Randomness and Computation (INFR11089) Lecture 1

Ilias Diakonikolas January 13, 2015

Administrivia

Me: Ilias Diakonikolas ; email: ilias.d@ed.ac.uk

Office hours: IF-5.18, by appointment

Course Website:

http://www.inf.ed.ac.uk/teaching courses/rc/

Mailing list: rc-students@inf.ed.ac.uk

Evaluation: 2 Problem Sets (30%), Final Exam (70%)

Course Materials

Probability and Computing:
Randomized Algorithms and
Probabilistic Analysis,

by Mitzenmacher and Upfal.

- Course slides/notes (supplementary).
- Useful online resources.

Prerequisites - Requirements

Good news: No formal prerequisites!

Recommended: Algorithms and Data Structures (INFR09006)

No programming!

Basic knowledge of discrete probability and algorithms:

- probability spaces and events, conditional probability and independence, random variables, expectations and moments, conditional expectation.
- asymptotic notation, basic sorting algorithms, basic graph algorithms.

Homework 0 (questionnaire about your background)

Probability and Computing

Why is probability (randomness) important for computing?

Applications (1)

Cryptography.

Simulation.

Statistics via Sampling.

Learning Theory.

Applications (2)

Queueing theory.

Data Compression.

Coding Theory.

Data Structures.

Applications (3)

Symmetry breaking.

Theory of large networks.

Quantum Computing.

Statistics.

Games and Gambling.

Traits of Randomized Algorithms

- Simplicity: algorithms are often simple and elegant,
 e.g., randomized quick-sort. . .
- **Speed:** in many cases faster than the best known deterministic algorithms.
- Small probability of error
- May not terminate.

Given two polynomials of degree d, verify the identity

$$F(x) \equiv G(x)$$

- Naive algorithm:
- 1. Convert into canonical form, i.e., $\sum_{i=0}^{d} c_i x^i$
- 2. Check if the coefficients match.

• Suppose that F(x) is given to us as a product of monomials, i.e., $F(x) = \prod_{i=1}^{d} (x - a_i)$ and G in its canonical form.

• Transforming F(x) in its canonical form in the obvious way requires $\Theta(d^2)$ multiplications.

Can we do better?

Can we do better? Yes, by using randomness.

- Consider the following algorithm:
- 1. Choose an integer r uniformly at random from the set {1, ..., 10d}.
- 2. Compute F(r) and G(r).
- 3. If $F(r)\neq G(r)$, output "NO". O/w, output "YES."

Running time: O(d).

- 1. Choose an integer r uniformly at random from {1, ..., 10d}.
- 2. Compute F(r) and G(r).
- 3. If $F(r)\neq G(r)$, output "NO". O/w, output "YES."

Analysis:

Suppose $F(x) \equiv G(x)$. Then the algorithm is always correct.

Suppose $F(x) \neq G(x)$. Then the algorithm might give the wrong answer. What is the probability of this **event**?

- 1. Choose an integer r uniformly at random from {1, ..., 10d}.
- 2. Compute F(r) and G(r).
- 3. If $F(r)\neq G(r)$, output "NO". O/w, output "YES."

Analysis:

Suppose $F(x) \neq G(x)$. Then the algorithm might give the wrong answer. What is the probability of this **event** E?

Sample space:
$$\Omega = \{1, ... 10d\}$$

Error event: $E = \{r \in \Omega : F(r) = G(r)\}$

What is the probability of this event, i.e., $\Pr(E)$?

- 1. Choose an integer r uniformly at random from {1, ..., 10d}.
- 2. Compute F(r) and G(r).
- 3. If $F(r)\neq G(r)$, output "NO". O/w, output "YES."

Analysis:

Error event:
$$E = \{r \in \Omega : F(r) = G(r)\}$$
; $Pr(E)$?

- F-G is a degree d polynomial (at most d roots). Hence, $|E| \le d$.
- Since all values of r have the same probability

$$\Pr(E) = |E| \cdot (1/10d) \le 1/10$$

- 1. Choose an integer r uniformly at random from {1, ..., 10d}.
- 2. Compute F(r) and G(r).
- 3. If $F(r)\neq G(r)$, output "NO". O/w, output "YES."

Suppose we want to make the error probability even smaller.

Repeat algorithm k times.

By independence probability of error becomes 10^{-k}.

Running time: O(kd).

• Given three $n \times n$ matrices A, B, C (over GF(2)) verify whether

$$AB = C$$

- Naive algorithm:
- 1. Multiply A and B together.
- 2. Compare result to *C*.

- 1. Multiply A and B together.
- 2. Compare result to C.

Running time?

Matrix multiplication (very well-studied).

- "Obvious" algorithm: $O(n^3)$.
- [Strassen, 1969]: $O(n^{2.81})$.
- •
- [Coppersmith Winograd, 1987]: $O(n^{2.376})$.
- •
- [Stothers, 2010]: $O(n^{2.3737})$.
- [Vassilevska-Williams, 2012]: $O(n^{2.3727})$.

Given three $n \times n$ matrices A, B, C verify whether AB = C

Best known deterministic algorithm: $\Omega(n^{2.3727})$..

Can we do better? Yes, by using randomization.

Algorithm (Rusins Freivalds, 1979):

- 1. Choose $\overline{r} = (r_1, \dots r_n) \in \{0,1\}^n$ uniformly at random.
- 2. Compute $y = (AB) \cdot \overline{r}$ and $z = C \cdot \overline{r}$.
- 3. If $y \neq z$, output "NO". O/w, output "YES."

Algorithm (Rusins Freivalds, 1979):

- 1. Choose $\overline{r} = (r_1, \dots r_n) \in \{0,1\}^n$ uniformly at random.
- 2. Compute $y = (AB) \cdot \overline{r}$ and $z = C \cdot \overline{r}$.
- 3. If $y \neq z$, output "NO". O/w, output "YES."

Running time: $\Theta(n^2)$.

Analysis:

- If AB = C the algorithm is always correct.
- O/w, the algorithm may give the wrong answer.

What is the error probability?

Algorithm (Rusins Freivalds, 1979):

- 1. Choose $\overline{r} = (r_1, \dots r_n) \in \{0,1\}^n$ uniformly at random.
- 2. Compute $y = (AB) \cdot \overline{r}$ and $z = C \cdot \overline{r}$.
- 3. If $y \neq z$, output "NO". O/w, output "YES."

Analysis:

• Suppose $A B \neq C$. The error event is $E = \{ \overline{r} \in \{0,1\}^n : AB\overline{r} = C\overline{r} \}$

Claim: $Pr(E) \le 1/2$

Proof: By assumption D = AB - C has at least one non-zero entry.

Assume wlog that $d_{11} \neq 0$. We have that

$$r_1 = -\sum_{j=2}^n d_{1j} r_j / d_{11}$$

Algorithm (Rusins Freivalds, 1979):

- 1. Choose $\overline{r} = (r_1, \dots r_n) \in \{0,1\}^n$ uniformly at random.
- 2. Compute $y = (AB) \cdot \overline{r}$ and $z = C \cdot \overline{r}$.
- 3. If $y \neq z$, output "NO". O/w, output "YES."

Claim: $Pr(E) \le 1/2$

Proof: For D = A B - C with $d_{11} \neq 0$ we have $r_1 = -\sum_{j=2}^{n} d_{1j} r_j / d_{11}$

- Since the r_j 's are independent, for a fixed setting of r_2 , ..., r_n , the RHS is fixed.
- Hence, the conditional probability that r_I is equal to this value is at most $\frac{1}{2}$.
- Since this holds for every setting of of $r_2, ..., r_n$ the claim follows.

Finding a Minimum cut in a Graph

Let G = (V, E) be an undirected graph.

 Cut = set of edges whose removal makes the graph disconnected.

Cut of size 2

- 3 4
- Size of a cut = number of edges it contains
- Minimum cut = cut of minimum size

Finding a Minimum cut in a Graph

Minimum cut problem: Given G compute a minimum cut.

Let n = number of vertices; m = number of edges.

- Fastest known deterministic algorithms: Ω (mn)
- Fastest known randomized algorithm: $O(n^2 \log^3 n)$ [Karger'93; Karger-Stein'96]

Edge Contraction Operation

Contraction of an edge (u, v):

- Merge the two vertices into one.
- Eliminate all edges between u and v.
- Keep all other edges.

Example:

Random Contraction Algorithm

Random Contraction Algorithm [Karger'93]:

Repeat

- Choose an edge (u,v) uniformly at random from E.
- Contract the vertices u and v to a super-vertex $w = \{u, v\}$.
- Keep parallel edges but remove self-loops.

until G has only 2 vertices.

Report the corresponding cut.

Intuition: if min cut C is small, probability we choose edge in C also small.

Lemma: The algorithm outputs a min-cut with probability at least $2/n^2$.

Random Contraction Algorithm

Repeat

- Choose an edge (u,v) uniformly at random from E.
- Contract the vertices u and v to a super-vertex $w = \{u, v\}$.
- Keep parallel edges but remove self-loops.

until G has only 2 vertices.

Report the corresponding cut.

Lemma: The algorithm outputs a min-cut with probability at least $2/n^2$.

Proof Sketch: Fix a minimum cut *C*.

Let E_i be the event: "edge contracted in iteration i not in C." Want $\Pr\left(\bigcap_{i=1}^{n-2} E_i\right) \ge \frac{1}{n^2}$. Can show that $\Pr\left(E_i \middle| \bigcap_{j=1}^{i-1} E_j\right) \ge 1 - \frac{2}{n-i+1}$. Hence,

$$\Pr(\bigcap_{i=1}^{n-2} E_i) = \prod_{i=1}^{n-2} \Pr(E_i | \bigcap_{j=1}^{i-1} E_j) \ge \frac{2}{n(n-1)}$$

Conclusions

Reading material: Chapter 1 of textbook.

Check out class webpage.