Randomness and Computation
or, “Randomized Algorithms”

Mary Cryan
School of Informatics
University of Edinburgh

RC (2016/17) – Lecture 11 – slide 1

Hamiltonian cycles

Definition
Given an undirected graph $G = (V, E)$ with $V = [n]$, an Hamiltonian circuit (HC) of G is a permutation π of the vertex set $[n]$ such that for every $i \in [n]$, we have $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ (with $n + 1$ identified with 1).

- A particular graph G may have many HCs, or in some cases (more likely for a sparse graph) no HC.
- Similar definition holds for a directed graph (we require $(v_{\pi(i)}, v_{\pi(i+1)})$ for every $i \in [n]$).
- The problem of deciding whether a given graph contains a HC is \textit{NP}-complete (also \textit{NP}-complete for directed graphs). So we don’t expect there is a deterministic polynomial-time algorithm to \textit{find} a HC in an arbitrary graph (or to \textit{decide} whether there is one).

RC (2016/17) – Lecture 11 – slide 2

Examples of Hamiltonian Circuits (or not)

No HC (more than one) HC
Intuitively HCs are more likely in denser graphs

Random Graphs - Erdős-Rényi model $G_{n,p}$

- n vertices.
- Some fixed probability p.
- For every $i \in [n]$, every $j \in [n] \setminus \{i\}$
 - We flip a coin with biased probability p, add (i, j) to E if the flip is successful, don’t add it otherwise.
- All the (i, j) trials are identical (probability p) and independently distributed.

\[
E_{n,p}[|E|] = \sum_{i,j \in [n], i \neq j} \Pr((i, j) \in E) = \frac{n(n-1)p}{2}.
\]

- Expected degree of any vertex i is $(n - 1)p$.
- Can use deferred decisions to analyse algorithms/structures on $G_{n,p}$.

RC (2016/17) – Lecture 11 – slide 3

RC (2016/17) – Lecture 11 – slide 4
Hamilton cycles in Erdős-Rényi graphs

Theorem (Komlós and Szemerédi (1983))

Suppose we generate G according to $G_{n,p}$. Then the existence of a HC in G is characterised by the value of p in relation to n:

$$
\Pr_{n,p}[G \text{ has a HC}] \rightarrow \begin{cases}
0 & \text{if } pn - \ln(n) - \ln(\ln(n)) \to -\infty \\
1 & \text{if } pn - \ln(n) - \ln(\ln(n)) \to +\infty \\
e^{-c} & \text{if } pn - \ln(n) - \ln(\ln(n)) \to c
\end{cases}
$$

(in the final case, c being any constant)

- These are all with high probability results, holding with probability $1 - o(1)$ (tending to 1 as $n \to \infty$).
- This kind of result is described as a sharp threshold.
- There is a polynomial-time algorithm to find the HC in the middle case (Bollobás, Fenner and Frieze, 1985).
- We will not prove Komlós & Szemerédi’s result, we will show how to find a HC for $p \geq 40 \ln(n)/n$ (easier).

RC (2016/17) – Lecture 11 – slide 5

Hamilton cycles in Erdős-Rényi graphs - Extend

Algorithm maintains a current path P of the form v_1, \ldots, v_k, the current head (hd) is v_k.

The algorithm chooses the “next” extension edge from $\text{UnUsed}(v_k)$ (adjacent to the head), hoping this will add a new vertex to the path.

$$
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
v_1 & v_2 & v_3 & v_4 & v_5 & v_k \\
\end{array}
$$

(v_k, y) in G, and y not in P => "extend"

Ideal case. Note that (v_k, y) is a uniform random choice from $\text{Adj}(v_k)$, as the edges were shuffled at the start.

RC (2016/17) – Lecture 11 – slide 7

Hamilton cycles in Erdős-Rényi graphs - Rotate

Sometimes the randomly chosen extension “loops back” onto P (less ideal). We don’t iterate through other v_k neighbours, we “Rotate”.

$$
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
v_1 & v_2 & v_3 & v_i & v_{i+1} & v_k \\
\end{array}
$$

(v_i, y) in G, but y already in P => “rotate”

Add (v_i, v_k), delete (v_i, v_{i+1}), v_{i+1} is the new “hd”

RC (2016/17) – Lecture 11 – slide 8
“Reverse, Extend or Rotate” (Algorithm 5.2)

Algorithm REVERSEEXTENDROTATE($G = (V, E)$)
1. for $v \in V$ do
2. $\text{Used}(v) \leftarrow \emptyset$, $\text{UnUsed}(v) \leftarrow \{(v, u) : u \in \text{Adj}_G(v)\}$.
3. Initialise P with a uniform random vertex, initialise hd also.
 // Throughout P is some $v_1 \ldots v_k$ (distinct vertices), hd is v_k //
4. while (P is not a HC and $\text{UnUsed}(hd) \neq \emptyset$) do
5. With prob. $\frac{1}{n}$, “Reverse” P (and reset $hd \leftarrow v_1$).
6. With prob. $\frac{\text{Used}(hd)}{n}$, choose $(v_k, v_i) \in \text{ar} \text{ Used}(hd)$, and “Rotate” (and reset $hd \leftarrow v_{i+1}$).
7. With prob. $1 - \left(\frac{1 + \text{Used}(hd)}{n}\right)$, take the first edge (v_k, y) from $\text{UnUsed}(hd)$, and “Extend” or “Rotate” (depends on y).
Move (v_k, y) from $\text{UnUsed}(v_k)$ to $\text{Used}(v_k)$.
Update hd to either y (Extend) or v_{i+1} (Rotate).
8. Check whether P is a HC and return P or “no”.

Analysing Algorithm 5.2

- Overall, the key operation for building the HC is “Extend”. “Rotate” and “Reverse” are helper operations which help the analysis go through (well, “Rotate” also helps us get unstuck).
- Asking quite a lot to get a full HC on a “run” where we more-or-less just add random edges to extend P. So we’ll need to run the loop for a super-linear number of steps ($\Omega(n \ln(n))$, see Theorem 5.16, Corollary 5.17).
- Assume for Lemma 5.15, Thm 5.16 that $\text{UnUsed}(v)$ is randomly generated by adding every possible (u, v) with probability q, in random order (can use “deferred decisions” in analysis).
- All the $\text{UnUsed}(\cdot)$ sets are assumed to be independent for proving Lemma 5.15 and Theorem 5.16 (not strictly true, fixed in Cor 5.17). Means to an end …

Lemma (Lemma 5.15)
Supposed we run Algorithm REVERSEEXTENDROTATE on $G = (V, E)$ with the $\text{UnUsed}(v)$ sets generated independently with probability q for each possible neighbour, and random orders. Let V_i be the “hd” vertex after t steps. Then, as long as $\text{UnUsed}(V_i) \neq \emptyset$, for any $u \in V$, $Pr[V_{i+1} = u \mid V_i = u_1, \ldots, V_0 = u_0] = \frac{1}{n}$.

Proof.
Identical to book.
Easy for v_1, and for any of the P-vertices v_{i+1} such that $v_i \in \text{Used}(hd)$.
For other u vertices (on P or otherwise), we use the principle of deferred decisions, plus the assumptions on slide 10.

Theorem (Theorem 5.16)
Supposed we run Algorithm REVERSEEXTENDROTATE on $G = (V, E)$ with the $\text{UnUsed}(v)$ sets generated independently with probability $q \geq \frac{20 \ln(n)}{n}$ for each possible neighbour, and random orderings. Then the algorithm finds a HC after $O(n \ln(n))$ iterations of the loop at 4., with probability $1 - O(n^{-1})$.

Proof Failure after $3n \ln(n)$ iterations means that either
- ξ_1: We did $3n \ln(n)$ iterations without constructing a HC, with all $\text{UnUsed}(hd)$ sets staying non-empty, or,
- ξ_2: At least one of the $\text{UnUsed}(hd)$ lists became empty during the $3n \ln(n)$ iterations.

To bound $Pr[\xi_1]$, we want the prob. of not finding a HC, when at each step, the next “hd” is uniform from V (guaranteed by Lemma 5.15).
This is the “coupon collector” problem (must hit all n vertices).
Theorem 5.16 cont’d.

Proof cont’d. For event \mathcal{E}_1, probability that any particular v does not become “hd” at some stage over $2n\ln(n)$ iterations, is at most

$$\left(1 - \frac{1}{n}\right)^{2n\ln(n)} < e^{-2\ln(n)} = \frac{1}{n^2}.$$

Probability that some v fails to become hd in this window, is at most $\frac{1}{n}$ by the Union Bound.

Need to complete the HC with a closing edge to v_1, over remaining $\ln(n)/n$ steps. Probability of failure is at most $(1 - \frac{1}{n})^{n\ln(n)} < \frac{1}{n}$.

So $\Pr[\mathcal{E}_1] \leq \frac{2}{n}$.

For event \mathcal{E}_{2a} we partition into:

- \mathcal{E}_{2a}: Some v had at least $9\ln(n)$ edges removed from $\text{UnUsed}(v)$ during the $3n\ln(n)$ steps. or,
- \mathcal{E}_{2b}: Some v originally had $\leq 10\ln(n)$ edges in $\text{UnUsed}(v)$.

Corollary 5.17

Proof of Theorem 5.16 assumed that the $\text{UnUsed}(v)$ sets were all generated independently of each other when they are randomly populated. In the “real world” of $\mathbb{G}_{n,p}$, of course (u, v) would add an entry into two “UnUsed” sets.

Our analysis (essentially) assumes that either $(u, v) \in \text{UnUsed}(u)$ or $(u, v) \in \text{UnUsed}(v)$ is ok to have the edge in the HC.

See Corollary 5.17 for how to define p so that we can populate the UnUsed lists randomly and independently, with $q \geq 20\ln(n)/n$.

Theorem 5.16 cont’d.

\mathcal{E}_{2b} first is $20\ln(n)/(n-1)$, so $\geq 19\ln(n)$ for reasonable n.

$$\Pr[|\text{UnUsed}(v)| \leq 10\ln(n)] \leq e^{-19.9^2\ln(n)/2 (19^2)} = e^{-2.25\ln(n)} \leq \frac{1}{n^2}.$$

Hence by the Union Bound (all n vertices) $\Pr[\mathcal{E}_{2b}] \leq \frac{1}{n}$.

\mathcal{E}_{2a} next. $\text{UnUsed}(v)$ can only happen when $hd = v$, probability $\frac{1}{n}$ each step. Variable HD_v. HD_v is distributed as $B(3n\ln(n), \frac{1}{n})$, with $\text{E}[HD_v] = 3\ln(n)$.

By Chernoff’s bounds (Thm 4.4, 2.),

$$\Pr[HD_v \geq 9\ln(n)] \leq e^{-3\ln(n)/3} = e^{-4\ln(n)} = \frac{1}{n^2}.$$

Hence by the Union Bound (all n vertices) $\Pr[\mathcal{E}_{2a}] \leq \frac{1}{n}$.

Hence $\Pr[\mathcal{E}_1 \cup \mathcal{E}_2] \leq \frac{4}{n}$, as required.

Reading and Doing

Next topics coming up is the Probabilistic method and Derandomization, could read some of Chapter 6 to prepare.

Exercises:

- Exercises 5.3 and 5.7 are good reminders of the basic “balls in bins” ideas.
- Analysis at top of slide 13 is essentially the “coupon collector” problem, done for specific v, then Union Bound. Compare this to what we got with $2n\ln(n)$ on slide 16 of lecture 6. Surprised?
- Read Corollary 5.17 and understand the details.
- Exploratory exercise on “marking the binary tree” (section 5.8).