What is provenance?

Querying and storing XML

Week 8 Provenance March 12-15, 2013

• Evidence of

- Origin
- History
- Authenticity
- Integrity
- Value

QSX

March 12-15, 2013

Why is provenance important for *data*?

- For traditional (paper) information:
 - Creation process leaves "paper trail"
 - Easier to detect modification, copying, forgery
 - Can usually judge a book by its cover
- For electronic information:
 - Often no such thing as a "bit trail"
 - Easy to forge, plagiarize, alter data undetected
 - Can't judge a database by its cover there isn't one
- Provenance essential for judging quality of data

3

Provenance failures can be expensive

2

4

Especially important for scientific data

SCIENTIFIC PUBLISHING

A Scientist's Nightmare: Software Problem Leads to Five Retractions

Until recently, Geoffrey Chang's career was on a trajectory most young scientists only dream about. In 1999, at the age of 28, the protein crystallographer landed a faculty position at the prestigious Scripps Research Institute in San Diego, California. The next year, in a ceremony at the White House, Chang received a

2001 *Science* paper, which described the structure of a protein called MsbA, isolated from the bacterium *Escherichia coli*. MsbA belongs to a huge and ancient family of molecules that use energy from adenosine triphosphate to transport molecules across cell membranes. These so-called ABC transporters perform many

QSX

March 12-15, 2013

Why-provenance (Buneman, Khanna, Tan 2001)

5

• *Why-provenance*: shows input data *witnessing* existence of output data

7

Provenance in Databases

- Provenance models extensively studied in *relational databases*
 - Why-provenance
 - Where-provenance
 - How-provenance
 -?
- Will examine provenance models for relational queries first
 - following recent survey [Cheney, Chiticariu, Tan 2009]

QSX

March 12-15, 2013

Why-provenance (Buneman, Khanna, Tan 2001)

6

- *Why-provenance*: shows input data *witnessing* existence of output data
- = subset of input that is "enough" to generate output

8

Why-provenance (Buneman, Khanna, Tan 2001)

- *Why-provenance*: shows input data *witnessing* existence of output data
- = subset of input that is "enough" to generate output

Where-provenance

9

(Buneman, Khanna, Tan 2001)

• Where-provenance: tracks where data in output comes from

П

Where-provenance

(Buneman, Khanna, Tan 2001)

• Where-provenance: tracks where data in output comes from

QSX

March 12-15, 2013

2

3

Where-provenance

10

(Buneman, Khanna, Tan 2001)

• Can think of provenance as "links"

12

Where-provenance

(Buneman, Khanna, Tan 2001)

- Can think of provenance as "links"
- or propagated "annotations"

QSX

March 12-15, 2013

Where-provenance

13

(Buneman, Khanna, Tan 2001)

• Not invariant under query equivalence

15

SELECT	r.A,r.B, s.C ,s.D
FROM R	r, S s
WHEERE	r.C = s.C

A	В	С	D
I	2	2	2
I	2	2	3

Where-provenance

(Buneman, Khanna, Tan 2001)

Not invariant under query equivalence

QSX

March 12-15, 2013

Early work

14

• Definitions were very complicated

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any relational operator over tables T_1, \ldots, T_m , and let $T = Op(T_1, \ldots, T_m)$ be the table that results from applying Op to T_1, \ldots, T_m . Given a tuple $t \in T$, we define t's derivation in T_1, \ldots, T_m according to Op to be $Op_{(T_1, \ldots, T_m)}^{-1}(t) = \langle T_1^*, \ldots, T_m^* \rangle$, where T_1^*, \ldots, T_m^* are maximal subsets of T_1, \ldots, T_m such that

(a)
$$Op(T_1^*, \ldots, T_m^*) = \{t\}.$$

(b) $\forall T_i^* : \forall t^* \in T_i^* : Op(T_1^*, \ldots, \{t^*\}, \ldots, T_m^*) \neq \emptyset.$

We also say that $Op_{T_i}^{-1}(t) = T_i^*$ is t's derivation in T_i , and each tuple t^* in T_i^* contributes to t, for i = 1..m.

16

Early work

Early work

• Definitions were very complicated.

Definition 6. (Witness Basis) Consider a normal form query Q. The witness basis for a singular value t with respect to Q and D, denoted as $W_{Q,D}(t)$, is: (1) If Q is of the form $Q_1 \sqcup \ldots \sqcup Q_n$ then $W_{Q,D}(t) = W_{Q_1,D}(t) \sqcup \ldots \sqcup W_{Q_n,D}(t)$. (2) If Q is of the form $\{e_1 \mid p_0 \in o_0, \ldots, p_n \in e_n, condition\}$, let Ψ be the set of all valuations on the variables of Q such that "where" clause of Q holds under each valuation in Ψ . Then, $W_{Q,D}(t) = \{[p_0]_{\psi} \sqcup \ldots \sqcup [p_n]_{\psi}\} \ \psi \in \Psi, t = [e]_{\psi}\}$. Note that $e_i (0 \le i \le n)$ is a database constant since Q is in normal form. (3) Otherwise, $W_{Q,D}(t) = \{\}$.

More generally, for any well-formed query Q, we can define the witness basis by extending (2) as follows. We partition the set of $p_i \in e_i$ in the "where" clause of Q into two parts: $S_1 = \{p_i \mid e_i \text{ is the database constant } D\}$ and $S_2 = \{(p_i, e_i) \mid p_i \text{ is a pattern matched against a query <math>e_i\}$. We use p_1^1, \dots, p_k^k to denote the members of S_1 and $(p_0^2, e_0^2), \dots, (p_m^2, e_m^2)$ to denote the members of S_2 . Let Ψ be the set of all valuations on the variables of Q such that for each valuation in Ψ , "where" clause of Q holds. Then $W_{Q,D}(t) = \{P_1 \sqcup U_2 \mid \psi \in \Psi, t \sqsubseteq [e]_{\psi}, P_1 = [p_0^1]_{\psi} \sqcup \dots \sqcup [p_k^1]_{\psi}, P_2 = w_1 \sqcup \dots \sqcup w_m$ where $w_i \in W_{\psi(e_1^2),D}([p_i^2]_{\psi})\}$. For a compound value t, the witness basis is the product of individual witness basis of singular values making up t. That is, consider $t = t_1 \sqcup \dots \sqcup t_m$ where each t_i is singular. Then $W_{Q,D}(t) = \{w_1 \sqcup \dots \sqcup w_m \mid w_i \in W_{Q,D}(t_i)\}$.

QSX

March 12-15, 2013

Ordinary relational algebra

17

$$\begin{array}{rcl} (\{t\})(I) &=& \{t\} \\ R(I) &=& I(R) \\ (\sigma_{\theta}(Q))(I) &=& \{t \in Q(I) \mid \theta(t)\} \\ (\pi_{U}(Q))(I) &=& \{t[U] \mid t \in Q(I)\} \\ (Q_{1} \bowtie Q_{2})(I) &=& \{t \mid t[U_{1}] \in Q_{1}(I), t[U_{2}] \in Q_{2}(I)\} \\ (Q_{1} \cup Q_{2})(I) &=& Q_{1}(I) \cup Q_{2}(I) \\ (\rho_{A \mapsto B}(Q))(I) &=& \{t[A \mapsto B] \mid t \in Q(I)\} \end{array}$$

19

• Definitions were very complicated.

Definition 8. (Derivation Basis) Consider a normal form query Q. The derivation basis for l:v where v is an atomic value, denoted as $\Gamma_{Q,D}(l:v)$ with respect to Q and D, is defined as below:

(1) If Q = Q₁ ⊔ ... ∪ Q_n then Γ_{Q,D}(l: v) = Γ_{Q1,D}(l: v) ∪ ... ∪ Γ_{Qn,D}(l: v).
 (2) If Q has the form {e | p₀ ∈ e₀,..., p_n ∈ e_n,condition}, let Ψ be the set of valuations on the variables of Q such that the "where" clause of Q holds under each valuation and ψ(e) contains l.v. For each ψ ∈ Ψ, let p_{x_ψ} denote the path in e that points to a variable x_ψ such that there exists p' and p'' so that l = p',p'' and ψ(p_{x_ψ}) = p' and ψ(x_ψ)(p'') = v. Then, Γ_{Q,D}(l: v) = {([p₀]_ψ ∪ ... ∪ [p_n]_ψ,S) | ψ ∈ Ψ, S = {ψ(p'_1),p'' | p'_i is the path that points to variable x_ψ in pattern p_i, 0 ≤ i ≤ n}.
 (3) Otherwise, Γ_{Q,D}(l: v) = {.

More generally, the derivation basis of *l*:*v* where *v* is a compound value is defined to be the derivation basis of all possible (path,value) pairs p':v' such that p':v' points to a value in *v*. The derivation basis for multiple (path,value) pairs is defined to be the product of the derivation basis of individual (path,value) pairs. That is, $\Gamma_{Q,D}(p_1:v_1,p_2:v_2) = \Gamma_{Q,D}(p_1:v_1) * \Gamma_{Q,D}(p_2:v_2) = \{(w_1 \sqcup w_2, P_1 \cup P_2) \mid (w_1, P_1) \in \Gamma_{Q,D}(p_1:v_1), (w_2, P_2) \in \Gamma_{Q,D}(p_2:v_2)\}$.

QSX

March 12-15, 2013

Datalog

18

- Queries can also be written in a logical form called *Datalog* (subset of Prolog)
- $A(x_1,...,x_n) := R(y_1,...,y_m), ..., S(z_1,...,z_k)$
 - (subject to some restrictions...)
- Theorem: Relational algebra, relational calculus and nonrecursive Datalog are equally expressive

20

Example

 Two (equivalent) queries on a small table

21

QSX

```
March 12-15, 2013
```


22

Why-provenance [Buneman et al. 2001]

• Propagate sets of *witnesses*

QSX

March 12-15, 2013

Why-provenance

22

Also sensitive to query rewriting

Instance I: R t: 1 2 t': 1 3 t'': 4 2	Two equivalent queri Q : Ans(x,y) := R(x,y). Q' : Ans(x,y) := R(x,y)	
Instance I: R I B t: 1 2 t': 1 3 t'': 4 2	$\begin{array}{c c} \textbf{Output of} \\ Q(I) \\ \hline A & B \\ \hline 1 & 2 \\ 1 & 3 \\ 4 & 2 \end{array} \begin{array}{c} y hy \\ \{\{t\}\} \\ \{\{t''\}\} \\ \{\{t''\}\} \end{array}$	$\begin{array}{c c} \textbf{Output of} \\ Q'(I) \\ \hline \textbf{A} & \textbf{B} \\ \hline 1 & 2 \\ 1 & 3 \\ 4 & 2 \end{array} \begin{array}{c} \textit{why} \\ \{\{t\}, \{t, t'\}\} \\ \{\{t'\}, \{t, t'\}\} \\ \{\{t''\}\} \end{array}$

23

QSX

Why-provenance

• Also sensitive to query rewriting

Where-provenance

• May not be preserved by query equivalence

25

Where-provenance

[Buneman et al. 2001]

Propagate field-level annotation sets

$$\begin{split} & \mathsf{Where}(\{u\},I,t) = \begin{cases} (A:\emptyset)_{A\in U}, & \text{if } t = u \\ \bot, & \text{otherwise} \end{cases} \\ & \mathsf{Where}(R,I,t) = \begin{cases} (A:\{(R,t,A)\})_{A\in U}, & \text{if } t\in I(R) \\ \bot, & \text{otherwise} \end{cases} \\ & \mathsf{Where}(\sigma_{\theta}(Q),I,t) = \begin{cases} \mathsf{Where}(Q,I,t), & \text{if } \theta(t) \\ \bot, & \text{otherwise} \end{cases} \\ & \mathsf{Where}(\pi_U(Q),I,t) = \bigsqcup_L \{\mathsf{Where}(Q,I,u)[U] \mid u[U] = t\} \end{cases} \\ & \mathsf{Where}(\rho_{B\mapsto C}(Q),I,t) = (A:\mathsf{Where}(Q,I,t[C\mapsto B]) \cdot (A[C\mapsto B]))_{A\in U} \\ & \mathsf{Where}(Q_1 \bowtie Q_2,I,t) = \mathsf{Where}(Q_1,I,t[U_1]) \sqcup_S \mathsf{Where}(Q_2,I,t[U_2]) \\ & \mathsf{Where}(Q_1 \cup Q_2,I,t) = \mathsf{Where}(Q_1,I,t) \sqcup_L \mathsf{Where}(Q_2,I,t) \end{split}$$

QSX

March 12-15, 2013

Provenance and XML

24

- Early work on provenance (why/where) focused on deterministic *semistructured model*
 - Similar to (special case of) XML
- Advantages:
 - XML more general; nodes easily addressed
- Complications:
 - Little work on prov for XPath/XQuery, or other XML standards
- Next topic: provenance for **updated data**

26

Provenance for curated data

Curated databases

- Many bio-medical databases are curated
- data entered, checked manually
- high-quality
- but expensive
- provenance, versioning important
- lots of (re)implementation effort

QSX

March 12-15, 2013

Curated databases

28

27

- Many bio-medical databases are curated
 - data entered, checked manually
 - high-quality
 - but expensive
 - provenance, versioning important
 - lots of (re)implementation effort

Provenance

28

- Idea: Instead of trying to allow only "good" contributors
 - allow anyone to contribute
 - but record what they did
- Allows "auditing" after-the-fact
 - can discard or approve changes
- May combine with access control
 - allow retrospective analysis of trusted contributors

29

QSX

March 12-15, 2013

Copy-paste provenance

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

30

Copy-paste provenance

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

30

QSX

March 12-15, 2013

Copy-paste provenance

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

30

Copy-paste provenance

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

30

Copy-paste provenance

 As data (tree) is updated, record "links" identifying "same" data in consecutive versions

31

Relational representation

		(a)	Pro	v
1) delete c5	from T;		p Loc	Src
2) copy S1/a1/y		121 C		
 insert {c2 : {} copy S1/a2 	into T; into T/c2;	121 D	$T/c_5/x$	\perp
5) insert {y : 10}	into T/c2;	121 C	$T/c_5/y$	1
6) insert {c3 : {}		122 C	$T/c_1/y$	
7) copy S1/a3 8) copy S2/b3/y	into T/c3; into T/c3/y;	123 I	T/c_2	
9) insert {c4 : {}	into T;	124 C	T/c_2	
10) copy S2/b2 11) insert {y : 12}	into T/c4; into T/c4;			$S_1/a_2/x$
11/ 1115CIC (y . 12)	11100 1704,	125 I	$T/c_2/y$	
		126 I	T/c_3	
		127 C	T/c_3	S_1/a_3
		127 C	$T/c_3/x$	$S_1/a_3/x$
		127 C		$S_1/a_3/y$
				$S_2/b_3/y$
		129 I	T/c_4	
			T/c_4	
		130 C	$T/c_4/x$	$S_{2}^{-}/b_{2}^{-}/x$
		131 I	$T/c_4/y$	

QSX

March 12-15, 2013

Hierarchical provenance

31

- Infer that prov of child is child of prov
- Only store important (non-inferrable) edges

33

- Isn't this expensive?
 - storing one edge per copied node
- Two optimizations:
 - *Hierarchical* provenance: inheriting inferrable annotations
 - *Transactional* provenance: storing only "diff" between "committed" versions, not intermediate steps

QSX

March 12-15, 2013

Hierarchical provenance

32

	Infer(t,p)	\leftarrow	$\neg(\exists x, q.HProv(t, x, p, q))$	K
	Prov(t, op, p, q)	\leftarrow	HProv(t, op, p, q).	5
	Prov(t,C,p/a,q/a)	\leftarrow	Prov(t, C, p, q), Infer(t, p).	Ń
4	$Prov(t,I,p/a,\bot)$	\leftarrow	$Prov(t, I, p, \bot), Infer(t, p).$	*
4	$Prov(t,D,p/a,\bot)$	\leftarrow	$Prov(t, D, p, \bot), Infer(t, p).$	\cup

- Infer that prov of child is child of prov
- Only store important (non-inferrable) edges

33

QSX

Transactional provenance

- Require users to commit "checkpoints" (official versions)
- Concatenate edges between versions

34

QSX

March 12-15, 2013

Effect of optimizations

(b) Prov	(c) HProv	(<i>d</i>) HProv
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Transactional	Hierarchical	Both

35

Transactional provenance

- Require users to commit "checkpoints" (official versions)
- Concatenate edges between versions

34

QSX

March 12-15, 2013

Effect of optimizations

35

Queries

- Provenance queries are naturally recursive
 - don't know how far back into history we need to look

```
QSX
```

March 12-15, 2013

Generalizing to bulk updates

36

[Buneman, Cheney & Vansummeren 2008]

Performance

- Query performance generally *improves* with H, T, HT storage strategy
 - for H, this is somewhat surprising!
 - Cheaper to recompute inferred links than to load

37

QSX

OSX

March 12-15, 2013

Database Wiki

[Buneman, Cheney, Lindley, Müller, SIGMOD/SIGMOD Record 2011]

39

- Wiki-like Web application for data curation
- Archiving, copypaste provenance "built-in"
- http://code.google.com/p/database-wiki/

Edit View			
Juit View	Settings		
LFCS speaker Comments	History ®	lar	
Version		User	Action
11 Dec 2011 1	1:57:12	James Cheney	INSERT
19 Dec 2011 1	5:18:21	James Cheney	INSERT
19 Dec 2011 1	5:18:32	James Cheney	UPDATE
16 Mar 2012 1	0:00:33	James Cheney	UPDATE

Provenance & annotation for XML queries

How-provenance

(Green, Karvounakaris, Tannen 2007)

• *How-provenance:* shows how records were combined to form output

QSX

March 12-15, 2013

How-provenance

40

(Green, Karvounakaris, Tannen 2007)

 How-provenance: shows how records were combined to form output

42

How-provenance

41

(Green, Karvounakaris, Tannen 2007)

• *How-provenance:* shows how records were combined to form output

QSX

March 12-15, 2013

QSX

How-provenance

(Green, Karvounakaris, Tannen 2007)

• *How-provenance:* shows how records were combined to form output

Some standard examples of semirings

- Booleans B = $(\{0,1\}, 0, 1, \vee, \wedge)$
- Numbers N = $(\{0,1,\ldots\},0,1,+,\cdot)$
- Free semiring $\mathbb{N}[X]$
 - Polynomials over X with coefficients from N

46

• Formal addition, multiplication

More about howprovenance

- Formalized using *semiring-valued relations*
- Idea: Each n-tuple in relation carries an annotation from a *commutative semiring*
- K = (K, 0, 1, +, *) is a commutative semiring if:
 - (K,0,+) and (K,1,*) are commutative monoids
 - a*0 = 0 (annihilation)
 - a(b+c) = ab+ac (distributivity)

QSX

March 12-15, 2013

Semiring-valued relational algebra

45

QSX

Semiring-valued relational algebra

$$(\{u\})^{K}(I)t = \begin{cases} 1 & t = u \\ 0 & \text{otherwise} \end{cases}$$

$$R^{K}(I)t = I(R)(t)$$

$$(\sigma_{\theta}(Q))^{K}(I)t = \theta(t)$$

$$(\rho_{A \mapsto B}(Q))^{K}(I)t = Q^{K}(t)$$

$$(\pi_{V}(Q))^{K}(I)t = u_{\in \text{sup}}$$

$$(Q_{1} \bowtie Q_{2})^{K}(I)t = Q_{1}^{K}$$

$$(Q_{1} \cup Q_{2})^{K}(I)t = Q_{1}^{K}$$

$$(Q_{1} \cup Q_{2})^{K}(I)t = Q_{1}^{K}$$

QSX

March 12-15, 2013

Key observation

47

- When K = B, we get standard set-based semantics
- When K = N, we get standard *multiset* semantics
- When $K = \mathbb{N}[X]$, we get *how-provenance* semantics

48

Semiring-valued relational algebra

R

t:

t':

t'':

R

t: 1 2

t': 1 3

4

QSX

March 12-15, 2013

How-provenance

47

• Preserves multiset, but not set semantics Output of Instance *I*:

> 1 2 (t

3 1

How-provenance

 Preserves multiset, but not set semantics Output of Instance *I*: Q(I), Q'(I): RTv A B A B Has Why, multiset Q^{\dagger} 2 1 t: 2 Q'3 t': 1 semantics as 1 3 t'': 4 2 4 $\mathbf{2}$ instances ut of Instance *I*: Uuvpuv.or... Q'(I)Q(I)RА В A B how A B how 1 2 $t^2 + t \cdot t'$ t: 1 2 (t2 t': 1 3 1 3 3 $(t')^2 + t \cdot t'$ 1 t'': 4 $(t'')^2$ 2 $\mathbf{2}$ t'' $\mathbf{2}$ 4

Examples

Boolean semiring

QSX

March 12-15, 2013

Examples

S

2

3 Т

Т

Т

51

2

3 2

4

Boolean semiring

Т

т

R

2 2

2 3

3

4

2

49

Examples

50

• Natural numbers semiring

52

QSX

Т

Т

March 12-15, 2013

SELECT A,B

B А

2

3 2

FROM R JOIN S

Examples

Natural numbers semiring

53

OSX

March 12-15, 2013

One (semi) ring to rule them all

- The polynomial semiring is "most general"
 - any other K-semantics is an instance

55

Examples

Polynomial semiring

54

QSX

March 12-15, 2013

- One (semi) ring to rule them all
 - The polynomial semiring is "most general"
 - any other K-semantics is an instance

One (semi) ring to // rule them all

• The polynomial semiring is "most general"

• any other K-semantics is an instance

One (semi) ring to // rule them all

- The polynomial semiring is "most general"
 - any other K-semantics is an instance

- The polynomial semiring is "most general"
 - any other K-semantics is an instance

Observation

- Why-provenance can be *recovered* as an instance of how-provenance.
 - Idea: Take K = (P(P(X)), {}, {}}, u, U)

56

How-provenance for XML

• Consider *unordered XQuery*

 $\begin{array}{l} p::=l \mid \$ x \mid () \mid (p) \mid p, p \mid \texttt{for} \$ x \texttt{ in } p \texttt{ return } p \\ \mid \texttt{ let } \$ x := p \texttt{ return } p \mid \texttt{if } (p=p) \texttt{ then } p \texttt{ else } p \\ \mid \texttt{ element } p \{p\} \mid \texttt{name}(p) \mid \texttt{annot } k \mid p \mid p/s \\ s::=ax::nt \\ ax::=\texttt{self} \mid \texttt{child} \mid \texttt{descendant} \\ nt::=l \mid \ast \end{array}$

- Evaluate over annotated (unordered) XML
 - Each node of document has a semiring-valued annotation

QSX

March 12-15, 2013

57

{\$doc/*/*}

58

Example


```
{$doc/*/*}
```

QSX

March 12-15, 2013

On the other hand...

58

- Semiring model is *not* the end of the story
- For example, where-provenance is not an instance of semiring model
 - There are other non-instances.
- Only handles unordered XML
 - also does not handle negation
- So, further generalization may be possible.

59

Provenance in other settings

- Scientific workflows/distributed computing
- Business process modeling
- Semantic Web
- Operating systems, file systems
- This work is generally not as formal
 - not as clear what is implemented and why
- Understanding and relating these models is important future work

60

```
QSX
```

March 12-15, 2013

Summary of course

- Standards/languages for XML
 - XPath/XQuery
 - XSLT
 - DTDs + XML Schema
- From XML to relations, and back

61

- XML shredding
- XML publishing

Provenance in other settings

QSX

March 12-15, 2013

Summary of course

60

- Updates
 - XQuery Update
 - Updating XML stored in relations
- Types
 - Regular expression types/XDuce
 - XQuery typing, query/update independence

62

Provenance - today

Presentations

- 10, 15, or 20 minutes (depending on group size)
- Each group member must participate
- Cover:
 - background
 - what you did (papers read, development)

63

- status; experimental results
- conclusions

QSX

March 12-15, 2013