Randomness and Computation
(INFR11089)
Lecture 1

Ilias Diakonikolas
January 13, 2015

Administrivia

Me: llias Diakonikolas ; email: ilias.d@ed.ac.uk

Office hours: IF-5.18, by appointment

Course Website:
http://www.inf.ed.ac.uk/teaching courses/rc/

Mailing list: rc-students@inf.ed.ac.uk

Evaluation: 2 Problem Sets (30%), Final Exam (70%)

Course Materials

* Required Textbook:
Probability and Computing Probability and Computing:

Randomized Algorithms and Probabilistic Analysis

Randomized Algorithms and

Michael Mitzenmacher

i fi [Eli Upfal Probabilistic Analysis,
. | by Mitzenmacher and Upfal.

* Course slides/notes
(supplementary).

 Useful online resources.

Prerequisites - Requirements

Good news: No formal prerequisites!

Recommended: Algorithms and Data Structures (

No programming!

Basic knowledge of discrete probability and algorithms:

* probability spaces and events, conditional probability
and independence, random variables, expectations
and moments, conditional expectation.

e asymptotic notation, basic sorting algorithms, basic
graph algorithms.

Homework O (questionnaire about your background)

Probability and Computing

Why is probability (randomness) important for
computing?

Applications (1)

Cryptography.
Simulation.
Statistics via Sampling.

Learning Theory.

Applications (2)

Queueing theory.
Data Compression.
Coding Theory.

Data Structures.

Applications (3)

Symmetry breaking.
Theory of large networks.
Quantum Computing.
Statistics.

Games and Gambling.

Traits of Randomized Algorithms

Simplicity: algorithms are often simple and elegant,
e.g., randomized quick-sort. . .

Speed: in many cases faster than the best known
deterministic algorithms.

Small probability of error
May not terminate.

Verifying Polynomial Identities

e Given two polynomials of degree d, verify the
identity
F(x)=G(x)

* Naive algorithm:

: . : 4 i
1. Convert into canonical form, |.e.,zi:00ix
2. Check if the coefficients match.

Verifying Polynomial Identities

* Suppose that F(x) is given to us as a product
of monomials, i.e., F(x)=]] _(x—a)

and G in its canonical form.

* Transforming F(x) in its canonical form in the
obvious way requires G)(dz) multiplications.

e Can we do better?

Verifying Polynomial Identities

 Can we do better? Yes, by using randomness.

* Consider the following algorithm:

1. Choose an integer r uniformly at random
from the set {1, ..., 10d}.

2. Compute F(r) and G(r).
3. If F(r)#G(r), output “NO”. O/w, output “YES.”

Running time: O(d).

Verifying Polynomial Identities

Analysis:
Suppose F(x) = G(x). Then the algorithm is always correct.

Suppose F(x) * G(x). Then the algorithm might give the
wrong answer. What is the probability of this event?

Verifying Polynomial Identities

Analysis:

Suppose F(x) 7 G(x). Then the algorithm might give the
wrong answer. What is the probability of this event £ ?

Sample space: {2 = {1,. . .IOd}
Error event: £ = {r e :F(r) = G(r)}

What is the probability of this event, i.e., Pr(E) ?

Verifying Polynomial Identities

Analysis:
Error event: E = {r e () :F(r) = G(r)} : Pr(E) ?

* F-Gis adegree d polynomial (at most d roots). Hence, E| <d.

* Since all values of r have the same probability

Pr(E)=|E|-(1/10d) <1/10

Verifying Polynomial Identities

Suppose we want to make the error probability even
smaller.

Repeat algorithm k times.

By independence probability of error becomes 10,
Running time: O(kd).

Verifying Matrix Multiplication

* Given three nxn matrices A, B, C (over GF(2))

verify whether
AB=C

* Naive algorithm:
1. Multiply 4 and B together.
2. Compare result to C.

Verifying Matrix Multiplication

1. Multiply 4 and B together. Running time?

Matrix multiplication (very well-studied).
* “Obvious” algorithm: O(n?).
 [Strassen, 1969]: O(n?*3)).

* [Coppersmith — Winograd, 1987]: O(n?37°).

* [Stothers, 2010]: O(n>>737).
[Vassilevska-Williams, 2012]: O(n?37%7).

Verifying Matrix Multiplication

Given three n x n matrices 4, B, C verifx whether4A B=C

Best known deterministic algorithm: Q(n?3727)..

Can we do better? Yes, by using randomization.

Algorithm (Rusins Freivalds, 1979):
1. Choose 7 = (rl,...rn) = {0,1}" uniformly at random.
2. Compute y=(AB)-F and z=C-T.

3. Ify#z output “NO”. O/w, output “YES.”

Verifying Matrix Multiplication

Running time: © (n?).

Analysis:
 If A B=C the algorithm is always correct.
* 0O/w, the algorithm may give the wrong answer.

What is the error probability?

Verifying Matrix Multiplication

Analysis:
* Suppose A B # C. The error event is E = {7 c{0,1}" : ABF = CF}

Claim: Pr(E)<1/2
Proof: By assumption D = 4 B — C has at least one non-zero entry.
Assume wlog that d,; # 0. We have that

n

h=- dl]r]/dll

Verifying Matrix Multiplication

Algorithm (Rusins Freivalds, 1979):

Claim: Pr(E)<1/2

Proof: For D = 4 B— C withd,;#0 we have 1, = —ijzdljrj/dn

Since the rj’s are independent, for a fixed setting of r,, ..., 7,
the RHS is fixed.

Hence, the conditional probability that 7, is equal to this value
is at most 7.

Since this holds for every setting of of r,, ..., r, the claim
follows. [l

Finding a Minimum cut in a Graph

Let G = (V, E) be an undirected graph.

e Cut =set of edges whose removal makes the graph
disconnected.

1 2 Cut of size 2
X X
3 4

* Size of a cut = number of edges it contains
* Minimum cut = cut of minimum size

Finding a Minimum cut in a Graph

Minimum cut problem: Given G compute a minimum cut.
Let n = number of vertices; m = number of edges.
* Fastest known deterministic algorithms: Q (mn)

 Fastest known randomized algorithm: O (n? log> n)
[Karger’93; Karger-Stein’96]

Edge Contraction Operation

Contraction of an edge (u, v):
 Merge the two vertices into one.

* Eliminate all edges between u and v.
* Keep all other edges.

Example:
1 2 1 2.4

5 5
@

Random Contraction Algorithm

Random Contraction Algorithm [Karger’93]:

Repeat

* Choose an edge (u«,v) uniformly at random from E.

* Contract the vertices u and v to a super-vertex w = {u,v}.

until G has only 2 vertices.
* Report the corresponding cut.

Intuition: 1f min cut C is small, probability we choose edge in C also
small.

Lemma: The algorithm outputs a min-cut with probability at least 2/x?.

Random Contraction Algorithm

ﬁepeat

Lemma: The algorithm outputs a min-cut with probability at least 2/n°.

Proof Sketch: Fix a minimum cut C.
Let £, be the event: “ edge contracted in iteration i notin C.”

Want Pr(ﬂ’};fEi) 2%. Can show that Pr(ﬂ’ | E) _34_1.

n—2 ‘ 2

Pr(ﬂ':;lel) — II:IIPr(Ei ﬂZJ_=11EJ) 2 n(n— 1)

Hence,

Conclusions

* Reading material: Chapter 1 of textbook.

* Check out class webpage.

