Randomness and Computation

or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)
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Balls into Bins

» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

» Magic bins with no upper limit on capacity.
» Can be viewed as a random function [m] — [n].

» Common model of random allocations and their effects on overall load
and load balance etc.

Many related questions:

» How many balls do we need to cover all bins?

(Coupon collector, surjective mapping)

» How many balls will lead to a collision?

(Birthday paradox, injective mapping)

» What is the maximum load of each bin?

(Load balancing)
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Balls into Bins — maximum load

Depending on m/n, there are a few different scenarios. Fix n = 100, vary m.

m=10 m = 100

m = 1000 m = 5000

RC (2019/20) — Lecture 10 — slide 3



Balls into Bins — maximum load

m = Q(nlogn) Maximum load is © (), namely of the same order
as the average load.

m = n Maximum load is 1:111(1'8,) + O(1) (same number of balls

as bins).

We have already shown that when m = n and n is sufficiently large,

the maximum load is < 111;((';)) with probability at least 1 — %

Today: a matching Q(lﬁfﬁ)) lower bound.
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Poisson random variable

Probability p, of a specific bin having r balls:
(G =5
pr = - 1—— .
r) \n n

e rmyT
Pr~ (;)’

Note

where we consider ras a constant, m/n is a fixed constant, and n — oo.
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Poisson random variable

Probability p, of a specific bin having r balls:
(G =5
pr = - 1—— .
r) \n n

e rmyT
Pr~ (;)’

Note

where we consider ras a constant, m/n is a fixed constant, and n — oo.

Definition (5.1)
A discrete Poisson random variable X with parameter W is given by the fol-
lowing probability distribution on j =0,1,2,...:
. e Hu/
PriX=j] = S ad .
J!

RC (2019/20) — Lecture 10 — slide 5



Poisson as the limit of the Binomial Distribution

Theorem (5.5)

If X,, is a binomial random variable with parameters n and p = p(n) such that
lim,_,oo np = W is a constant (independent of n), then for any fixed k € N,
—u, k
lim Prlx, =k = <.

n—00 k!
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Properties of Poisson

» It is well-defined:

> EX =pn
» Var[X] = pn

» The sum of two Poisson with parameters p; and W, is a Poisson with
K1+ Ho.
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Concentration of Poisson r.v.

Theorem (5.4)

Let X be a Poisson random variable with parameter |1.

» Ifx=(1+4+8)u ford >0, then

PriX>x <

e M(ep)

XX

> Ifx=(1—58)ufor0<d<1,then

PriX<x] <

e Mep)”

66 H
~ (=)

XX

e’ K
- <(1—6)1—5) ;
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Proof for Poisson concentration

Same argument as before:

E[etX]
etx

Pr[X > x] = Pr[e” > &™) <

The claim follows from setting t = In(x/t) and the following;:
E[etX] _ eH(GI*U.

(It was < in the sum of independent Bernoulli case.)
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Poisson moment generating function
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Poisson modelling of balls-in-bins

Our balls in bins model has n bins, m (for variable m) balls, and the balls are
thrown into bins independently and uniformly at random.

Each bin Xfm] behaves like a binomial r.v. B(m, 1).

Write X(m) = (XE’"), .. .,Xﬁ’")) for the joint distribution. These X,(m)s are
not independent.
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Poisson modelling of balls-in-bins

Our balls in bins model has n bins, m (for variable m) balls, and the balls are
thrown into bins independently and uniformly at random.

Each bin Xfm) behaves like a binomial r.v. B(m, 1).

Write X(m) = (XE’"), .. .,Xﬁ’")) for the joint distribution. These X,(m)s are
not independent.

For the “Poisson approximation” we take w = 7, and write Yfm) to denote
a Poisson r.v. with parameter p = m/n.

Write Y(m) = (ng), ceey Y,(qm]) to denote a joint distribution of Poisson r.v.s
which are all independent.

Notice that the sum 27:1 Y,(qm] is a Poisson r.v. with parameter n - % =m.
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Poisson approximation

Theorem (5.7)

Let fixy, ..., x,) be a non-negative function. Then

EAX™ X)) < eo/m- E[AY™, ..., Yim)).
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Poisson approximation

Theorem (5.7)

Let fixy, ..., x,) be a non-negative function. Then

EAX™ o, X < ev/m - EIAY,™, . YL,
To bound the probability of some event, take fas its indicator function.

Corollary (5.9)
Any event that takes place with probability p in the “Poisson case” takes place
with probability at most pe\/m in the exact balls-in-bins case.

Thus the Poisson approximation is good enough if p is sufficiently small.
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Justify the Poisson approximation

n

E[AY'™)] = i}«: [ﬂY(’")) IR k] Pr [Z v = k]
k=0 i=1 i=1

Yy [y v = m] Pr [Z Y\ = m}

i=1

vV
=
=

The theorem follow from two facts:

1. Y™ conditional on 27:1 Y,(m) = kis the same as X(¥;

n m)
2. Pr[y ], Y,( =m] > e\T/E'
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Fact 1

The sum of Y™, denoted by Y, is a Poisson r.v. with parameter n - % =
Conditional on the sum, the probability that Y™ taking values ki, ..

(where > 7 ki=K) is

n —m/n . k
[T, e ™" (m/n)"/k _ k! _ (k1,...,kn)
e mmk/kl nkTTo, ki! nk
which is exactly the probability that X(¥) taking values ki, . .., k.

m.
ky
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Fact 2

Stirling approximation:

m m
m! ~+/21mtm (—) .
e

The sum of Y™, denoted by Y, is a Poisson r.v. with parameter n - T =m.

1
Vv 2mtm’

PrlY=ml=¢ "m"/m! ~

To make things rigorous (Lemma 5.8),

ml < eﬁ(%)m.
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Poisson approximation

Theorem (5.7)

Let f(x1, ..., xn) be a non-negative function. Then

E[f(Xgm))---)Xp(ym))] < e\/E-E[f(YEm),..., Y,(qm))]

Corollary (5.9)

Any event that takes place with probability p in the “Poisson case” takes place
with probability at most pe\/m in the exact balls-in-bins case.
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Lower bound for n “balls into bins”

Lemma (5.12)

Let n balls be thrown independently and uniformly at random into n bins. Then
(for n suﬁ‘laently large) the maximum load is at least T ” Wlth probability

at least 1 — 1.
n

Proof.
For the Poisson variables, we have p = 2 = 1. Let M := lnln 2, . For bin i,

r[Yfm] > M| >Pr [Yfm) = M]
Me? 1

M eM!

(Chernoff bounds give an upper bound here.)
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Lower bound for n “balls into bins”

Lemma (5.12)

Let n balls be thrown independently and uniformly at random into n bins. Then

(for n suﬁ‘laently large) the maximum load is at least e ” Wlth probability

at least 1 — 1.
n

Proof.

For the Poisson variables, we have p = 2 = 1. Let M := (n)

lnln Ok For bin i,

r[Yfm] > M| >Pr [Yfm) = M]
Me? 1

M eM!

(Chernoff bounds give an upper bound here.)
In our Poisson model, the bins are independent, so the probability no bin
has load > M (our bad event) is at most

1 n
_ —n/(eM!)
(1 eM!) se )
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Proof of Lemma 5.1 cont’d.

To tolerate the ey/n loss of the Poisson approximation, we want to show
that

1 & Zlnn<L

n? — eM!
S Inlnn+mn2<Inn—InM!' —1
& InM <Inn—Inlnn—C,

e—n/(eMl) <

where C =1+ 1In2is a constant.
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Proof of Lemma 5.1 cont’d.

To tolerate the ey/n loss of the Poisson approximation, we want to show
that

1 n
—n/(eM!) < 21 <
¢ - n? = = eM!

S Inlnn+mn2<Inn—InM!' —1
& InM <Inn—Inlnn—C,

where C =1+ 1In2is a constant.
Recall Lemma 5.8, M! < ey/M (%)M

InM!' < MInM—M+1nM

1
_nn (Inlnn—1Inlnlnn) — n +InM
Inlnn Inlnn
=Inn— Inn — (MInlnln n—InM)
Inlnn
<1 Inn
nn— .
- Inlnn
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Proof of Lemma 5.1 cont’d.

We want to show
InM! <Inn—Inlnn—C,

where C =1+ 1In2is a constant.

We have

InM!' <Inn-— Inn

nlnn
<Inn—Inlnn—C,

Inn )

since Inln n = o 3
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Proof of Lemma 5.1 cont’d.

We want to show
InM! <Inn—Inlnn—C,

where C =1+ 1In2is a constant.

We have

InM!' <Inn-— Inn

nlnn
<Inn—Inlnn—C,

Inn )

since Inln n = o( 1

RC (2019/20) — Lecture 10 - slide 19



Proof of Lemma 5.1 cont’d.

We have shown that in the Poisson case,

Inn
Inlnn*

where M =

RC (2019/20) — Lecture 10 - slide 20



Proof of Lemma 5.1 cont’d.

We have shown that in the Poisson case,

where M = oo
Inlnn

Due to Poisson approximation,

Pr |Vi € [n], Xfm) < M} < ey/nPr [Vie (n], Y < M]

<e—ﬁ<l. ]

- n? n
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References

» Sections 5.1 and 5.2 of “Probability and Computing”.

ln("))) result.

» Sections 5.3 and 5.4 have all precise details of our Q(m

» We will skip the rest of Chapter 5.

RC (2019/20) — Lecture 10 — slide 21



