What is provenance?

Querying and storing XML

Week 8
Provenance
March 12-15, 2013

- Evidence of
- Origin
- History
- Authenticity
- Integrity
- Value

Science
\IAAAS

Why is provenance important for data?

- For traditional (paper) information:
- Creation process leaves "paper trail"
- Easier to detect modification, copying, forgery
- Can usually judge a book by its cover
- For electronic information:
- Often no such thing as a "bit trail"
- Easy to forge, plagiarize, alter data undetected
- Can't judge a database by its cover - there isn't one
- Provenance essential for judging quality of data

Provenance failures can be expensive

```
Elle Edit View History Bookmarks Iools Help
```

septenera 2008

UAL Shares Fall as Old Story Surfaces Online

The mysterious appearance on the Internet of a nearly six-year-old news story about UAL Corp.'s 2002 bankruptcy-court filing caused investors to dump the stock Monday.
After trading near $\$ 12.50$ a share early Monday, stock in United Airlines' parent quickly fell to $\$ 3$ on the Nasdaq Stock Market on heavy volume before trading was halted and the company issued a statement saying that reports of a new Chapter 11 filing were "completely untrue."

Once trading resumed 90 minutes later, UAL shares rebounded, but they still closed off 11% for the day at $\$ 10.92$. Nasdaq, a unit of Nasdaq OMX Group Inc.,

Especially important for scientific data

SCIENTIFIC PUBLISHING
 A Scientist's Nightmare: Software Problem Leads to Five Retractions

Until recently, Geoffrey Chang's career was on a trajectory most young scientists only dream about. In 1999, at the age of 28 , the protein crystallographer landed a faculty position at the prestigious Scripps Research Institute in San Diego, California. The next year, in a ceremony at the White House, Chang received a

2001 Science paper, which described the structure of a protein called MsbA, isolated from the bacterium Escherichia coli. MsbA belongs to a huge and ancient family of molecules that use energy from adenosine triphosphate to transport molecules across cell membranes. These so-called ABC transporters perform many

Provenance in Databases

- Provenance models extensively studied in relational databases
- Why-provenance
- Where-provenance
- How-provenance
-?
- Will examine provenance models for relational queries first
- following recent survey [Cheney, Chiticariu, Tan 2009]

Why-provenance

(Buneman, Khanna, Tan 2001)

- Why-provenance: shows input data witnessing existence of output data

R		
A	B	C
1	2	2
1	2	3
2	3	4

S

C	D
1	2
2	2
2	3

R JOIN S

A	B	C	D
1	2	2	2
1	2	2	3

Why-provenance

(Buneman, Khanna, Tan 2001)

- Why-provenance: shows input data witnessing existence of output data
- = subset of input that is "enough" to generate output

R			S		R JOIN S			
A	B	C	C	D		B	C	
1	2	2	1	2	A	B	C	D
1	2	3	2	2	1	2	2	2
2	3	4	2	3	1	2	2	3

Why-provenance

(Buneman, Khanna, Tan 2001)

- Why-provenance: shows input data witnessing existence of output data
- = subset of input that is "enough" to generate output

	R	
A	B	C
1	2	2
1	2	3
2	3	4

S	
C	D
1	2
2	2
2	3

R JOIN S

A	B	C	D
1	2	2	2
1	2	2	3

Where-provenance

(Buneman, Khanna, Tan 2001)

- Where-provenance: tracks where data in output comes from

Where-provenance

(Buneman, Khanna, Tan 2001)

- Can think of provenance as "links"

Where-provenance

(Buneman, Khanna, Tan 2001)

- Can think of provenance as "links"
- or propagated "annotations"

R			S		R JOIN S			
A	B	C	C	D	A	B	C	D
1	2	2	1	2	A	2	2	2
1	2	3	2	2	1	2	2	3
2	3	4	2	3				

Where-provenance

(Buneman, Khanna, Tan 2001)

- Not invariant under query equivalence

R		
A	B	C
1	2	2
1	2	3
2	3	4

S	
C	D
1	2
2	2
2	3

SELECT r.A,r.B,s.C,s.D FROM R r, S WHEERE r.C = s.C

A	B	C	D
1	2	2	2
1	2	2	3

Where-provenance

(Buneman, Khanna, Tan 2001)

- Not invariant under query equivalence

R			S		$\begin{aligned} & \text { SELECT r.A,r.b,r.C,s.D } \\ & \text { FROM R r, s s } \end{aligned}$				
A	B	C	C	D	A	B	c		
1	2	2	1	2	A	B	C		
1	2	3	2	2	1	2	2	2	2
2	3	4	2	3	1	2	2	3	

Early work

- Definitions were very complicated

[^0]
Early work

- Definitions were very complicated.

Definition 6. (Witness Basis) Consider a normal form query Q. The witness basis for a singular value t with respect to Q and D, denoted as $W_{Q, D}(t)$, is (2) If Q is of the form $\left\{e \mid p_{0} \in e_{0}, \ldots, p_{n} \in e_{n}\right.$, condition $\}$, let Ψ be the set of all valuations on the variables of Q such that "where" clause of Q holds under each valuation in Ψ. Then, $W_{Q, D}(t)=\left\{\left[p_{0} \rrbracket \psi \sqcup \ldots \sqcup \llbracket p_{n} \rrbracket_{\psi} \mid \psi \in \Psi, t=[e]_{\psi}\right\}\right.$. Note that $e_{i}(0 \leq i \leq n)$ is a database constant since Q is in normal form.) Otherwise, $W_{Q, D}(t)=\{$
More generally, for any well-formed query Q, we can define the witness basis by extending (2) as follows. We partition the set of $p_{i} \in e_{i}$ in the "where" $S_{2}=\left\{\left(p_{i}, e_{i}\right) \mid p_{i}\right.$ is a pattern matched against a query $\left.e_{i}\right\}$. We use p_{0}^{1}...., p_{1}^{1} to denote the members of S_{1} and $\left(p_{0}^{2}, e_{0}^{2}\right), \ldots,\left(p_{m}^{2}, e_{m}^{2}\right)$ to denote the members of S_{2}. Let Ψ be the set of all valuations on the variables of Q such that for each aluation in Ψ, "where" clause of Q holds. Then $W_{Q, D}(t)=\left\{P_{1} \cup P_{2} \mid \psi \in \Psi, t \succeq\right.$
 basis of singular values making up t. That is, consider $t=t_{1} \sqcup \ldots \sqcup t_{m}$ where each t_{i} is singular. Then $W_{Q, D}(t)=\left\{w_{1} \sqcup \ldots \sqcup w_{m} \mid w_{i} \in W_{Q, D}\left(t_{i}\right)\right\}$.

Datalog

- Queries can also be written in a logical form called Datalog (subset of Prolog)
- $A\left(x_{1}, \ldots, x_{n}\right):-R\left(y_{1}, \ldots, y_{m}\right), \ldots, S\left(z_{1}, \ldots, z_{k}\right)$
- (subject to some restrictions...)
- Theorem: Relational algebra, relational calculus and nonrecursive Datalog are equally expressive

Example

- Two (equivalent) queries on a small table

Two equivalent queries:
$Q: \operatorname{Ans}(x, y):-R(x, y)$.
$Q^{\prime}: \operatorname{Ans}(x, y):-R(x, y), R(x, z)$.

Output of $Q(I), Q^{\prime}(I)$:

A	B
1	2
1	3
4	2

Why-provenance [Buneman et al. 2001]

- Propagate sets of witnesses
- elements of $\{\mathrm{J} \subseteq \mathrm{I} \mid \mathrm{t} \in \mathrm{Q}(\mathrm{J})\}$
$\mathrm{Why}(\{t\}, I,\{u\})= \begin{cases}\{\emptyset\}, & \text { if }(t=u),\end{cases}$
Pairwise union of sets of justifications
$S \oplus T=\{\cup K \mid J \in S, K \in T\}$
if $(t \in R(I))$,
otherwise.
if $\theta(t)$,
otherwise.
u) $\mid u \in Q(I), t=u[U]\}$

Why $\left.\left(\rho_{A \mapsto B}(Q), I, t\right)=\operatorname{Why}\left(Q, I ;_{1} \mapsto A\right]\right)$
$\mathrm{Why}\left(Q_{1} \bowtie Q_{2}, I, t\right)=\operatorname{Why}\left(Q_{1}, I, t\left[U_{1}\right]\right)^{\text {² }} \mathrm{U} \operatorname{Why}\left(Q_{2}, I, t\left[U_{2}\right]\right)$
$\left.\mathrm{Why}\left(Q_{1} \cup Q_{2}, I, t\right)=\mathrm{Why}\left(Q_{1}, I, t\right) \cup \mathrm{Why}\left(Q_{2}, I, t\right)\right)$

Why-provenance

- Also sensitive to query rewriting

Two equivalent queries:
$Q: \operatorname{Ans}(x, y):-R(x, y)$.
$Q^{\prime}: \operatorname{Ans}(x, y):-R(x, y), R(x, z)$
Output of $Q(I), Q^{\prime}(I)$

| A | B |
| :--- | :--- | :--- |

1	2
1	3
	2

Why-provenance [Buneman et al. 2001]

- Propagate sets of witnesses
- elements of $\{\mathrm{J} \subseteq \mathrm{I} \mid \mathrm{t} \in \mathrm{Q}(\mathrm{J})\}$ Why $(\{t\}, I,\{u\})= \begin{cases}\{\emptyset\}, & \text { if }(t=u), \\ \emptyset, & \text { otherwise } .\end{cases}$ Why $(R, I, t)= \begin{cases}\{\{(R, t)\}\}, & \text { if }(t \in R(I)) \\ \emptyset, & \text { otherwise } .\end{cases}$ Why $\left(\sigma_{\theta}(Q), I, t\right)= \begin{cases}\mathrm{Why}(Q, I, t), & \text { if } \theta(t), \\ \emptyset, & \text { otherwise. }\end{cases}$ $\mathrm{Why}\left(\pi_{U}(Q), I, t\right)=\bigcup\{\mathrm{Why}(Q, I, u) \mid u \in Q(I), t=u[U]\}$ $\operatorname{Why}\left(\rho_{A \mapsto B}(Q), I, t\right)=\operatorname{Why}(Q, I, t[B \mapsto A])$ $\operatorname{Why}\left(Q_{1} \bowtie Q_{2}, I, t\right)=\operatorname{Why}\left(Q_{1}, I, t\left[U_{1}\right]\right)$ ש $\operatorname{Why}\left(Q_{2}, I, t\left[U_{2}\right]\right)$ $\left.\operatorname{Why}\left(Q_{1} \cup Q_{2}, I, t\right)=\operatorname{Why}\left(Q_{1}, I, t\right) \cup \operatorname{Why}\left(Q_{2}, I, t\right)\right)$

Why-provenance

- Also sensitive to query rewriting

Instance I :
R

Where-provenance

- May not be preserved by query equivalence

Where-provenance

[Buneman et al. 2001]

- Propagate field-level annotation sets

```
    Where \((\{u\}, I, t)= \begin{cases}(A: \emptyset)_{A \in U}, & \text { if } t=u \\ \perp, & \text { otherwise }\end{cases}\)
    Where \((R, I, t)= \begin{cases}(A:\{(R, t, A)\})_{A \in U}, & \text { if } t \in I(R) \\ \perp, & \text { otherwise }\end{cases}\)
    Where \(\left(\sigma_{\theta}(Q), I, t\right)= \begin{cases}\text { Where }(Q, I, t), & \text { if } \theta(t) \\ \perp, & \text { otherwise }\end{cases}\)
    Where \(\left(\pi_{U}(Q), I, t\right)=\bigsqcup_{L}\{\) Where \((Q, I, u)[U] \mid u[U]=t\}\)
Where \(\left(\rho_{B \mapsto C}(Q), I, t\right)=(A \text { : Where }(Q, I, t[C \mapsto B]) \cdot(A[C \mapsto B]))_{A \in U}\)
Where \(\left(Q_{1} \bowtie Q_{2}, I, t\right)=\) Where \(\left(Q_{1}, I, t\left[U_{1}\right]\right) \sqcup_{S}\) Where \(\left(Q_{2}, I, t\left[U_{2}\right]\right)\)
Where \(\left(Q_{1} \cup Q_{2}, I, t\right)=\) Where \(\left(Q_{1}, I, t\right) \sqcup_{L}\) Where \(\left(Q_{2}, I, t\right)\)
```


Provenance and XML

- Early work on provenance (why/where) focused on determinstic semistructured model
- Similar to (special case of) XML
- Advantages:
- XML more general; nodes easily addressed
- Complications:
- Little work on prov for XPath/XQuery, or other XML standards
- Next topic: provenance for updated data

Curated databases

Provenance for curated data

28

Provenance

- Idea: Instead of trying to allow only "good" contributors
- allow anyone to contribute
- but record what they did
- Allows "auditing" after-the-fact
- can discard or approve changes
- May combine with access control
- allow retrospective analysis of trusted contributors

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions

QSX

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions 30

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions

QSX
30

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions

Copy-paste provenance

- As data (tree) is updated, record "links" identifying "same" data in consecutive versions

QSX
30

Copy-paste provenance -

Relational representation

Relational representation

Performance

- Isn't this expensive?
- storing one edge per copied node
- Two optimizations:
- Hierarchical provenance: inheriting inferrable annotations
- Transactional provenance: storing only "diff" between "committed" versions, not intermediate steps

Hierarchical provenance

- Infer that prov of child is child of prov
- Only store important (non-inferrable) edges

```
Infer(t,p) < 
    Prov (t,op,p,q) \leftarrow HProv(t,op,p,q).
    Prov}(t,\textrm{C},p/a,q/a) \leftarrow Prov(t,C,p,q),\operatorname{Infer}(t,p)
Prov}(t,\textrm{I},p/a,\perp) \leftarrow P Prov(t,I,p,\perp),\operatorname{Infer}(t,p)
Prov}(t,\textrm{D},p/a,\perp) \leftarrow Prov(t,\textrm{D},p,\perp),\operatorname{Infer}(t,p
- Infer that prov of child is child of prov
- Only store important (non-inferrable) edges
C

\section*{Transactional provenance}

- Require users to commit
"checkpoints" (official versions)
- Concatenate edges between versions

\section*{Effect of optimizations}


Transactional


Hierarchical


Both

\section*{Transactional provenance}

ins

copy - ..............................
 \(\square\)
\(\qquad\)
del

- Require users to commit "checkpoints" (official versions)
- Concatenate edges between versions

\section*{Effect of optimizations}


\section*{Queries}
\(\operatorname{Unch}(t, p) \quad \leftarrow \quad \neg(\exists x, q \cdot \operatorname{Prov}(t, x, p, q))\).
\(\operatorname{lns}(t, p) \leftarrow \operatorname{Prov}(t, \mathrm{I}, p, \perp)\)
\(\operatorname{Del}(t, p) \leftarrow \operatorname{Prov}(t, \mathrm{D}, p, \perp)\)
\(\operatorname{Copy}(t, p, q) \leftarrow \operatorname{Prov}(t, \mathrm{C}, p, q)\)
Trace \((p, t, p, t)\).
\(\operatorname{Trace}(p, t, q, u) \leftarrow \operatorname{Trace}(p, t, r, s)\), Trace \((r, s, q, u)\)
\(\operatorname{Trace}(p, t, q, t-1) \leftarrow \operatorname{From}(t, p, q)\).
\(\operatorname{Src}(p)=\left\{u \mid \exists q\right.\). Trace \(\left.\left(p, t_{\text {now }}, q, u\right), \operatorname{Ins}(u, q)\right\}\)
\(\operatorname{Hist}(p)=\left\{u \mid \exists q \cdot \operatorname{Trace}\left(p, t_{\text {now }}, q, u\right), \operatorname{Copy}(u, q)\right\}\)
\(\operatorname{Mod}(p)=\left\{u \mid \exists q \cdot p \leq q, \operatorname{Trace}\left(q, t_{\text {now }}, r, u\right), \neg \operatorname{Unch}(u, r)\right\}\)
- Provenance queries are naturally recursive
- don't know how far back into history we need to look

QSX

\section*{Generalizing to bulk updates}
[Buneman, Cheney \& Vansummeren 2008]

\begin{tabular}{|c|c|c|}
\hline A & B & C \\
\hline 1 & 2 & 2 \\
\hline 5 & 6 & 3 \\
\hline 2 & 3 & 4 \\
\hline
\end{tabular}

update R
set \((A, B)=\)
(select S.C A, S.D B
from \(S\) where \(S . A=1\) )
where R.C \(=3\) ICDT 2007/TODS 2008

\section*{Performance}

- Query performance generally improves with H , T, HT storage strategy
- for H , this is somewhat surprising!
- Cheaper to recompute inferred links than to load

\section*{Database Wiki}
[Buneman, Cheney, Lindley, Müller, SIGMOD/SIGMOD Record 2011]
- Wiki-like Web application for data curation
- Archiving, copypaste provenance "built-in"
- http://code.google.com/p/database-wiki/

name Andrew Pitts

\section*{How-provenance}
(Green, Karvounakaris, Tannen 2007)

\section*{Provenance \&} annotation for XML queries

\section*{How-provenance}
(Green, Karvounakaris, Tannen 2007)
- How-provenance: shows how records were combined to form output
\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{R} \\
\hline A & B & C & \\
\hline I & 2 & 2 & a \\
\hline 1 & 2 & 3 & b \\
\hline 2 & 3 & 4 & c \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\multicolumn{2}{c}{\(S\)} \\
\hline C & \(D\) & \\
\hline 1 & 2 & \(x\) \\
\hline 2 & 2 & \(y\) \\
\hline 4 & 3 & \(z\) \\
\hline
\end{tabular}
- How-provenance: shows how records were combined to form output


SELECT A,B
FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(a x+b y\) \\
\hline 2 & 3 & \(c z\) \\
\hline
\end{tabular}

\section*{How-provenance}
(Green, Karvounakaris, Tannen 2007)
- How-provenance: shows how records were combined to form output
\begin{tabular}{|l|l|l|l|}
\multicolumn{4}{c}{R} \\
\hline A & B & C & \\
\hline I & 2 & 2 & a \\
\hline I & 2 & 3 & b \\
\hline 2 & 3 & 4 & c \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\multicolumn{2}{c}{\(S\)} \\
\hline C & D & \\
\hline 1 & 2 & \(x\) \\
\hline 2 & 2 & \(y\) \\
\hline 4 & 3 & \(z\) \\
\hline
\end{tabular}

SELECT A,B FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(a x+b y\) \\
\hline 2 & 3 & \(c z\) \\
\hline
\end{tabular}

\section*{How-provenance}
(Green, Karvounakaris, Tannen 2007)
- How-provenance: shows how records were combined to form output
\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{R} \\
\hline A & B & C & \\
\hline I & 2 & 2 & a \\
\hline I & 2 & 3 & b \\
\hline 2 & 3 & 4 & c \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\multicolumn{2}{c}{\(S\)} \\
\hline\(C\) & \(D\) & \\
\hline 1 & 2 & \(x\) \\
\hline 2 & 2 & \(y\) \\
\hline 4 & 3 & \(z\) \\
\hline
\end{tabular}

SELECT A,B
FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(a x+b y\) \\
\hline 2 & 3 & \(c z\) \\
\hline
\end{tabular}

\section*{Some standard} examples of semirings
- Booleans \(B=(\{0,1\}, 0,1, \vee, \wedge)\)
- Numbers \(N=(\{0,1, \ldots\}, 0,1,+, \cdot)\)
- Free semiring \(\mathrm{N}[\mathrm{X}]\)
- Polynomials over X with coefficients from N
- Formal addition, multiplication

\section*{More about howprovenance}
- Formalized using semiring-valued relations
- Idea: Each n-tuple in relation carries an annotation from a commutative semiring
- \(K=(K, 0,1,+, *)\) is a commutative semiring if:
- ( \(K, 0,+\) ) and ( \(K, 1, *\) ) are commutative monoids
- a*0 \(=0\) (annihilation)
- \(a(b+c)=a b+a c\) (distributivity)

\section*{Semiring-valued relational algebra}
\[
\begin{aligned}
(\{u\})^{K}(I) t & = \begin{cases}1 & t=u \\
0 & \text { otherwise }\end{cases} \\
R^{K}(I) t & =I(R)(t) \\
\left(\sigma_{\theta}(Q)\right)^{K}(I) t & =\theta(t) \cdot Q^{K}(I) t \\
\left(\rho_{A \leftrightarrow B}(Q)\right)^{K}(I) t & =Q^{K}(I)(t[B \mapsto A]) \\
\left(\pi_{V}(Q)\right)^{K}(I) t & =\sum_{u \in \operatorname{supp}\left(Q^{K}(I)\right), u[V]=t} Q^{K}(I) u \\
\left(Q_{1} \bowtie Q_{2}\right)^{K}(I) t & =Q_{1}{ }^{K}(I)\left(t\left[U_{1}\right]\right) \cdot Q_{2}^{K}(I)\left(t\left[U_{2}\right]\right) \\
\left(Q_{1} \cup Q_{2}\right)^{K}(I) t & =Q_{1}{ }^{K}(I) t+Q_{2}{ }^{K}(I) t
\end{aligned}
\]

\section*{Semiring-valued relational algebra}

\author{
\((\{u\})^{K}(I) t= \begin{cases}1 & t=u \\ 0 & \text { otherwise }\end{cases}\) \(R^{K}(I) t=I(R)(t)\) \\ \(\left(\sigma_{\theta}(Q)\right)^{K}(I) t=\theta(t) \cdot \wedge^{K}(I) t\) \\ 

\section*{Key observation}
- When \(K=B\), we get standard set-based semantics
- When \(\mathrm{K}=\mathrm{N}\), we get standard multiset semantics
- When \(\mathrm{K}=\mathrm{N}[\mathrm{X}]\), we get how-provenance semantics

\section*{Semiring-valued relational algebra}
\[
\begin{aligned}
(\{u\})^{K}(I) t & = \begin{cases}1 & t=u \\
0 & \text { otherwise }\end{cases} \\
R^{K}(I) t & =I(R)(t) \\
\left(\sigma_{\theta}(Q)\right)^{K}(I) t & =\theta(t) \cdot Q^{K}(I) t \\
\left(\rho_{A \leftrightarrow B}(Q)\right)^{K}(I) t & =Q^{K}(I)(t[B \mapsto A]) \\
\left(\pi_{V}(Q)\right)^{K}(I) t & =\sum_{u \in \operatorname{supp}\left(Q^{K}(I)\right), u[V]=t} Q^{K}(I) u \\
\left(Q_{1} \bowtie Q_{2}\right)^{K}(I) t & =Q_{1}^{1}(I)\left(t\left[U_{1}\right]\right) \cdot Q_{2}^{K}(I)\left(t\left[U_{2}\right]\right) \\
\left(Q_{1} \cup Q_{2}\right)^{K}(I) t & =Q_{1}^{K}(I) t+Q_{2}^{K}(I) t
\end{aligned}
\]

\section*{How-provenance}
- Preserves multiset, but not set semantics

Two equivalent queries:
\(Q: \operatorname{Ans}(x, y):-R(x, y)\).
\(Q^{\prime}: \operatorname{Ans}(x, y):-R(x, y), R(x, z)\).




\section*{How-provenance}
- Preserves multiset, but not set semantics


Instance \(I\) :


QSX

\section*{Examples}
- Boolean semiring


SELECT A,B
FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(T\) \\
\hline 2 & 3 & \(T\) \\
\hline
\end{tabular}

SELECT A,B FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(1 \cdot 1+2 \cdot 5\) \\
\hline 2 & 3 & \(3 \cdot 9\) \\
\hline
\end{tabular}

\section*{Examples}
- Natural numbers semiring


SELECT A,B FROM R JOIN S
\begin{tabular}{|l|l|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(\tau \pi \tau \tau \tau T\) \\
\hline 2 & 3 & \(T_{\Lambda \tau} T\) \\
\hline
\end{tabular}

\section*{Examples}

\section*{Examples}
- Natural numbers semiring


\section*{One (semi) ring to rule them all}
- The polynomial semiring is "most general"
- any other K-semantics is an instance
\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\(R\)} \\
\hline\(A\) & \(B\) & \(C\) & \\
\hline 1 & 2 & 2 & \(a\) \\
\hline 1 & 2 & 3 & \(b\) \\
\hline 2 & 3 & 4 & \(c\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\multicolumn{2}{c|}{\(S\)} \\
\hline C & D & \\
\hline 2 & 2 & \(x\) \\
\hline 3 & 2 & \(y\) \\
\hline 4 & 3 & \(z\) \\
\hline
\end{tabular}
- Polynomial semiring
SELECT A,B FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(a x+b y\) \\
\hline 2 & 3 & \(c z\) \\
\hline
\end{tabular}

\section*{One (semi) ring to rule them all}
- The polynomial semiring is "most general"
- any other K-semantics is an instance


SELECT A,B
FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(a x+b y\) \\
\hline 2 & 3 & \(c z\) \\
\hline
\end{tabular}

\section*{One (semi) ring to rule them all}
- The polynomial semiring is "most general"
- any other K-semantics is an instance


\section*{One (semi) ring to rule them all}
- The polynomial semiring is "most general"
- any other K-semantics is an instance
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{R} & \multicolumn{3}{|c|}{S} \\
\hline A & B & C & & C & D & \\
\hline 1 & 2 & 2 & 1 & 2 & 2 & 1 \\
\hline 1 & 2 & 3 & 2 & 3 & 2 & 5 \\
\hline 2 & 3 & 4 & 3 & 4 & 3 & 9 \\
\hline & \multicolumn{6}{|c|}{\[
\begin{aligned}
& a=1, b=2, c=3 \\
& x=1, y=5, z=9
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{One (semi) ring to rule them all}
- The polynomial semiring is "most general"
- any other K-semantics is an instance


\section*{Observation}
- Why-provenance can be recovered as an instance of how-provenance.
- Idea: Take \(\mathrm{K}=\left(\mathrm{P}(\mathrm{P}(\mathrm{X})),\{ \},\{\{ \}\},{ }^{\text {w }}, \mathrm{U}\right)\)


SELECT A,B
FROM R JOIN S
\begin{tabular}{|c|c|c|}
\hline\(A\) & \(B\) & \\
\hline 1 & 2 & \(\{\{a, x\},\{[, y\}\}\) \\
\hline 2 & 3 & \(\{\{\{, z\}\}\) \\
\hline
\end{tabular}

\section*{How-provenance for XML}
- Consider unordered XQuery
```

p::=l|\$x|()|(p)|p,p| for \$x in p return p
let \$x:= p return p| if (}p=p\mathrm{) then }p\mathrm{ else p
element p{p}| name(p)| annot kp|p/s
s::=ax::nt
ax::=self | child| descendant
nt::=l|*

```
- Evaluate over annotated (unordered) XML
- Each node of document has a semiring-valued annotation

\section*{Example}

\(<\mathrm{p}>\{\) \$doc/*/* \(\}</ \mathrm{p}>\)

\section*{Example}

\[
<\mathrm{p}>\{\$ \operatorname{doc} / * / *\}</ \mathrm{p}>
\]

58

\section*{On the other hand...}
- Semiring model is not the end of the story
- For example, where-provenance is not an instance of semiring model
- There are other non-instances.
- Only handles unordered XML
- also does not handle negation
- So, further generalization may be possible.

\section*{Provenance in other settings}
- Scientific workflows/distributed computing
- Business process modeling
- Semantic Web
- Operating systems, file systems
- This work is generally not as formal
- not as clear what is implemented and why
- Understanding and relating these models is important future work

\section*{Summary of course}
- Standards/languages for XML
- XPath/XQuery
- XSLT
- DTDs + XML Schema
- From XML to relations, and back
- XML shredding
- XML publishing

\section*{Summary of course}
- Updates
- XQuery Update
- Updating XML stored in relations
- Types
- Regular expression types/XDuce
- XQuery typing, query/update independence
- Provenance - today

\section*{Presentations}
- 10, 15, or 20 minutes (depending on group size)
- Each group member must participate
- Cover:
- background
- what you did (papers read, development)
- status; experimental results
- conclusions

QSX March I2-15, 2013```


[^0]:    Definition 4.1 (Tuple Derivation for an Operator). Let $O p$ be any relational operator over tables $T_{1}, \ldots, T_{m}$, and let $T=O p\left(T_{1}\right.$, the table that results from applying $O p$ to $T_{1}, \ldots, T_{m}$. Given a tuple $t \in T$, we define $t$ 's derivation in $T_{1}, \ldots, T_{m}$ according to $O p$ to be $O p_{\left\langle T_{1}, \ldots T_{m}\right\rangle}^{-1}(t)=\left\langle T_{1}^{*}, \ldots T_{m}^{*}\right\rangle$, where $T_{1}^{*}, \ldots, T_{m}^{*}$ are maximal subsets of $O p_{\left\langle T_{1}, \ldots T_{m}\right\rangle}(t)=\left\langle T_{1},\right.$.
    $T_{1}, \ldots, T_{m}$ such that
    (a) $O p\left(T_{1}^{*}, \ldots T_{m}^{*}\right)=\{t\}$
    (b) $\forall T_{i}^{*}: \forall t^{*} \in T_{i}^{*}: O p\left(T_{1}^{*}, \ldots,\left\{t^{*}\right\}, \ldots, T_{m}^{*}\right) \neq \varnothing$.

    We also say that $O p_{T_{i}}^{-1}(t)=T_{i}^{*}$ is $t$ 's derivation in $T_{i}$, and each tuple $t^{*}$ in $T_{i}^{*}$ contributes to $t$, for $i=1 . . m$.

