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Balls into Bins

▶ m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).

▶ Magic bins with no upper limit on capacity.

▶ Can be viewed as a random function [m] → [n].

▶ Commonmodel of random allocations and their effects on overall load
and load balance etc.

Many related questions:

▶ How many balls do we need to cover all bins?

(Coupon collector, surjective mapping)

▶ How many balls will lead to a collision?

(Birthday paradox, injective mapping)

▶ What is the maximum load of each bin?

(Load balancing)
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Balls into Bins — maximum load
Depending on m/n, there are a few different scenarios. Fix n = 100, vary m.
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Balls into Bins — maximum load

m = Ω(n log n) Maximum load is Θ
(m
n

)
, namely of the same order

as the average load.

m = n Maximum load is ln(n)
ln ln(n) + O(1) (same number of balls

as bins).

We have already shown that when m = n and n is sufficiently large,
the maximum load is ≤ 3 ln(n)

ln ln(n) with probability at least 1− 1
n .

Today: a matching Ω( ln(n)
ln ln(n)) lower bound.
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Poisson random variable

Probability pr of a specific bin having r balls:

pr =

(
m
r

)(
1
n

)r (
1−

1
n

)m−r

.

Note

pr ∼
e−m/n

r!

(m
n

)r
,

where we consider r as a constant, m/n is a fixed constant, and n → ∞.

Definition (5.1)
A discrete Poisson random variable X with parameter µ is given by the fol-
lowing probability distribution on j = 0, 1, 2, . . .:

Pr[X = j] =
e−µµj

j!
.
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Poisson as the limit of the Binomial Distribution

Theorem (5.5)
If Xn is a binomial random variable with parameters n and p = p(n) such that
limn→∞ np = µ is a constant (independent of n), then for any fixed k ∈ N0

lim
n→∞ Pr[Xn = k] =

e−µµk

k!
.
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Properties of Poisson

▶ It is well-defined:

∞∑
j=0

e−µµj

j!
= e−µ

∞∑
j=0

µj

j!
= 1.

▶ E[X] = µ

▶ Var[X] = µ

▶ The sum of two Poisson with parameters µ1 and µ2 is a Poisson with
µ1 + µ2.
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Concentration of Poisson r.v.

Theorem (5.4)
Let X be a Poisson random variable with parameter µ.

▶ If x = (1+ δ)µ for δ > 0, then

Pr[X ≥ x] ≤ e−µ(eµ)x

xx
=

(
eδ

(1+ δ)1+δ

)µ

;

▶ If x = (1− δ)µ for 0 < δ < 1, then

Pr[X ≤ x] ≤ e−µ(eµ)x

xx
=

(
e−δ

(1− δ)1−δ

)µ

;
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Proof for Poisson concentration

Same argument as before:

Pr[X ≥ x] = Pr[etX ≥ etx] ≤ E[etX]
etx

.

The claim follows from setting t = ln(x/µ) and the following:

E[etX] = eµ(et−1).

(It was ≤ in the sum of independent Bernoulli case.)
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Poisson moment generating function

E[etX] =
∞∑
i=0

eti · e
−µµi

i!

= e−µ

∞∑
i=0

(µet)i

i!

= e−µeµet

= eµ(et−1)
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Poisson modelling of balls-in-bins

Our balls in bins model has n bins, m (for variable m) balls, and the balls are
thrown into bins independently and uniformly at random.

Each bin X(m)
i behaves like a binomial r.v. B(m, 1

n ).

Write X(m) = (X(m)
1 , . . . ,X(m)

n ) for the joint distribution. These X(m)
i s are

not independent.

For the “Poisson approximation” we take µ = m
n , and write Y(m)

i to denote
a Poisson r.v. with parameter µ = m/n.

Write Y(m) = (Y(m)
1 , . . . ,Y(m)

n ) to denote a joint distribution of Poisson r.v.s
which are all independent.

Notice that the sum
∑n

i=1 Y
(m)
n is a Poisson r.v. with parameter n · m

n = m.
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Poisson approximation

Theorem (5.7)
Let f(x1, . . . , xn) be a non-negative function. Then

E[f(X(m)
1 , . . . ,X(m)

n )] ≤ e
√
m · E[f(Y(m)

1 , . . . ,Y(m)
n )].

To bound the probability of some event, take f as its indicator function.

Corollary (5.9)
Any event that takes place with probability p in the “Poisson case” takes place
with probability at most pe

√
m in the exact balls-in-bins case.

Thus the Poisson approximation is good enough if p is sufficiently small.
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Justify the Poisson approximation

E[f(Y(m))] =

∞∑
k=0

E
[
f(Y(m)) |

n∑
i=1

Y(m)
i = k

]
Pr

[ n∑
i=1

Y(m)
i = k

]

≥ E
[
f(Y(m)) |

n∑
i=1

Y(m)
i = m

]
Pr

[ n∑
i=1

Y(m)
i = m

]
The theorem follow from two facts:

1. Y(m) conditional on
∑n

i=1 Y
(m)
i = k is the same as X(k);

2. Pr[
∑n

i=1 Y
(m)
i = m] ≥ 1

e
√
m .
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Fact 1

The sum of Y(m), denoted by Y, is a Poisson r.v. with parameter n · m
n = m.

Conditional on the sum, the probability that Y(m) taking values k1, . . . , kn
(where

∑n
i=1 ki = k) is∏n

i=1 e
−m/n(m/n)ki/ki!
e−mmk/k!

=
k!

nk
∏n

i=1 ki!
=

( k
k1,...,kn

)
nk

,

which is exactly the probability that X(k) taking values k1, . . . , kn.
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Fact 2

Stirling approximation:

m! ∼
√

2πm
(m
e

)m
.

The sum of Y(m), denoted by Y, is a Poisson r.v. with parameter n · m
n = m.

Pr[Y = m] = e−mmm/m! ∼
1√
2πm

.

To make things rigorous (Lemma 5.8),

m! ≤ e
√
m
(m
e

)m
.
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Poisson approximation

Theorem (5.7)
Let f(x1, . . . , xn) be a non-negative function. Then

E[f(X(m)
1 , . . . ,X(m)

n )] ≤ e
√
m · E[f(Y(m)
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√
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Lower bound for n “balls into bins”
Lemma (5.12)
Let n balls be thrown independently and uniformly at random into n bins. Then
(for n sufficiently large) the maximum load is at least ln(n)

ln ln(n) with probability

at least 1− 1
n .

Proof.
For the Poisson variables, we have µ = n

n = 1. Let M := ln(n)
ln ln(n) . For bin i,

Pr[Y(m)
i ≥ M] ≥ Pr

[
Y(m)
i = M

]
=

1Me−1

M!
=

1
eM!

.

(Chernoff bounds give an upper bound here.)

In our Poisson model, the bins are independent, so the probability no bin
has load ≥ M (our bad event) is at most(

1−
1

eM!

)n

≤ e−n/(eM!).
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Proof of Lemma 5.1 cont’d.
To tolerate the e

√
n loss of the Poisson approximation, we want to show

that

e−n/(eM!) ≤ 1
n2 ⇔ 2 ln n ≤ n

eM!⇔ ln ln n+ ln 2 ≤ ln n− lnM! − 1⇔ lnM! ≤ ln n− ln ln n− C,

where C = 1+ ln 2 is a constant.

Recall Lemma 5.8, M! ≤ e
√
M
(
M
e

)M
.

lnM! ≤ M lnM−M+ lnM

=
ln n
ln ln n (ln ln n− ln ln ln n) − ln n

ln ln n + lnM

= ln n− ln n
ln ln n − (M ln ln ln n− lnM)

≤ ln n− ln n
ln ln n .
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Proof of Lemma 5.1 cont’d.

We want to show

lnM! ≤ ln n− ln ln n− C,

where C = 1+ ln 2 is a constant.

We have

lnM! ≤ ln n− ln n
ln ln n

≤ ln n− ln ln n− C,

since ln ln n = o( ln n
ln ln n ).
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Proof of Lemma 5.1 cont’d.

We have shown that in the Poisson case,

Pr
[
∀i ∈ [n], Y(m)

i < M
]
=

n∏
i=1

Pr
[
Y(m)
i < M

]
≤

(
1−

1
eM!

)n

≤ 1
n2 ,

where M = ln n
ln ln n .

Due to Poisson approximation,

Pr
[
∀i ∈ [n], X(m)

i < M
]
≤ e

√
n Pr

[
∀i ∈ [n], Y(m)

i < M
]

≤ e
√
n

n2 <
1
n
.
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References

▶ Sections 5.1 and 5.2 of “Probability and Computing”.

▶ Sections 5.3 and 5.4 have all precise details of our Ω( ln(n)
ln ln(n) ) result.

▶ We will skip the rest of Chapter 5.
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