly
generated by adding every possible (u, v) with probability q, in
random order (can use “deferred decisions” in analysis).

I All the UnUsed(·) sets are assumed to be independent for
proving Lemma 5.15 and Theorem 5.16 (not strictly true,
fixed in Cor 5.17). Means to an end . . .

RC (2016/17) – Lectures 11 and 12 – slide 10

Lemma 5.15

Lemma (Lemma 5.15)
Supposed we run Algorithm REVERSEEXTENDROTATE on G = (V ,E)
with the UnUsed(v) sets generated independently with probability q
for each possible neighbour, and random orders. Let Vt be the “hd”
vertex after t steps. Then, as long as UnUsed(Vt) 6= {}, for any u ∈ V,

Pr[Vt+1 = u | Vt = ut , . . . ,V0 = u0] =
1
n
.

Proof.
Identical to book.
Easy for v1, and for any of the P-vertices vi+1 such that
vi ∈ Used(hd).
For other u vertices (on P or otherwise), we use the principle of
deferred decisions, plus the assumptions on slide 10.

RC (2016/17) – Lectures 11 and 12 – slide 11

Theorem 5.16

Theorem (Theorem 5.16)
Supposed we run Algorithm REVERSEEXTENDROTATE on G with the
UnUsed(v) sets generated independently with probability q ≥ 20 ln(n)

n
for each possible neighbour, and random orderings. Then the
algorithm finds a HC after O(n ln(n)) iterations of the loop at 4., with
probability 1 − O(n−1).
Proof Failure after 3n ln(n) iterations means that either

E1: We did 3n ln(n) iterations without constructing a HC,
with all UnUsed(hd) sets staying non-empty, or;

E2: At least one of the UnUsed(hd) lists became empty
during the 3n ln(n) iterations.

To bound Pr[E1], we want the prob. of not finding a HC, when at each
step, the next “hd” is uniform from V (guaranteed by Lemma 5.15).

This is the “coupon collector" problem (must hit all n vertices).

RC (2016/17) – Lectures 11 and 12 – slide 12

Theorem 5.16 cont’d.
Proof cont’d. For event E1, probability that any particular v does not
become “hd” at some stage over 2n ln(n) iterations, is at most(

1 −
1
n

)2n ln(n)

< e−2 ln(n) =
1
n2 .

Probability that some v fails to become hd in this window, is at most 1
n

by the Union Bound.

Need to complete the HC with a closing edge to v1, over remaining
ln(n)n steps. Probability of failure is at most (1 − 1

n)n ln(n) < 1
n .

So Pr[E1] ≤ 2
n .

For event E2, we partition into:

E2a: Some v had at least 9 ln(n) edges removed
from UnUsed(v) during the 3n ln(n) steps. or;

E2b: Some v originally had ≤ 10 ln(n) edges in UnUsed(v).

RC (2016/17) – Lectures 11 and 12 – slide 13

Theorem 5.16 cont’d.
Proof cont’d.
E2b first. For a specific v , expected degree is 20 ln(n)

n (n − 1), so
≥ 19 ln(n) for reasonable n. By Chernoff’s bounds (Thm 4.5, 2.)

Pr[|UnUsed(v)| ≤ 10 ln(n)] ≤ e−19·92 ln(n)/(2·192) = e−2.25 ln(n) ≤ 1
n2 .

Hence by the Union Bound (all n vertices) Pr[E2b] ≤ 1
n .

E2a next. For a specific v , edge removal from UnUsed(v) can only
happen when hd = v , probability 1

n each step. Let the number of hd
roles for v be the random variable HDv . HDv is distributed as
B(3n ln(n), 1

n), with E[HDv] = 3 ln(n).
By Chernoff’s bounds (Thm 4.4, 2.),

Pr[|HDv | ≥ 9 ln(n)] ≤ e−3 ln(n)22/3 = e−4 ln(n) =
1
n4 .

Hence by the Union Bound (all n vertices) Pr[E2a] ≤ 1
n .

Hence Pr[E1 ∪ E2] ≤ 4
n , as required.

RC (2016/17) – Lectures 11 and 12 – slide 14

Corollary 5.17

Proof of Theorem 5.16 assumed that the UnUsed(v) sets were all
generated independently of each other when they are randomly
populated. In the “real world” of Gn,p, of course (u, v) would add an
entry into two “UnUsed" sets.

Our analysis (essentially) assumes that either (u, v) ∈ UnUsed(u) or
(u, v) ∈ UnUsed(v) is ok to have the edge in the HC.

See Corollary 5.17 for how to define p so that we can populate the
UnUsed lists randomly and independently, with q ≥ 20 ln(n)/n.

RC (2016/17) – Lectures 11 and 12 – slide 15

Reading and Doing

Next topics coming up is the Probabilistic method and
Derandomization, could read some of Chapter 6 to prepare.

Exercises:

I Exercises 5.3 and 5.7 are good reminders of the basic “balls in
bins” ideas.

I Analysis at top of slide 13 is essentially the “coupon collector”
problem, done for specific v , then Union Bound. Compare this to
what we got with 2n ln(n) on slide 16 of lecture 6. Surprised?

I Read Corollary 5.17 and understand the details.

I Exploratory exercise on “marking the binary tree” (section 5.8).

RC (2016/17) – Lectures 11 and 12 – slide 16

