Randomness and Computation

or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)
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Balls into Bins

» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

» Magic bins with no upper limit on capacity.
» Can be viewed as a random function [m] — [n].

» Common model of random allocations and their effects on overall load
and load balance etc.

Many related questions:

» How many balls do we need to cover all bins?

(Coupon collector, surjective mapping)

» How many balls will lead to a collision?

(Birthday paradox, injective mapping)

» What is the maximum load of each bin?

(Load balancing)
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Balls into Bins — maximum load

Depending on m/n, there are a few different scenarios. Fix n = 100, vary m.

5

m=10 m = 100

m = 1000 m = 5000
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Balls into Bins — maximum load

m = Q(nlogn) Maximum load is © (), namely of the same order

as the average load.

m = n Maximum load is lirllr(l'gl) + O(1) (same number of balls

as bins).

We have already shown that when m = n and n is sufficiently large,
3In(n) \ith probability at least 1— 1

Inln(n)

the maximum load is <

Today: a matching Q(lnl(—”)) lower bound.

InIn(n)
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Poisson random variable

Probability p, of a specific bin having r balls:
BIOIEON
pr = - 11— - .
r n n

eim/n m r
)
r! n

Note

where we consider r as a constant, m/nis a fixed constant, and n — oo.
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Poisson random variable

Probability p, of a specific bin having r balls:
HIOIGH
pr = - 1— - .
r) \n n

e ™" rmNr
Pr~ <*> )
rl n

Note

where we consider r as a constant, m/nis a fixed constant, and n — oo.

Definition (5.1)
A discrete Poisson random variable X with parameter p is given by the fol-
lowing probability distribution on j =0,1,2,...:
—H
prix=j] = &%,
J!
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Poisson as the limit of the Binomial Distribution

Theorem (5.5)

If X, is a binomial random variable with parameters n and p = p(n) such that
lim,, oo np = W is a constant (independent of n), then for any fixed k € Ny
— ok
lim PrX, =K = =

n—oo k!
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Properties of Poisson

» It is well-defined:

> E[X =pn
> Var[X] = pu

» The sum of two Poisson with parameters ; and Y, is a Poisson with
Wi+ Mo
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Concentration of Poisson r.v.

Theorem (5.4)

Let X be a Poisson random variable with parameter |1.

> Ifx= (14 8)u ford > 0, then

etew) [ & \"
Prix>x < —7 —<“+5)1+5>,

» Ifx=(1—08)ufor0<d<1,then

— x —0 H
Prix< o < S :(( : m) ;

XX
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Proof for Poisson concentration

Same argument as before:

E[etX]

etx :

Pr(X > x] = Pr[e" > ] <

The claim follows from setting t = In(x/p) and the following;:
E[etX] _ eH(eLU.

(It was < in the sum of independent Bernoulli case.)
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Poisson moment generating function
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Poisson modelling of balls-in-bins

Our balls in bins model has n bins, m (for variable m) balls, and the balls are
thrown into bins independently and uniformly at random.

Each bin XEm) behaves like a binomial r.v. B(m, %)

Write X(m = (XE””, .. .,XL””) for the joint distribution. These Xfm)s are
not independent.
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Poisson modelling of balls-in-bins

Our balls in bins model has n bins, m (for variable m) balls, and the balls are
thrown into bins independently and uniformly at random.

Each bin X,(m) behaves like a binomial r.v. B(m, %)

Write X(m) = (XE’”), .. .,X,(,m)) for the joint distribution. These Xgm)s are
not independent.

For the “Poisson approximation” we take u = 7, and write Yfm) to denote
a Poisson r.v. with parameter L = m/n.

Write Y(™) = (ng), ceey Y,(,m)) to denote a joint distribution of Poisson r.v.s
which are all independent.

Notice that the sum 27:1 Y,(,m) is a Poisson r.v. with parameter n - % =m.
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Poisson approximation

Theorem (5.7)

Let f{x1,...,X,) be a non-negative function. Then

E[AX™ . X < ev/m- EAVI™, ..., vim)).
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Poisson approximation

Theorem (5.7)

Let f{xy, ..., X,) be a non-negative function. Then

EIX™, ., X < ev/m- E[AYY™, ..., Vi),
To bound the probability of some event, take fas its indicator function.

Corollary (5.9)
Any event that takes place with probability p in the “Poisson case” takes place
with probability at most pe\/m in the exact balls-in-bins case.

Thus the Poisson approximation is good enough if p is sufficiently small.
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Justify the Poisson approximation

E[AY(™)] ZE{ﬂY(m)) | Z i) _ ] o [ n yim _ k]

k=0 i=1
o el
i=1 =1
The theorem follow from two facts:

1. Y™ conditional on 3_7_| Y™ — kis the same as XK,

1
2. PI‘[Z';:1 Yfm) =m] > e\}ﬁ‘
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Fact 1

The sum of Y(™), denoted by Y, is a Poisson r.v. with parameter n - 2 =m
Conditional on the sum, the probability that Y™ taking values ki, ..., k,
(where Y7 ki =K) is

Hn efm/n(m/n)ki/ki! B k! . (/q,.l.(.,kn)

i=1
_ k k n . k )
e~"mk/kl [T, k! n

which is exactly the probability that X(¥) taking values ki, ..., k,.
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Fact 2

Stirling approximation:

m m
m! ~/2mm (—) .
e

The sum of Y™ denoted by Y, is a Poisson r.v. with parameter n - % =m.

1

Vv 2mtm’

Pr[lY=ml = "m"/m! ~

To make things rigorous (Lemma 5.8),

<o (?)

m
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Poisson approximation

Theorem (5.7)

Let f{x, ..., X,) be a non-negative function. Then

EAX™ X < e/m- E[AYI™, ..., Yim)].

Corollary (5.9)
Any event that takes place with probability p in the “Poisson case” takes place
with probability at most pe\/m in the exact balls-in-bins case.
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Lower bound for n “balls into bins”
Lemma (5.12)

Let n balls be thrown independently and uniformly at random into n bins. Then
(for n sufficiently large) the maximum load is at least 111?1(1’(721) with probability

at least 1 — 1.
n

Proof.
In(n)

For the Poisson variables, we have p = 7 = 1. Let M := n(n] - For bin i,

Pr(Y," > M > Pr[V\" = M]
_Me! 1

M eM!

(Chernoff bounds give an upper bound here.)
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Lower bound for n “balls into bins”
Lemma (5.12)

Let n balls be thrown independently and uniformly at random into n bins. Then
In(n)

(for n sufficiently large) the maximum load is at least (] with probability
at least 1 — %

Proof.

For the Poisson variables, we have 1 = 2 = 1. Let M := li’}fl'(’,)q) For bin i,

Pr(Y!™ > M > Pr [V = M]

1

_Me! 1

M eM!”

(Chernoff bounds give an upper bound here.)
In our Poisson model, the bins are independent, so the probability no bin
has load > M (our bad event) is at most

1 n
1— — < e—n/(eM!).
eM! )] —
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Proof of Lemma 5.1 cont’d.

To tolerate the ey/n loss of the Poisson approximation, we want to show
that

= 21nn§i
n eM!

S Inlnn+mn2<Ilnn—InM! —1
& InM <Inn—Inlnn—C,

where C=1+1n2is a constant.
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Proof of Lemma 5.1 cont’d.

To tolerate the ey/n loss of the Poisson approximation, we want to show
that

1 n
—n/(eM!)
e Sﬁ & 21nn§m
& Inlnn+ln2<Ilnn—InMl—1
& InM <Inn—Inlnn— C,

where C =1+ 1n2is a constant.

Recall Lemma 5.8, M! < ey/M (%)M

InM! < MInM—M+1nM

1 1
_ (Inlnn—Inlnlnn) — nn +InM
Inlnn nlnn
|
—Inn— —2 _ (Minlnlnn— In M)
nlnn
Inn
<Inn-— .
nlnn
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Proof of Lemma 5.1 cont’d.

We want to show
InM! <Inn—Inlnn— C,
where C =1+ 1n2is a constant.

We have

1
InM! <lnn-— nn

Inlnn
<Ilnn—Inlnn— C,

)i
lnrirfn )

since Inln n = of
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Proof of Lemma 5.1 cont’d.

We want to show
InM! <Inn—Inlnn— C,

where C = 1+ 1n 2 is a constant.

Proof of Lemma 5.1 cont’d.

We have shown that in the Poisson case,

Pr |Vie [n], Y™ < M] =[] [YF’") < M]

i=1

1\" 1
<|1-=) <=
eM! n?

We have |
where M = lnri;n'
Inn
InM! <lnn—
Inlnn
<Inn—Inlnn—C,

since Inlnn = o( lérlllfn).
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Proof of Lemma 5.1 cont’d. References

We have shown that in the Poisson case,

Pr |Vie [nl, Y\ < M] =[] [YE’”) < M}
i=1

1\" 1
<(1-—) <3,
eM! n?

where M = oo
Inlnn

Due to Poisson approximation,

IN

1

Pr |Vie [n], X™ < M] ey/nPr [w e ln), '™ < M}

e\/n 1
< -. O
n? n
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» Sections 5.1 and 5.2 of “Probability and Computing”.

P Sections 5.3 and 5.4 have all precise details of our Q(%) result.

> We will skip the rest of Chapter 5.
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