
Randomness and Computation
or, “Randomized Algorithms”

Heng Guo
(Based on slides by M. Cryan)

School of Informatics
University of Edinburgh

RC (2019/20) – Lecture 1 – slide 1

Lectures and tutorials

Lectures:
▶ 11:10-12:00 Tuesday, room 2.3 of the Lister Centre;
▶ 11:10-12:00 Friday, room 1.3 of the Lister Centre.

Tutorials (choose one):
▶ 12:10-13:00 Tuesday, G203 Teaching Room 2, Doorway 3, Medical

School;
▶ 12:10-13:00 Wednesday, room 1.4 of the Lister Centre.

RC (2019/20) – Lecture 1 – slide 2

Lecturers

▶ Heng Guo, IF 5.05A (Weeks 1-5)
Email: hguo@inf.ed.ac.uk
Webpage: http://homepages.inf.ed.ac.uk/hguo/

▶ Mary Cryan, IF 5.18 (Weeks 6-10)
Email: mcryan@inf.ed.ac.uk
Webpage: http://homepages.inf.ed.ac.uk/mcryan/

RC (2019/20) – Lecture 1 – slide 3

hguo@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/hguo/
mcryan@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/mcryan/

Randomness and Computation

▶ Interested in what we can compute (exactly, approximately) when we
have the option of “tossing coins” in our computation.

▶ Of course, when introduce some randomness, we no longer have a
deterministic algorithm. An algorithm which exploits random choices
will either show variation in the answer computed or in the time-taken
to return an answer. Or both!

▶ Though we will have variation in running-times and/or the answer
returned, we will always aim to calculate the expected running-times,
expected value returned. Or possibly we will prove bounds on running-
times and/or values returned.

RC (2019/20) – Lecture 1 – slide 4

Syllabus
Introduction, Las Vegas and Monte Carlo algorithms (Simple Examples:

checking identities, fingerprinting)
Moments, Deviations and Tail Inequalities (Balls and Bins, Coupon

Collecting, stable marriage, routing)
Randomization in Sequential Computation (Data Structures, Graph

Algorithms)
Randomization in Parallel and Distributed Computation (algebraic

techniques, matching, sorting, independent sets)
The Probabilistic Method (threshold phenomena in random graphs,

Lovász Local Lemma)
Derandomisation (Use of conditional expectation to derandomise some

algorithms)
Random Walks and Markov Chains (hitting and cover times, Markov

chain Monte Carlo, mixing times)

RC (2019/20) – Lecture 1 – slide 5

Textbook (essential for the course)

Probability and Computing - Randomized Algorithms and Probabilistic
Analysis, by Michael Mitzenmacher and Eli Upfal; Cambridge University
Press, 2017 (2nd ed).
▶ Blackwell’s on South Bridge has a number of copies of the 2nd ed.
▶ You are welcome to work with edition 1 if you can find a cheaper

copy.

RC (2019/20) – Lecture 1 – slide 6

Course Webpage

Slides will be provided for each lecture (and notes sometimes if appropriate)
on the course webpage:

http://www.inf.ed.ac.uk/teaching/courses/rc/

Recordings of lectures (slides and voice) will be on Learn.

You will need the book too!

RC (2019/20) – Lecture 1 – slide 7

Pre-requisites

Good news: no formal requirement.
However, strong maths is necessary, especially Discrete Maths and confi-
dence in proving things.
Please take the “Self test” on the course webpage to assess whether you
are prepared for this course.
I expect you to have covered an “Algorithms class” in the past, and to
have done well in it (can waive that if your Maths is very strong).
If you’re not sure, come and speak to me.

RC (2019/20) – Lecture 1 – slide 8

Math you should know

You should know:
▶ what it means to prove a theorem (induction, proof by contradiction,

etc …) and to be confident in your ability to do this.
▶ The definitions of the main categories of asymptotic operators O(·),

Ω(·), Θ(·), and how to reason about them.
▶ How to multiply matrices or polynomials, also basic linear algebra.
▶ Some probability theory, definition of expectation (1st moment) and

variance (related to 2nd moment), linearity of expectation, simple
probabilistic distributions and how they behave.

▶ Some graph theory.

RC (2019/20) – Lecture 1 – slide 9

Your own work (formative assessment)

▶ 4-5 tutorial sheets
5 tutorials sprinkled through semester, weeks 4, 6, 7, 8, 10

▶ Office hours
Heng Guo: By appointment
Mary Cryan: 10:30-11 Tuesday, or 12-12:30 Friday

▶ Coursework 1 (due Thursday of week 5)
The first coursework for RC will be read and commented-on by us;
however it will not be “for credit”. It is to give you experience solving
problems and doing small proofs.

RC (2019/20) – Lecture 1 – slide 10

Coursework (summative assessment)

We have 2 Courseworks (problem-solving and proofs), and both will be
marked to give you feedback. Coursework 1 is “just for feedback”, and
Coursework 2 will be worth 20% of the course mark. Details are:

▶ Coursework 1. “Feedback-only”
▶ OUT Thurs, 30th Jan (Thurs week 3)
▶ DUE 4pm Thurs, 13th Feb (Thurs week 5)
▶ FEEDBACK by Thurs, 27th Feb (Thurs week 6)

▶ Coursework 2. “Worth 20%”
▶ OUT Tue, 3rd March (Tue week 7)
▶ DUE 4pm Tue, 17th March (Tue week 9)
▶ FEEDBACK by Tue, 31st March (Tue week 11)

Feedback given will include marks to individual sub-parts of questions,
comments on scripts to explain why marks were lost, plus a description of
common errors.

RC (2019/20) – Lecture 1 – slide 11

Common marking scheme

Marking follows the University’s Common Marking Scheme (Links
can be found online, too long to fit here).

Key points:
▶ A: >70
▶ Fail: <40

RC (2019/20) – Lecture 1 – slide 12

Verifying polynomial identities

Suppose we are given two polynomials F(x) and G(x), where F(x)
is expressed as a product of d “monomials” and G(x) is given as
an expansion of xi terms, with degree at most d.

How much time does it take to verify whether F(x) ?≡ G(x)

(A “monomial” is a term of the form (x − a), for some value a.)
For example,
▶ F(x) = (x − 1)(x + 2)(x − 3)(x + 4)(x − 5)(x + 6);
▶ G(x) = x6 − 7x3 + 720.

Simple “multiply out” algorithm on F(x) (uses no randomness) gives the
answer in Θ(d2) time. (Each addition or multiplication is one step.)
Other (deterministic) algorithm uses FFT to “multiply out” in Θ(d·lg2(d)).
We will use randomness to test equivalence without multiplying out F(x).

RC (2019/20) – Lecture 1 – slide 13

Testing polynomial identities using random sampling

▶ We will choose a value for x0 uniformly at random from the set of
integers {1, . . . , 100d}.

▶ Then we will calculate F(x0). For each monomial we do 1 addition
and 1 multiplication.
Overall this takes at most d additions and d multiplications.

▶ We also calculate G(x0). We first do d multiplications to get all of
x0, x2

0, x3
0, …, xd

0. Then we multiply each term with its coefficient and
add everything up.
Overall this takes at most d additions and 2d multiplications.

▶ Next compare the two numbers . . . answering “yes” if they are the
same, “no” otherwise.

uniformly at random (uar) - every item has the same chance.

RC (2019/20) – Lecture 1 – slide 14

Monte Carlo algorithm

This is a Monte Carlo algorithm (coined by Stan Ulam), meaning
that with some prob. it will give a wrong answer.

The error is one-sided.
▶ If F(x) does equal G(x), “yes” is always returned.
▶ If F(x) ̸≡ G(x), “no” is returned with probability 99

100 (failure
probability ≤ 1

100).

RC (2019/20) – Lecture 1 – slide 15

Testing polynomial identities

The probability of the algorithm giving a wrong answer (“yes”
when it should be “no”) equals

|{x : F(x) = G(x)} ∩ {1, . . . , 100d}|
100d ≤ |{x : F(x) = G(x)}|

100d

If F(x) ̸≡ G(x), the set {x : F(x) = G(x)} is equal to the set of roots of
(F − G)(x), namely, {x : (F − G)(x) = 0}.

of roots of a polynomial ≤ its degree, and the degree of F − G is at
most d.

So error probability ≤ d
100d = 1

100 .

RC (2019/20) – Lecture 1 – slide 16

Reducing the error probability

One option to improve error rate is to increase the size of the sample set
- eg, by sampling a random integer from {1, . . . , 1000d}, error probability
would drop to 1

1000 . . . this improvement is not “free” though, it’s more
work to sample from larger sets (not officially costed by us).

Alternatively, suppose we run two random trials to test F(x) ?≡ G(x),
first drawing x1 uar from {1, . . . , 100d} and testing F(x1)

?
= G(x1), next

drawing x2 uar from {1, . . . , 100d} and testing whether F(x2)
?
= G(x2).

We return “yes” if both calculations give matching values, otherwise we
return “no”.

RC (2019/20) – Lecture 1 – slide 17

Refining the verification of polynomial identities

Observation
This refined algorithm again gives one-sided error:
▶ If F(x) ≡ G(x), certainly we will see that F(x1) matches G(x1), and

that F(x2) matches G(x2) (answer “yes”).
▶ If F(x) and G(x) are non-identical, we will show the algorithm returns

“no” most of the time, with failure probability at most
(1

100
)2.

RC (2019/20) – Lecture 1 – slide 18

Refining the verification of polynomial identities (analysis)

Two options for “repeated sampling” from {1, . . . , 100d} (or any discrete
set): with replacement or without replacement.
with replacement: We draw the random value x2 uniformly at random from
{1, . . . , 100d} (including x1 as an option).
For this case, the two events of “generating x1” and “generating x2” are
mutually independent.
Definition (1.3)
The two events A and B are said to be mutually independent if and only if

Pr[A ∩ B] = Pr[A] · Pr[B].

RC (2019/20) – Lecture 1 – slide 19

Refining the verification of polynomial identities (analysis)

with replacement (cont’d): Recall that if F(x) ̸≡ G(x), then (F − G)(x)
has at most d roots; hence there are at most d values in {1, . . . , 100d} that
could give matching values for F(x), G(x).
If H1 is the event that “a root of (F − G)(x)” is generated on this first
trial, then Pr[H1] ≤ d/100d = (1/100).
But sampling with replacement, the outcomes of the 2nd trial are inde-
pendent of what happened before. So H2 (the probability of generating a
root of (F−G)(x) on the 2nd trial) is independent of H1. Also it happens
to have identical probability.
The probability that both experiments would draw a root of (F − G)(x) is
(by Defn 1.3) equal to

Pr[H1] · Pr[H2] ≤
1

100 · 1
100 ,

which is 1/1002 = 1/10000.

RC (2019/20) – Lecture 1 – slide 20

Refining the verification of polynomial identities (analysis)

without replacement: We have already tested x1 and found F(x1),G(x1)
to match (else we’d finish, with “no”). For H2 we will draw a value from
{1, . . . , 100d} \ {x1}.
Events H1 and H2 are no longer independent, H2 is conditional on H1.

Definition (1.4)
The conditional probability of event A conditional on event B having
happened is

Pr(A | B) =
Pr[A ∩ B]

Pr[B] .

RC (2019/20) – Lecture 1 – slide 21

Refining the verification of polynomial identities (analysis)

without replacement (cont’d): In applying Definition 1.4, E is H1 and F
is H2. We want to calculate Pr[H1 ∩ H2] (two samples both giving a false
match). This is Pr[H1] · Pr[H2 | H1].
We know Pr[H1] ≤ 1

100 .
For Pr[H2 | H1], note that since H1 occurred (and the integer removed was
a match), we have one less root (d ′ − 1 instead of d ′, say) remaining in
the set

{1, . . . , 100d} \ {x1}.

Hence Pr[H2 | H1] =
d ′−1

100d−1 . Then

Pr[H1 ∩ H2] = Pr[H1] · Pr[H2 | H1] ≤ d ′

100d · d ′ − 1
100d − 1 <

1
1002 ,

where we use d ′ ≤ d to show d ′−1
100d−1 < 1

100 .

RC (2019/20) – Lecture 1 – slide 22

Refining the verification of polynomial identities (wrapup)

Can similarly consider carrying out k different trials of values sampled
from {1, . . . , 100d}.
▶ Will be able to show “one-sided error” of at most 1/100k.
▶ The probability of failure (returning “yes” when F(x),G(x) are

non-identical) is always a bit better in the “without replace-
ment” case).

▶ This iterated testing algorithm will take Θ(k · d) time.
▶ No point doing more than d iterations (why?)

RC (2019/20) – Lecture 1 – slide 23

Reading Assignment

Start reading Chapter 1 of “Probability and Computing” in preparation for
lecture 2.

RC (2019/20) – Lecture 1 – slide 24

