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What is provenance?
• Evidence of

• Origin

• History

• Authenticity

• Integrity

• Value
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Why is provenance 
important for data?
• For traditional (paper) information: 

• Creation process leaves “paper trail”

• Easier to detect modification, copying, forgery

• Can usually judge a book by its cover

• For electronic information:

• Often no such thing as a “bit trail”

• Easy to forge, plagiarize, alter data undetected

• Can't judge a database by its cover - there isn't one

• Provenance essential for judging quality of data
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Provenance failures 
can be expensive
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Especially important 
for scientific data
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Provenance in 
Databases

• Provenance models extensively studied in 
relational databases

• Why-provenance

• Where-provenance

• How-provenance

• ....?

• Will examine provenance models for relational 
queries first

• following recent survey [Cheney, Chiticariu, Tan 2009]
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Why-provenance
(Buneman, Khanna, Tan 2001)

• Why-provenance: shows input data 
witnessing existence of output data

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S
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Why-provenance
(Buneman, Khanna, Tan 2001)

• Why-provenance: shows input data witnessing 
existence of output data

• = subset of input that is "enough" to generate output

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S
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Why-provenance
(Buneman, Khanna, Tan 2001)

• Why-provenance: shows input data witnessing 
existence of output data

• = subset of input that is "enough" to generate output

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S
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Where-provenance
(Buneman, Khanna, Tan 2001)

• Where-provenance: tracks where data in 
output comes from

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S
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Where-provenance
(Buneman, Khanna, Tan 2001)

• Where-provenance: tracks where data in 
output comes from

A B C
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1 2
2 2
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Where-provenance
(Buneman, Khanna, Tan 2001)

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S

• Can think of provenance as "links"
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Where-provenance
(Buneman, Khanna, Tan 2001)

• Can think of provenance as "links"

• or propagated "annotations"

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

R JOIN S
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Where-provenance
(Buneman, Khanna, Tan 2001)

• Not invariant under query equivalence

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

SELECT r.A,r.B,r.C,s.D
FROM R r, S s
WHEERE r.C = s.C
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Where-provenance
(Buneman, Khanna, Tan 2001)

• Not invariant under query equivalence

A B C
1 2 2
1 2 3
2 3 4

C D
1 2
2 2
2 3

R S

A B C D
1 2 2 2
1 2 2 3

SELECT r.A,r.B,s.C,s.D
FROM R r, S s
WHEERE r.C = s.C
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Early work
• Definitions were very complicated

Any view definition in our language can be expressed using a query tree,
with base tables as the leaf nodes and operators as inner nodes. Figures 4
and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view
contents are computed by evaluating the view definition query tree bottom-
up. Each operator in the tree generates its result table on the basis of the
results of its child nodes, and passes its result table upwards. We begin by
focusing on individual operators, defining derivations of the operator’s
result tuples based on its input tuples.

According to relational semantics, each operator can generate its result
tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in
the result of operator Op, some subset of the input tuples produced t. We
say that tuples in this subset contribute to t, and we call the entire subset
the derivation of t. Input tuples not in t ’s derivation either contribute to
nothing, or only contribute to result tuples other than t. Figure 9 illus-
trates the derivation of a result tuple. In the figure, operator Op is applied
to tables T1 and T2, which may be base tables or temporary results from
other operators. (In general, we use R ’s to denote base tables and T ’s to
denote tables that may be base or derived.) Table T is the operation result.
Given tuple t in T, only subsets T 1

* and T 2
* of T1 and T2 contribute to t.

!T 1
*, T 2

*" is called t ’s derivation. The formal definition of tuple derivation
for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-
tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be
the table that results from applying Op to T1, . . . , Tm. Given a tuple
t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be
Op!T1, . . . Tm"

&1 $t% # !T 1
*, . . . T m

* ", where T 1
*, . . . , T m

* are maximal subsets of
T1, . . . , Tm such that

Op

t

T1* T2*

T1 T2

T

Fig. 9. Derivation of tuple t.
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ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.(a) Op!T 1
*, . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
*, . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in
T i

* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the
T i

*’s) derive exactly t. From relational semantics, we know that for any
result tuple t there must exist such tuple sets. Requirement (b) says that
each tuple in the derivation does in fact contribute something to t. For
example, with requirement (b) and given Op # !C, base tuples that do not
satisfy the selection condition C, and therefore make no contribution to any
result tuple, will not appear in any result tuple’s derivation. By defining
the T i

*’s to be the maximal subsets that satisfy requirements (a) and (b), we
make sure that the derivation contains exactly all the tuples that contrib-
ute to t. Thus, the derivation fully explains why a tuple exists in the
result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)
# (!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique
derivation for any operator and result tuple. Note that all proofs are
provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",
where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,
there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-
ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-
tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies
requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-
itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !
"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and
(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also
includes all tuples t* & t in S. We discuss this definition of derivation for set difference in
more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.
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Early work
• Definitions were very complicated.
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Early work
• Definitions were very complicated.
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Ordinary relational 
algebra

A relation or table r : U is a finite set of tuples over U . Let R be a finite collection of relation names.

A schema R is a mapping (R1 : U1, . . . , Rn : Un) from R to finite subsets of U . A database (or instance)

I : (R1 : U1, . . . , Rn : Un) is a function mapping each Ri : Ui ∈ R to a relation ri over Ui.

We also define tuple locations as tuples tagged with relation names, written (R, t). We writeTupleLoc =

R × Tuple for the set of all tagged tuples. We can view a database instance I equivalently as a finite set

{(R, t) | t ∈ I(R)} ⊆ TupleLoc of such tagged tuples according to a standard translation. We will also

sometimes consider field locations that refer to a particular field of a tagged tuple. Formally, such a location

is just a triple (R, t,A) ∈ R × Tuple × U . We write FieldLoc for the set of all locations.

We will use the following notation for (monotone) relational algebra queries:

Q ::= R | {t} | σθ(Q) | πU (Q) | Q1 ! Q2 | Q1 ∪ Q2 | ρA !→B(Q)

Here, {t} is a singleton constant {t}. Selections σθ filter a relation by retaining tuples satisfying some

predicate θ. We leave the form of predicates unspecified (but typically include field equality tests A = B

and A = d). Projections πU(Q) replace each tuple t in a relation with t[U ], discarding any other fields. Join

(or natural join) and union are standard; renaming is written ρA !→B(Q).

The precise semantics Q(I) of a query Q evaluated against an instance I is described below. We review

this standard definition only because we will be considering a number of variations on it later.

({t})(I) = {t}
R(I) = I(R)

(σθ(Q))(I) = {t ∈ Q(I) | θ(t)}
(πU (Q))(I) = {t[U ] | t ∈ Q(I)}

(Q1 ! Q2)(I) = {t | t[U1] ∈ Q1(I), t[U2] ∈ Q2(I)}
(Q1 ∪ Q2)(I) = Q1(I) ∪ Q2(I)

(ρA !→B(Q))(I) = {t[A %→ B] | t ∈ Q(I)}

Here, we assume that Q has the set of attributes V , denoted as Q : V , that U ⊆ V in the case of projection,

and that Q1 : U1, Q2 : U2 in the case of join.

As mentioned earlier, when convenient we also employ Datalog notation using nameless tuples, and

assume familiarity with the standard translation between SPJRU queries and unions of conjunctive Datalog

queries. For example, the query {(A(x, y) :− R(x, y), S(x, z)), (A(x, x) :− R(x, x))} is equivalent to
(R ! S) ∪ σA=B(R), where we assume schema R(A,B) and S(A,C).

We also employ the following convention regarding partial functions (which is standard in, for example,

programming language semantics). Formally, we can view a partial function f : X → Y as a total function

f : X → Y ∪ {⊥}, where ⊥ is a special, fresh constant not already present in Y , called “undefined”. We

write Y⊥ to abbreviate Y ∪ {⊥}, and we define dom(f) = {x ∈ X | f(x) )= ⊥}.
One advantage of this convention is that it permits unambiguous definitions of operations with different

behavior regarding undefinedness. For example, we will later make use of strict and lazy union operations.

Strict union ∪S is defined as the union of two sets if both are defined, and undefined otherwise (that is,

X ∪S ⊥ = ⊥), whereas lazy union ∪L differs from strict union in that it is undefined only if both sets are

undefined (that is,X ∪L ⊥ = X). We will define these operations more carefully later.

The various provenance semantics we shall consider will be defined by interpreting the language of

relational queries over other classes of structures besides relations. A familiar example of this technique

10
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Datalog
• Queries can also be written in a logical 

form called Datalog (subset of Prolog)

• A(x1,...,xn) :- R(y1,...,ym), ..., S(z1,...,zk)

• (subject to some restrictions...)

• Theorem: Relational algebra, relational 
calculus and nonrecursive Datalog are 
equally expressive

20
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Example
• Two (equivalent) queries on a small 

table 1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

21
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Why-provenance
[Buneman et al. 2001]

• Propagate sets of witnesses

• elements of {J ⊆ I | t ∈ Q(J)}

408 Why-Provenance

Observe that if Q is a monotone query, then Wit(Q,I,t) is closed under

upwards inclusion. It is finite (provided I is finite), but potentially

exponentially large due to the possibility of witnesses containing

“irrelevant” tuples. Since we only consider monotone queries, it follows

immediately that Wit(Q,I,t) = ∅ if and only if t "∈ Q(I), whereas

∅ ∈ Wit(Q,I,t) holds if and only if ∀J ⊆ I · t ∈ Q(J).

Buneman et al. defined the why-provenance of an output tuple t in

the result of a query Q applied to a database instance I as a particular

subset of Wit(Q,I,t) called the witness basis. For a Datalog-style query,

each witness in the witness basis corresponds intuitively to the leaves

of a “proof tree”. Hence, we shall sometimes call them proof-witnesses1

in this paper since an instantiation of the operator tree of a relational

algebra query can be seen as a proof tree. We write P(P(TupleLoc)) for

the set of sets of tuples; recall that normally TupleLoc is a finite set so

P(P(TupleLoc)) is also finite. We define proof-witnesses for relational

algebra queries as follows, adapting Buneman et al.’s definition to the

relational model and relational algebra.

Definition 2.4 (Why-Provenance, i.e., Witness Basis [13,

Definition 6]). Let Q be an SPJU query. Let I be a database instance

and t be a tuple in Q(I). Then, the why-provenance (or witness basis)

of t according to Q and I, denoted as Why(Q,I,t), is a subset of

P(P(TupleLoc)) defined as follows:

Why({t}, I,{u}) =

{{∅}, if (t = u),

∅, otherwise.

Why(R,I, t) =

{{{(R,t)}}, if (t ∈ R(I)),

∅, otherwise.

Why(σθ(Q), I, t) =

{
Why(Q,I,t), if θ(t),

∅, otherwise.

Why(πU (Q), I, t) =
⋃{Why(Q,I,u) | u ∈ Q(I), t = u[U ]}

Why(ρA!→B(Q), I, t) = Why(Q,I,t[B &→ A])

Why(Q1 ! Q2, I, t) = Why(Q1, I, t[U1]) ! Why(Q2, I, t[U2])

Why(Q1 ∪ Q2, I, t) = Why(Q1, I, t) ∪ Why(Q2, I, t))

1 Following Val Tannen’s suggestion.
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Why-provenance
[Buneman et al. 2001]

• Propagate sets of witnesses

• elements of {J ⊆ I | t ∈ Q(J)}

408 Why-Provenance

Observe that if Q is a monotone query, then Wit(Q,I,t) is closed under

upwards inclusion. It is finite (provided I is finite), but potentially

exponentially large due to the possibility of witnesses containing

“irrelevant” tuples. Since we only consider monotone queries, it follows

immediately that Wit(Q,I,t) = ∅ if and only if t "∈ Q(I), whereas

∅ ∈ Wit(Q,I,t) holds if and only if ∀J ⊆ I · t ∈ Q(J).

Buneman et al. defined the why-provenance of an output tuple t in

the result of a query Q applied to a database instance I as a particular

subset of Wit(Q,I,t) called the witness basis. For a Datalog-style query,

each witness in the witness basis corresponds intuitively to the leaves

of a “proof tree”. Hence, we shall sometimes call them proof-witnesses1

in this paper since an instantiation of the operator tree of a relational

algebra query can be seen as a proof tree. We write P(P(TupleLoc)) for

the set of sets of tuples; recall that normally TupleLoc is a finite set so

P(P(TupleLoc)) is also finite. We define proof-witnesses for relational

algebra queries as follows, adapting Buneman et al.’s definition to the

relational model and relational algebra.

Definition 2.4 (Why-Provenance, i.e., Witness Basis [13,

Definition 6]). Let Q be an SPJU query. Let I be a database instance

and t be a tuple in Q(I). Then, the why-provenance (or witness basis)

of t according to Q and I, denoted as Why(Q,I,t), is a subset of

P(P(TupleLoc)) defined as follows:

Why({t}, I,{u}) =

{{∅}, if (t = u),

∅, otherwise.

Why(R,I, t) =

{{{(R,t)}}, if (t ∈ R(I)),

∅, otherwise.

Why(σθ(Q), I, t) =

{
Why(Q,I,t), if θ(t),

∅, otherwise.

Why(πU (Q), I, t) =
⋃{Why(Q,I,u) | u ∈ Q(I), t = u[U ]}

Why(ρA!→B(Q), I, t) = Why(Q,I,t[B &→ A])

Why(Q1 ! Q2, I, t) = Why(Q1, I, t[U1]) ! Why(Q2, I, t[U2])

Why(Q1 ∪ Q2, I, t) = Why(Q1, I, t) ∪ Why(Q2, I, t))

1 Following Val Tannen’s suggestion.

Pairwise union of sets of  
justifications

S ⋓ T = {J ∪ K | J ∈ S, K ∈ T}
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Why-provenance
• Also sensitive to query rewriting1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
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A B
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1 3
4 2
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Output of
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1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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Why-provenance
• Also sensitive to query rewriting1.1 Why, How and Where: An Overview 385
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t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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Output of
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A B
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1 3
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t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

Can recover by 
removing non-minimal 

witnesses
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Where-provenance
[Buneman et al. 2001]

• Propagate field-level annotation sets

446 Where-Provenance

in Section 2.1.1:

X !S ⊥ = ⊥ !S X = ⊥
X !S Y = X ! Y (X #= ⊥ #= Y )

X !L ⊥ = ⊥ !L X = X

X !L Y = X ! Y (X #= ⊥ #= Y )

⊔
L S =

{
t1 !L · · · !L tn, S = {t1, . . . , tn}
⊥, S = ∅

Finally, we define where-provenance for SPJRU queries as follows.

Definition 4.2 (Where-provenance). Let I ∈ R-Inst be an

instance, Q : R → U be an SPJRU query and t : U be a tuple.

The where-provenance of t with respect to Q and I, denoted as

Where(R,I, t) is as follows.

Where({u}, I, t) =

{
(A : ∅)A∈U , if t = u

⊥, otherwise

Where(R,I, t) =

{
(A : {(R,t,A)})A∈U , if t ∈ I(R)

⊥, otherwise

Where(σθ(Q), I, t) =

{
Where(Q,I,t), if θ(t)

⊥, otherwise

Where(πU (Q), I, t) =
⊔

L{Where(Q,I,u)[U ] | u[U ] = t}
Where(ρB "→C(Q), I, t) = (A : Where(Q,I,t[C '→ B]) · (A[C '→ B]))A∈U

Where(Q1 ! Q2, I, t) = Where(Q1, I, t[U1]) !S Where(Q2, I, t[U2])

Where(Q1 ∪ Q2, I, t) = Where(Q1, I, t) !L Where(Q2, I, t)

To illustrate, consider again the query Q1 from Figure 4.2, which can

be expressed in relational algebra as πname,phone(σtype=‘boat’(Agencies !

ExternalTours)). According to Definition 4.2, the where-provenance of

the second tuple (name: HarborCruz, phone: 831-3000) in the result

of Q1 is the record (name: {(Agencies, t2, name), (ExternalTours, t7,

name)}, phone: {(ExternalTours, t2, phone)}), where the first compo-

nent tells us that the value “HarborCruz” was copied from the locations
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• May not be preserved by query equivalence

Where-provenance
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Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-

duces the two annotated instances shown in Figure 1.6. In the output

of Q, the annotation a1 propagates from the value “1” of the source

tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the

value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according

to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is

copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and

a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example

illustrates once more that where-provenance is sensitive under equiva-

lent query formulations: while Q and Q′ are equivalent, they produce

different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),

R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the

values “2” in the output, whereas the two copies of value “1” in the

output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-

tion scheme in DBNotes, then equivalent formulations of Q are guaran-

teed to produce identical annotated results. In the default-all scheme,

annotations are propagated based on where data is copied from accord-

ing to all equivalent queries of Q. Hence, this propagation scheme can be

perceived as a “better” method for propagating annotations for Q. The

result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is

shown in Figure 1.6. Observe that all annotations relevant for an out-

put value are associated under the same output value in the default-all

behavior, regardless of how the query is formulated. For this exam-

ple, both “1”s in the default-all output are associated with a1 and a3.

This is because Q′, which is an equivalent query of Q, associates both

annotations with the value “1”. Similarly, both “2”s in the default-all

output are associated with a2 and a6. This is because Q′′ associates
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t′: 1 3
t′′: 4 2

Two equivalent queries:
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Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.
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A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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Provenance and XML
• Early work on provenance (why/where) 

focused on determinstic semistructured model

• Similar to (special case of) XML

• Advantages:

• XML more general; nodes easily addressed

• Complications:

• Little work on prov for XPath/XQuery, or other XML 
standards

• Next topic: provenance for updated data
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Provenance for 
curated data
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Curated databases
• Many bio-medical 

databases are curated

• data entered, checked 
manually

• high-quality

• but expensive

• provenance, versioning 
important

• lots of 
(re)implementation 
effort
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Curated databases
• Many bio-medical 

databases are curated

• data entered, checked 
manually

• high-quality

• but expensive

• provenance, versioning 
important

• lots of 
(re)implementation 
effort

Hi,everybody!
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Provenance
• Idea: Instead of trying to allow only "good" 

contributors

• allow anyone to contribute 

• but record what they did 

• Allows "auditing" after-the-fact

• can discard or approve changes

• May combine with access control

• allow retrospective analysis of trusted contributors
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions

ins copy
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions

ins copy
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions

ins copy del
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Copy-paste 
provenance

• As data (tree) is updated, record "links" 
identifying "same" data in consecutive 
versions

ins copy del
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Relational 
representation

(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.

b1 b2 b3a1 a2 a3

x y x x y x y x x y

1 2 3 7 5 1 2 4 7 6

c1 c2 c3

x x x y

1 3 7 6

y

2

c4

x

4

y

12

y

c5

x

9

y

7

S1 S2

T T’ 8 10

7

4
2

c1

x

1

y

3

1

11

10

5 11

Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;
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upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
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Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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Figure 4: An example of executing the update in Figure 3. The

upper two trees S1, S2 are tree views of source databases; the

bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are

unchanged; black nodes represent inserted or deleted nodes;

other shadings indicate whether the node came from S1 or S2.

Dashed lines indicate provenance links. Boxed numbers indi-

cate the relevant copy-paste operation in Figure 3. Additional

provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.

Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user

identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance

The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-

date operation is treated as a separate transaction. This technique

may be wasteful in terms of space, because it introduces one prove-

nance record for every node inserted, deleted, or copied throughout

the update. However, it retains the maximum possible information

about the user’s actions. In fact, the exact update operation de-

scribing the user’s sequence of actions can be recovered from the

provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of

Figure 3. (a) One transaction per line. (b) Entire update as one

transaction. (c) Hierarchical version of (a). (d) Hierarchical

version of (b).

2.1.2 Transactional provenance

The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only

provenance links describing the net changes resulting from a trans-

action. For example, if the user copies data from S1, then on further

reflection deletes it and uses data from S2 instead, and finally com-

mits, this has the same effect on provenance as if the user had only

copied the data from S2. Thus, details about intermediate states or

temporary data storage in between “official” database versions are

not retained. Transactional provenance may be less precise than

the naı̈ve approach, because information about intermediate states

of the database is discarded. However, the decision when to com-

mit is in the hands of the user; frequent commits can be used to

record important intermediate states.

The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of

the transaction. That is, the number of transactional provenance

records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance

Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),

since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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from its parent’s annotation. Accordingly, we consider a second
technique, called hierarchical provenance. The key observation is
that we do not need to store all of the provenance links explicitly,
because the provenance of a child of a copied node can often be
inferred from its parent’s provenance using a simple rule. Thus,
in hierarchical provenance we store only the provenance links that
cannot be so inferred. These non-inferable links correspond to
the provenance links shown in Figure 4. A copy-paste operation
copy p into q results in adding only a single recordHProv(t, C, q, p).
Figure 5(c) shows the hierarchical provenance table HProv corre-
sponding to the naı̈ve version of Prov. In this case, the reduced
table is about 25% smaller than Prov, but much larger savings
are possible when entire records or subtrees are copied with little
change.
Unlike transactional provenance, hierarchical provenance does

not discard any information and does not require the user to group
operations into transactions. We can define the full provenance ta-
ble as a view of the hierarchical table as follows. If the provenance
is specified in HProv, then it is just copied into Prov. Otherwise,
the provenance of every target path p/a not mentioned in HProv is
q/a, provided p was copied from q. If p was inserted, then we as-
sume that p/a was also inserted; that is, children of inserted nodes
are assumed to also have been inserted, unless there is a record in
HProv indicating otherwise. Deletions are treated similarly. For-
mally, the full provenance table Prov can be defined in terms of
HProv as the following recursive query:

Infer(t, p) ← ¬(∃x, q.HProv(t, x, p, q))
Prov(t, op, p, q) ← HProv(t, op, p, q).
Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).
Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).
Prov(t, D, p/a,⊥) ← Prov(t, D, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that
have no explicit provenance inHProv, to ensure that only the prove-
nance of the closest ancestor is used. In our implementation, Prov
is calculated from HProv as necessary for paths in T , so this check
is unnecessary. It is not difficult to show that an update sequence
U can be described by a hierarchical provenance table with |U |
entries.

2.1.4 Transactional-hierarchical provenance
Finally, we considered the combination of transactional and hier-

archical provenance techniques; it is not difficult to combine them.
Figure 5(d) shows the transactional-hierarchical provenance of the
transaction in Figure 3.
It is also easy to show that the storage of transactional-hierarchical

provenance is i + d + C, where i and d are defined as in the dis-
cussion of transactional provenance and C is the number of roots
of copied subtrees that appear in the output. This is bounded above
by both |U | and i+d+ c, so transactional-hierarchical provenance
may be more concise than either approach alone.

2.2 Provenance queries
How can we use the machinery developed in the previous sec-

tion to answer some practical questions about data? Consider some
simple questions:

Src What transaction first created the data at a location? This is
particularly useful in the case of raw data; e.g., who entered
your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to
its current position?

Mod What transactions were responsible for the creation or modi-
fication of the subtree under a node?

Hist and Mod provide very different information. A subtree may
be copied many times without being modified.
We first define some convenient views of the raw Prov table

(which, of course, may also be a view derived from HProv). We
define the views Unch(t, p), Ins(t, p), Del(t, p), and Copy(t, p, q),
which intuitively mean “p was unchanged, inserted, deleted, or
copied from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).
Ins(t, p) ← Prov(t, I, p,⊥)
Del(t, p) ← Prov(t, D, p,⊥)
Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t
(table From(t, p, q)) provided it was either unchanged (and p = q)
or p was copied from q.

From(t, p, q) ← Copy(t, p, q)
From(t, p, p) ← Unch(t, p)

Next, we define aTrace(p, t, q, u), which says that the data at lo-
cation p at the end of transaction t “came from” the data at location
q at the end of transaction u.

Trace(p, t, p, t).
Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).
Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of
From. Now to define the queries mentioned at the beginning of the
section, suppose that tnow is the last transaction number in Prov,
and define
Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u), ¬Unch(u, r)}
That is, Src(p) returns the number of the transaction that inserted
the node now at p, while Hist(p) returns all transaction numbers
that were involved in copying the data now at p. Finally, Mod(p)
returns all transaction numbers that modified some data under p.
This set could then be combined with additional information about
transactions to identify all users that modified the subtree at p.
Here, p ≤ q means p is a prefix of q. Despite the fact that there
may be infinitely many paths q extending p, the answerMod(p) is
still finite, since there are only finitely many transaction identifiers
in Prov. Moreover, Mod can be answered using only the data in
Prov or HProv; it is not necessary to inspect the target database.
There are many interesting queries that mention both provenance

and the raw data. Our system currently does not provide special
support for such queries, but they can be written by explicitly con-
structing paths using string operations. For example, to project the
A field out of relation R(Id, A, B) along with its current prove-
nance, we could use the query

Q(x, px) ← R(k, x, y), From(tnow,"R/"+k+"/A", px)

where k, x, px, and y are variables and+ denotes string concatena-
tion. Such queries are tricky to write by hand, and we are interested
in providing advanced support for provenance queries; however,
this is future work.
The point of this discussion is to show that provenance mappings

relating a sequence of versions of a database can be used to answer
a wide variety of queries about the evolution of the data, even with-
out cooperation from source databases. However, if only the target
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optimizations(1) delete c5 from T;

(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.

b1 b2 b3a1 a2 a3

x y x x y x y x x y

1 2 3 7 5 1 2 4 7 6

c1 c2 c3

x x x y

1 3 7 6

y

2

c4

x

4

y

12

y

c5

x

9

y

7

S1 S2

T T’ 8 10

7

4
2

c1

x

1

y

3

1

11

10

5 11

Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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optimizations(1) delete c5 from T;

(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : 10} into T/c2;
(6) insert {c3 : {}} into T;
(7) copy S1/a3 into T/c3;
(8) copy S2/b3/y into T/c3/y;
(9) insert {c4 : {}} into T;
(10) copy S2/b2 into T/c4;
(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.
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Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are tree views of source databases; the
bottom trees T , T ′ are tree views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.
Thus, Tid and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key Tid.
We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

(a) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
130 C T/c4/x S2/b2/x
131 I T/c4/y ⊥

(b) Prov
T id Op Loc Src
121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv
T id Op Loc Src
121 D T/c5 ⊥
122 C T/c1/y S1/a1/y
123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y
129 I T/c4 ⊥
130 C T/c4 S2/b2
131 I T/c4/y ⊥

(d) HProv
T id Op Loc Src
121 D T/c5 ⊥
121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only
provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.
The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
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Transactional Hierarchical Both

Table 1: Summary of experiments
Upd. Length Trans. Length Update Pattern Prov. Method Measured Figures

1 3500 5 add, delete, copy, ac-mix,mix N, H, T, HT space 7
2 14000 5 mix, real N, H, T, HT space, time 8, 9, 10
3 14000 5 del-random, del-add, del-mix, del-copy, del-real N, H, T, HT space 11
4 3500 7, 100, 500, 1000 real HT time 12
5 14000 5 real N, H, T, HT query time 13

Table 2: Update patterns
add All random adds
delete All random deletes
copy All random copies
ac-mix Equal mix of random adds and copies
mix Equal mix of random adds, deletes, copies
real Copy one subtree, add 3 nodes, delete 3 nodes

Table 3: Deletion patterns

del-random Paths deleted at random
del-add All added paths deleted
del-copy Only copies deleted
del-mix 50–50 mix of adds and copies deleted
del-real 3 nodes from copied subtree deleted

demonstrate the storage performance of the various methods under
different conditions. Figure 11 shows the results of this experiment.
We plot two columns per provenance method, one (labeled “ac”)
showing the provenance table size when only the adds and copies
are performed, the other (labeled “acd”) showing the size when the
deletes are also performed.
The fourth experiment measured the effect of transaction length

on provenance processing time. It consisted of running the 3500-
real update for the hierarchical-transactional method with transac-
tion lengths 7, 100, 500, and 1000. We measured the processing
time required for each operation. Figure 12 summarizes the re-
sults of this experiment; it shows the average time needed for each
add, delete, copy, and commit for each run. Also, the “amortized”
data series shows the average time per operation with commit time
amortized over all operations.
Finally, the fifth experiment measured the cost of answering some

typical provenance queries. For each storage method, we measured
the average query processing time for getSrc, getMod, getHist
queries of random locations run at the end of a 14,000-real run.
Figure 13 shows the results. Error bars indicate the typical ranges
of response times. No indexing was performed on the provenance
relation, so these query times represent worst-case behavior.

4.2 Analysis
As can be seen in Figures 7 and 8, either a hierarchical or trans-

actional strategy can provide substantial space savings. Figure 7
shows how the storage methods perform for different types of ac-
tions. Perhaps unsurprisingly, inserts and deletes are handled es-
sentially the same by all methods. Only copy operations really
stress the system. The naı̈ve and transactional approaches store
four provenance records per copy (recall that all copies are of sub-
trees of size four), whereas the hierarchical techniques store only
one such record per copy. The hierarchical-transactional technique
provides the most efficient storage overall. The results in Figure 8
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Queries

• Provenance queries are naturally recursive

• don't know how far back into history we need to 
look

from its parent’s annotation. Accordingly, we consider a second
technique, called hierarchical provenance. The key observation is
that we do not need to store all of the provenance links explicitly,
because the provenance of a child of a copied node can often be
inferred from its parent’s provenance using a simple rule. Thus,
in hierarchical provenance we store only the provenance links that
cannot be so inferred. These non-inferable links correspond to
the provenance links shown in Figure 4. A copy-paste operation
copy p into q results in adding only a single recordHProv(t, C, q, p).
Figure 5(c) shows the hierarchical provenance table HProv corre-
sponding to the naı̈ve version of Prov. In this case, the reduced
table is about 25% smaller than Prov, but much larger savings
are possible when entire records or subtrees are copied with little
change.
Unlike transactional provenance, hierarchical provenance does

not discard any information and does not require the user to group
operations into transactions. We can define the full provenance ta-
ble as a view of the hierarchical table as follows. If the provenance
is specified in HProv, then it is just copied into Prov. Otherwise,
the provenance of every target path p/a not mentioned in HProv is
q/a, provided p was copied from q. If p was inserted, then we as-
sume that p/a was also inserted; that is, children of inserted nodes
are assumed to also have been inserted, unless there is a record in
HProv indicating otherwise. Deletions are treated similarly. For-
mally, the full provenance table Prov can be defined in terms of
HProv as the following recursive query:

Infer(t, p) ← ¬(∃x, q.HProv(t, x, p, q))
Prov(t, op, p, q) ← HProv(t, op, p, q).
Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).
Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).
Prov(t, D, p/a,⊥) ← Prov(t, D, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that
have no explicit provenance inHProv, to ensure that only the prove-
nance of the closest ancestor is used. In our implementation, Prov
is calculated from HProv as necessary for paths in T , so this check
is unnecessary. It is not difficult to show that an update sequence
U can be described by a hierarchical provenance table with |U |
entries.

2.1.4 Transactional-hierarchical provenance
Finally, we considered the combination of transactional and hier-

archical provenance techniques; it is not difficult to combine them.
Figure 5(d) shows the transactional-hierarchical provenance of the
transaction in Figure 3.
It is also easy to show that the storage of transactional-hierarchical

provenance is i + d + C, where i and d are defined as in the dis-
cussion of transactional provenance and C is the number of roots
of copied subtrees that appear in the output. This is bounded above
by both |U | and i+d+ c, so transactional-hierarchical provenance
may be more concise than either approach alone.

2.2 Provenance queries
How can we use the machinery developed in the previous sec-

tion to answer some practical questions about data? Consider some
simple questions:

Src What transaction first created the data at a location? This is
particularly useful in the case of raw data; e.g., who entered
your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to
its current position?

Mod What transactions were responsible for the creation or modi-
fication of the subtree under a node?

Hist and Mod provide very different information. A subtree may
be copied many times without being modified.
We first define some convenient views of the raw Prov table

(which, of course, may also be a view derived from HProv). We
define the views Unch(t, p), Ins(t, p), Del(t, p), and Copy(t, p, q),
which intuitively mean “p was unchanged, inserted, deleted, or
copied from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).
Ins(t, p) ← Prov(t, I, p,⊥)
Del(t, p) ← Prov(t, D, p,⊥)
Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t
(table From(t, p, q)) provided it was either unchanged (and p = q)
or p was copied from q.

From(t, p, q) ← Copy(t, p, q)
From(t, p, p) ← Unch(t, p)

Next, we define aTrace(p, t, q, u), which says that the data at lo-
cation p at the end of transaction t “came from” the data at location
q at the end of transaction u.

Trace(p, t, p, t).
Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).
Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of
From. Now to define the queries mentioned at the beginning of the
section, suppose that tnow is the last transaction number in Prov,
and define
Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u), ¬Unch(u, r)}
That is, Src(p) returns the number of the transaction that inserted
the node now at p, while Hist(p) returns all transaction numbers
that were involved in copying the data now at p. Finally, Mod(p)
returns all transaction numbers that modified some data under p.
This set could then be combined with additional information about
transactions to identify all users that modified the subtree at p.
Here, p ≤ q means p is a prefix of q. Despite the fact that there
may be infinitely many paths q extending p, the answerMod(p) is
still finite, since there are only finitely many transaction identifiers
in Prov. Moreover, Mod can be answered using only the data in
Prov or HProv; it is not necessary to inspect the target database.
There are many interesting queries that mention both provenance

and the raw data. Our system currently does not provide special
support for such queries, but they can be written by explicitly con-
structing paths using string operations. For example, to project the
A field out of relation R(Id, A, B) along with its current prove-
nance, we could use the query

Q(x, px) ← R(k, x, y), From(tnow,"R/"+k+"/A", px)

where k, x, px, and y are variables and+ denotes string concatena-
tion. Such queries are tricky to write by hand, and we are interested
in providing advanced support for provenance queries; however,
this is future work.
The point of this discussion is to show that provenance mappings

relating a sequence of versions of a database can be used to answer
a wide variety of queries about the evolution of the data, even with-
out cooperation from source databases. However, if only the target
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from its parent’s annotation. Accordingly, we consider a second
technique, called hierarchical provenance. The key observation is
that we do not need to store all of the provenance links explicitly,
because the provenance of a child of a copied node can often be
inferred from its parent’s provenance using a simple rule. Thus,
in hierarchical provenance we store only the provenance links that
cannot be so inferred. These non-inferable links correspond to
the provenance links shown in Figure 4. A copy-paste operation
copy p into q results in adding only a single recordHProv(t, C, q, p).
Figure 5(c) shows the hierarchical provenance table HProv corre-
sponding to the naı̈ve version of Prov. In this case, the reduced
table is about 25% smaller than Prov, but much larger savings
are possible when entire records or subtrees are copied with little
change.
Unlike transactional provenance, hierarchical provenance does

not discard any information and does not require the user to group
operations into transactions. We can define the full provenance ta-
ble as a view of the hierarchical table as follows. If the provenance
is specified in HProv, then it is just copied into Prov. Otherwise,
the provenance of every target path p/a not mentioned in HProv is
q/a, provided p was copied from q. If p was inserted, then we as-
sume that p/a was also inserted; that is, children of inserted nodes
are assumed to also have been inserted, unless there is a record in
HProv indicating otherwise. Deletions are treated similarly. For-
mally, the full provenance table Prov can be defined in terms of
HProv as the following recursive query:

Infer(t, p) ← ¬(∃x, q.HProv(t, x, p, q))
Prov(t, op, p, q) ← HProv(t, op, p, q).
Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).
Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).
Prov(t, D, p/a,⊥) ← Prov(t, D, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that
have no explicit provenance inHProv, to ensure that only the prove-
nance of the closest ancestor is used. In our implementation, Prov
is calculated from HProv as necessary for paths in T , so this check
is unnecessary. It is not difficult to show that an update sequence
U can be described by a hierarchical provenance table with |U |
entries.

2.1.4 Transactional-hierarchical provenance
Finally, we considered the combination of transactional and hier-

archical provenance techniques; it is not difficult to combine them.
Figure 5(d) shows the transactional-hierarchical provenance of the
transaction in Figure 3.
It is also easy to show that the storage of transactional-hierarchical

provenance is i + d + C, where i and d are defined as in the dis-
cussion of transactional provenance and C is the number of roots
of copied subtrees that appear in the output. This is bounded above
by both |U | and i+d+ c, so transactional-hierarchical provenance
may be more concise than either approach alone.

2.2 Provenance queries
How can we use the machinery developed in the previous sec-

tion to answer some practical questions about data? Consider some
simple questions:

Src What transaction first created the data at a location? This is
particularly useful in the case of raw data; e.g., who entered
your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to
its current position?

Mod What transactions were responsible for the creation or modi-
fication of the subtree under a node?

Hist and Mod provide very different information. A subtree may
be copied many times without being modified.
We first define some convenient views of the raw Prov table

(which, of course, may also be a view derived from HProv). We
define the views Unch(t, p), Ins(t, p), Del(t, p), and Copy(t, p, q),
which intuitively mean “p was unchanged, inserted, deleted, or
copied from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).
Ins(t, p) ← Prov(t, I, p,⊥)
Del(t, p) ← Prov(t, D, p,⊥)
Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t
(table From(t, p, q)) provided it was either unchanged (and p = q)
or p was copied from q.

From(t, p, q) ← Copy(t, p, q)
From(t, p, p) ← Unch(t, p)

Next, we define aTrace(p, t, q, u), which says that the data at lo-
cation p at the end of transaction t “came from” the data at location
q at the end of transaction u.

Trace(p, t, p, t).
Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).
Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of
From. Now to define the queries mentioned at the beginning of the
section, suppose that tnow is the last transaction number in Prov,
and define
Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u), ¬Unch(u, r)}
That is, Src(p) returns the number of the transaction that inserted
the node now at p, while Hist(p) returns all transaction numbers
that were involved in copying the data now at p. Finally, Mod(p)
returns all transaction numbers that modified some data under p.
This set could then be combined with additional information about
transactions to identify all users that modified the subtree at p.
Here, p ≤ q means p is a prefix of q. Despite the fact that there
may be infinitely many paths q extending p, the answerMod(p) is
still finite, since there are only finitely many transaction identifiers
in Prov. Moreover, Mod can be answered using only the data in
Prov or HProv; it is not necessary to inspect the target database.
There are many interesting queries that mention both provenance

and the raw data. Our system currently does not provide special
support for such queries, but they can be written by explicitly con-
structing paths using string operations. For example, to project the
A field out of relation R(Id, A, B) along with its current prove-
nance, we could use the query

Q(x, px) ← R(k, x, y), From(tnow,"R/"+k+"/A", px)

where k, x, px, and y are variables and+ denotes string concatena-
tion. Such queries are tricky to write by hand, and we are interested
in providing advanced support for provenance queries; however,
this is future work.
The point of this discussion is to show that provenance mappings

relating a sequence of versions of a database can be used to answer
a wide variety of queries about the evolution of the data, even with-
out cooperation from source databases. However, if only the target
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from its parent’s annotation. Accordingly, we consider a second
technique, called hierarchical provenance. The key observation is
that we do not need to store all of the provenance links explicitly,
because the provenance of a child of a copied node can often be
inferred from its parent’s provenance using a simple rule. Thus,
in hierarchical provenance we store only the provenance links that
cannot be so inferred. These non-inferable links correspond to
the provenance links shown in Figure 4. A copy-paste operation
copy p into q results in adding only a single recordHProv(t, C, q, p).
Figure 5(c) shows the hierarchical provenance table HProv corre-
sponding to the naı̈ve version of Prov. In this case, the reduced
table is about 25% smaller than Prov, but much larger savings
are possible when entire records or subtrees are copied with little
change.
Unlike transactional provenance, hierarchical provenance does

not discard any information and does not require the user to group
operations into transactions. We can define the full provenance ta-
ble as a view of the hierarchical table as follows. If the provenance
is specified in HProv, then it is just copied into Prov. Otherwise,
the provenance of every target path p/a not mentioned in HProv is
q/a, provided p was copied from q. If p was inserted, then we as-
sume that p/a was also inserted; that is, children of inserted nodes
are assumed to also have been inserted, unless there is a record in
HProv indicating otherwise. Deletions are treated similarly. For-
mally, the full provenance table Prov can be defined in terms of
HProv as the following recursive query:

Infer(t, p) ← ¬(∃x, q.HProv(t, x, p, q))
Prov(t, op, p, q) ← HProv(t, op, p, q).
Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).
Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).
Prov(t, D, p/a,⊥) ← Prov(t, D, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that
have no explicit provenance inHProv, to ensure that only the prove-
nance of the closest ancestor is used. In our implementation, Prov
is calculated from HProv as necessary for paths in T , so this check
is unnecessary. It is not difficult to show that an update sequence
U can be described by a hierarchical provenance table with |U |
entries.

2.1.4 Transactional-hierarchical provenance
Finally, we considered the combination of transactional and hier-

archical provenance techniques; it is not difficult to combine them.
Figure 5(d) shows the transactional-hierarchical provenance of the
transaction in Figure 3.
It is also easy to show that the storage of transactional-hierarchical

provenance is i + d + C, where i and d are defined as in the dis-
cussion of transactional provenance and C is the number of roots
of copied subtrees that appear in the output. This is bounded above
by both |U | and i+d+ c, so transactional-hierarchical provenance
may be more concise than either approach alone.

2.2 Provenance queries
How can we use the machinery developed in the previous sec-

tion to answer some practical questions about data? Consider some
simple questions:

Src What transaction first created the data at a location? This is
particularly useful in the case of raw data; e.g., who entered
your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to
its current position?

Mod What transactions were responsible for the creation or modi-
fication of the subtree under a node?

Hist and Mod provide very different information. A subtree may
be copied many times without being modified.
We first define some convenient views of the raw Prov table

(which, of course, may also be a view derived from HProv). We
define the views Unch(t, p), Ins(t, p), Del(t, p), and Copy(t, p, q),
which intuitively mean “p was unchanged, inserted, deleted, or
copied from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).
Ins(t, p) ← Prov(t, I, p,⊥)
Del(t, p) ← Prov(t, D, p,⊥)
Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t
(table From(t, p, q)) provided it was either unchanged (and p = q)
or p was copied from q.

From(t, p, q) ← Copy(t, p, q)
From(t, p, p) ← Unch(t, p)

Next, we define aTrace(p, t, q, u), which says that the data at lo-
cation p at the end of transaction t “came from” the data at location
q at the end of transaction u.

Trace(p, t, p, t).
Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).
Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of
From. Now to define the queries mentioned at the beginning of the
section, suppose that tnow is the last transaction number in Prov,
and define
Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u), ¬Unch(u, r)}
That is, Src(p) returns the number of the transaction that inserted
the node now at p, while Hist(p) returns all transaction numbers
that were involved in copying the data now at p. Finally, Mod(p)
returns all transaction numbers that modified some data under p.
This set could then be combined with additional information about
transactions to identify all users that modified the subtree at p.
Here, p ≤ q means p is a prefix of q. Despite the fact that there
may be infinitely many paths q extending p, the answerMod(p) is
still finite, since there are only finitely many transaction identifiers
in Prov. Moreover, Mod can be answered using only the data in
Prov or HProv; it is not necessary to inspect the target database.
There are many interesting queries that mention both provenance

and the raw data. Our system currently does not provide special
support for such queries, but they can be written by explicitly con-
structing paths using string operations. For example, to project the
A field out of relation R(Id, A, B) along with its current prove-
nance, we could use the query

Q(x, px) ← R(k, x, y), From(tnow,"R/"+k+"/A", px)

where k, x, px, and y are variables and+ denotes string concatena-
tion. Such queries are tricky to write by hand, and we are interested
in providing advanced support for provenance queries; however,
this is future work.
The point of this discussion is to show that provenance mappings

relating a sequence of versions of a database can be used to answer
a wide variety of queries about the evolution of the data, even with-
out cooperation from source databases. However, if only the target
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Performance

• Query performance generally improves with H, 
T, HT storage strategy

• for H, this is somewhat surprising!

• Cheaper to recompute inferred links than to load
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Figure 10: The overhead of provenance tracking per operation,
as a percentage of the time to perform each basic operation.
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copy operations are performed while (acd) includes deletes.
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Figure 13: The time needed to perform basic provenance
queries.

confirm these trends for longer sequences of updates.
Figure 9 shows the time spent on storing provenance informa-

tion for all the techniques. For comparison, the average dataset
processing time and average commit times are shown as well. Note
that the time for copying in transactional provenance is not zero; it
is just close to zero because copies do not involve interaction with
the provenance store in transactional provenance. Figure 10 de-
picts the average overhead of provenance processing per individual
add, delete, or copy operation. For naı̈ve storage, the add, delete
and copy operations require less than 30% of the processing time
needed for interaction with the target database. Although hierarchi-
cal provenance is much faster for copies, it requires more time to
process inserts. (Deletes are unaffected because hierarchical prove-
nance treats deletes exactly as naı̈ve provenance does.) More time
is needed because we must first query the provenance database to
determine whether to add the provenance record. Transactional
provenance, on the other hand, is much more responsive. Inserts
and copies run essentially instantaneously, because no interaction
with the target database or provenance store is needed. Moreover,
commits require about 25% of the average time for database inter-
action, but only occur once every five steps. The savings seem to be
due to the reduced number of round-trips to the provenance data-
base. For hierarchical-transactional storage, more time is needed
for copies and inserts, but all the basic operations take at most 6%
of the total time. Commits take the same amount of time on average
as for hierarchical provenance.
The effects of deletion are shown in Figure 11. For naı̈ve and

hierarchical provenance, deletion simply adds provenance records.
For transactional provenance, some deletion patterns result in fewer
overall records being stored, because some data is inserted and
deleted in the same transaction. However, hierarchical-transactional
provenance displays the most stable behavior, and stores the fewest
records among the approaches for each update pattern.
The effect of transaction length on processing time is shown

in Figure 12. Processing time per basic operation does not vary
much with transaction size, while the amount of time needed to
process a commit grows approximately linearly with transaction
length. The average overall time per operation remains about the
same. These results reflect the expected behavior, and illustrate
that our approach works at interactive speeds (at most one or two
seconds) for transactions of up to 100 operations. Committing the
corresponding changes to the target database is likely to take as
long or longer. More sophisticated techniques that minimize net-
work round trips during commits could further reduce the overall
processing time.
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Generalizing to bulk 
updates 

[Buneman, Cheney & Vansummeren 2008]

R

R'

S

A B C
1 2 2

5 6 3

2 3 4

A B C
1 2 2

1 2 3

2 3 4

C D
1 2

2 2

2 3

ICDT 2007/TODS 2008

update R 
set (A,B) = 
  (select S.C A, S.D B   
   from S where S.A = 1)
where R.C = 3
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Database Wiki
[Buneman, Cheney, Lindley, Müller, SIGMOD/SIGMOD Record 

2011]

• Wiki-like Web 
application for 
data curation

• Archiving, copy-
paste provenance 
"built-in"

• http://code.google.com/p/database-wiki/
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Provenance & 
annotation for XML 

queries
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How-provenance
(Green, Karvounakaris, Tannen 2007)

• How-provenance: shows how records 
were combined to form output

A B C
1 2 2 a
1 2 3 b
2 3 4 c

C D
1 2 x
2 2 y
4 3 z

R S

A B
1 2 ax+by
2 3 cz

SELECT A,B 
FROM R JOIN S
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How-provenance
(Green, Karvounakaris, Tannen 2007)

• How-provenance: shows how records 
were combined to form output

A B C
1 2 2 a
1 2 3 b
2 3 4 c

C D
1 2 x
2 2 y
4 3 z

R S

A B
1 2 ax+by
2 3 cz

SELECT A,B 
FROM R JOIN S
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How-provenance
(Green, Karvounakaris, Tannen 2007)
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were combined to form output
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How-provenance
(Green, Karvounakaris, Tannen 2007)

• How-provenance: shows how records 
were combined to form output

A B C
1 2 2 a
1 2 3 b
2 3 4 c

C D
1 2 x
2 2 y
4 3 z

R S

A B
1 2 ax+by
2 3 cz

SELECT A,B 
FROM R JOIN S
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More about how-
provenance

• Formalized using semiring-valued relations

• Idea: Each n-tuple in relation carries an 
annotation from a commutative semiring

• K = (K,0,1,+,*) is a commutative semiring 
if: 

• (K,0,+) and (K,1,*) are commutative monoids

• a*0 = 0  (annihilation)

• a(b+c) = ab+ac  (distributivity)
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Some standard 
examples of semirings
• Booleans B = ({0,1},0,1,∨,⋀) 

• Numbers N = ({0,1,...},0,1,+,∙)

• Free semiring ℕ[X] 

• Polynomials over X with coefficients from N

• Formal addition, multiplication
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Semiring-valued 
relational algebra

elsewhere in the paper.

({u})K(I)t =

{
1 t = u

0 otherwise

RK(I)t = I(R)(t)

(σθ(Q))K(I)t = θ(t) · QK(I)t

(ρA !→B(Q))K(I)t = QK(I)(t[B !→ A])

(πV (Q))K(I)t =
∑

u∈supp(QK(I)),u[V ]=t

QK(I)u

(Q1 ! Q2)
K(I)t = Q1

K(I)(t[U1]) · Q2
K(I)(t[U2])

(Q1 ∪ Q2)
K(I)t = Q1

K(I)t + Q2
K(I)t

Observe that in the expression ({u})K(I)t, the expression {u} is a query expression describing a constant,
singleton relation, not a relation value per se. We interpret such constants as K-relations that assign 1 to

u and 0 to all other tuples; this is equivalent to the singleton set {u} in relational algebra or the singleton
multiset {u} in bag relational algebra. The summation in the case for projection is finite since the support
of a K-relation is assumed to be finite. Also, in the rule for selection, we view a test θ as a function θ :

U-Tuples → {0K , 1K}.

Definition 3.1.2. (Positive algebra provenance semiring [41, Definition 4.1]) Let X be the set of all tuple

ids of a database instance D. The positive algebra provenance semiring for D is defined as the semiring

of polynomials (N[X], 0, 1,+, ·), where N[X] denotes the set of polynomials with coefficients from N and

variables from X, and + and · have the usual definitions from algebra.
Concretely, if TupleLoc is the set of all tagged tuples from I , then we defineKHow as N[TupleLoc], and

we define the KHow-instance IHow as follows:

IHow(R)(t) =

{
(R, t) t ∈ I(R)

0 t /∈ I(R)

Finally, we define the how-provenance of a tuple t with respect to Q(I) as How(Q, I, t) = QKHow(IHow)t.

That is, we take how-provenance to be a polynomial expression over tuples (R, t).

To illustrate, our source database from Figure 3.1(a) can be seen as consisting of two N[t1, ..., t6] rela-

tions. Applying the query Q to these relations and performing the calculations in the provenance semiring

results in the N[t1, ..., t6] relation shown in Figure 3.1(b). As an example, the how-provenance of the first

two output tuples is given as the polynomials t1 · (t1 + t3) and respectively, t
2
2. (Note that t1 · (t1 + t3) is

the same as t21 + t1t3, since · distributes over +).

3.2 Trio Lineage

Trio [5, 50] is a system for managing relational data along with uncertainty and lineage. In this paper, we

discuss a simplified version of Trio’sULDB (Uncertainty-Lineage Databases) data model which is described

in [50]. This simplified model is similar to the relational model, except that each tuple in a relation is

associated with a numerical confidence value in the interval [0, 1], indicating the probability that the tuple

belongs to the database, as well as with an expression describing its lineage. Trio’s lineage is different
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Key observation
• When K = B, we get standard set-based 

semantics

• When K = ℕ, we get standard multiset 
semantics

• When K = ℕ[X], we get how-provenance 
semantics 
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How-provenance
• Preserves multiset, but not set 

semantics

1.1 Why, How and Where: An Overview 387

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B how
1 2 t
1 3 t′

4 2 t′′

Output of
Q′(I)

A B how
1 2 t2 + t · t′

1 3 (t′)2 + t · t′

4 2 (t′′)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

provenance semirings. Intuitively, the provenance of the output tuple

(San Francisco, 415-1200) is represented as a polynomial, which for

this example is t21 + t1 × t3. The polynomials for each output tuple are

shown on the right of the result of Q2. The polynomial hints at the

structure of the proofs by which the output tuple is derived. In this

example, the polynomial describes that the output tuple is witnessed

in two distinct ways: once using t1 twice, and the other using t1 and t3.

As we shall show, one can derive the why-provenance of an output tuple

from its how-provenance polynomial. However, this example shows that

the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-

mulations, since how-provenance is more general than why-provenance.

Going back to our example queries shown on the top of Figure 1.2,

Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in

the output of Q(I) is t according to Q, and respectively, t2 + t × t′

according to Q′.
Green et al. [43] formalize a notion of how-provenance for relational

algebra in terms of an appropriate “provenance semiring”, and extend

their approach to handle recursive datalog. Subsequently, an interest-

ing application of how-provenance appears in the context of ORCHES-

TRA [42, 44], a collaborative data sharing system in a network of peers

interconnected through schema mappings. An extension of the semiring

model of Green et al. [43] to schema mappings is used in ORCHESTRA

to efficiently support trust-based filtering of updates, and incremental

maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over

schema mappings called routes [21], and used it as a basis for SPIDER,

a system for debugging schema mappings [3]. Given a schema mapping

that relates a source and a target schema, routes describe how data in

1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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How-provenance
• Preserves multiset, but not set 

semantics
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provenance semirings. Intuitively, the provenance of the output tuple

(San Francisco, 415-1200) is represented as a polynomial, which for

this example is t21 + t1 × t3. The polynomials for each output tuple are

shown on the right of the result of Q2. The polynomial hints at the

structure of the proofs by which the output tuple is derived. In this

example, the polynomial describes that the output tuple is witnessed

in two distinct ways: once using t1 twice, and the other using t1 and t3.

As we shall show, one can derive the why-provenance of an output tuple

from its how-provenance polynomial. However, this example shows that

the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-

mulations, since how-provenance is more general than why-provenance.

Going back to our example queries shown on the top of Figure 1.2,

Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in

the output of Q(I) is t according to Q, and respectively, t2 + t × t′

according to Q′.
Green et al. [43] formalize a notion of how-provenance for relational

algebra in terms of an appropriate “provenance semiring”, and extend

their approach to handle recursive datalog. Subsequently, an interest-

ing application of how-provenance appears in the context of ORCHES-

TRA [42, 44], a collaborative data sharing system in a network of peers

interconnected through schema mappings. An extension of the semiring

model of Green et al. [43] to schema mappings is used in ORCHESTRA

to efficiently support trust-based filtering of updates, and incremental

maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over

schema mappings called routes [21], and used it as a basis for SPIDER,

a system for debugging schema mappings [3]. Given a schema mapping

that relates a source and a target schema, routes describe how data in
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Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is

not a minimal witness, since the query Q1 requires witnesses to consist

of exactly one tuple from Agencies, and one tuple from ExternalTours

according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be

tied to the structure of the query and it is therefore sensitive to how

a query is formulated. To illustrate, consider the instance I and two

equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we

use the Datalog conjunctive query notation to express Q and Q′ here

and throughout the paper as convenient. Consider the output tuple

(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.

The witness basis of this output tuple is {{t}}, according to Q and I.

However, even though Q′ is equivalent to Q, the witness basis of the

output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.
Although equivalent queries may have different witness bases,

Buneman et al. [13] showed that a subset of the witness basis, called

the minimal witness basis, is invariant under equivalent queries. The

minimal witness basis consists of all the minimal witnesses in the wit-

ness basis, where a witness is minimal if none of its proper subinstances

is also a witness in the witness basis. For example, {t} is a minimal wit-

ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

Has Why, multiset 
semantics as 

instances
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Examples
• Boolean semiring

A B C
1 2 2 T
1 2 3 T
2 3 4 T

C D
2 2 T
3 2 T
4 3 T

R S

A B
1 2 T∧T∨T∧T

2 3 T∧T

SELECT A,B 
FROM R JOIN S
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Examples
• Boolean semiring

A B C
1 2 2 T
1 2 3 T
2 3 4 T

C D
2 2 T
3 2 T
4 3 T

R S

A B
1 2 T
2 3 T

SELECT A,B 
FROM R JOIN S
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Examples
• Natural numbers semiring

A B C
1 2 2 1
1 2 3 2
2 3 4 3

C D
2 2 1
3 2 5
4 3 9

R S

A B
1 2 1·1+2·5

2 3 3·9

SELECT A,B 
FROM R JOIN S

52



March 12-15, 2013QSX

Examples
• Natural numbers semiring

A B C
1 2 2 1
1 2 3 2
2 3 4 3

C D
2 2 1
3 2 5
4 3 9

R S

A B
1 2 11
2 3 27

SELECT A,B 
FROM R JOIN S
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Examples
• Polynomial semiring

A B C
1 2 2 a
1 2 3 b
2 3 4 c

C D
2 2 x
3 2 y
4 3 z

R S

A B
1 2 ax+by
2 3 cz

SELECT A,B 
FROM R JOIN S
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A B
1 2 ax+by
2 3 cz

A B C
1 2 2 a
1 2 3 b
2 3 4 c

One (semi) ring to 
rule them all

• The polynomial semiring is "most general"

• any other K-semantics is an instance

C D
2 2 x
3 2 y
4 3 z

R S
SELECT A,B 
FROM R JOIN S
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A B
1 2 ax+by
2 3 cz

A B C
1 2 2 a
1 2 3 b
2 3 4 c

One (semi) ring to 
rule them all

• The polynomial semiring is "most general"

• any other K-semantics is an instance

C D
2 2 x
3 2 y
4 3 z

R S
SELECT A,B 
FROM R JOIN S

55

a=1,b=2,c=3
x=1,y=5,z=9
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A B
1 2 ax+by
2 3 cz

A B C
1 2 2 a
1 2 3 b
2 3 4 c

A B C
1 2 2 1
1 2 3 2
2 3 4 3

One (semi) ring to 
rule them all

• The polynomial semiring is "most general"

• any other K-semantics is an instance

C D
2 2 x
3 2 y
4 3 z

R S
SELECT A,B 
FROM R JOIN S
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A B
1 2 ax+by
2 3 cz

A B C
1 2 2 a
1 2 3 b
2 3 4 c
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1 2 2 1
1 2 3 2
2 3 4 3

One (semi) ring to 
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C D
2 2 x
3 2 y
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R S
SELECT A,B 
FROM R JOIN S
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A B
1 2 11
2 3 27

a=1,b=2,c=3
x=1,y=5,z=9

C D
2 2 1
3 2 5
4 3 9
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Observation
• Why-provenance can be recovered as an 

instance of how-provenance.

• Idea: Take K = (P(P(X)), {}, {{}}, ⋓, U)

56

A B C
1 2 2 {a}

1 2 3 {b}

2 3 4 {c}

C D
2 2 {x}

3 2 {y}

4 3 {z}

R S

A B
1 2 {{a,x},{b,y}}

2 3 {{c,z}}

SELECT A,B 
FROM R JOIN S
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How-provenance for 
XML

• Consider unordered XQuery

• Evaluate over annotated (unordered) 
XML

• Each node of document has a semiring-valued 
annotation

57

Source:

(
az

bx1

dy1

cx2

dy2 ey3

)
Answer:

p

dz·x1·y1+z·x2·y2 ez·x2·y3

Figure 1: Simple for Example.

l 2 L
k 2 K
p ::= l | $x | () | (p) | p,p | for $x in p return p

| let $x := p return p | if (p=p) then p else p
| element p {p} | name(p) | annot k p | p/s

s ::= ax::nt
ax ::= self | child | descendant
nt ::= l | *

Figure 2: K-UXQuery Syntax.

<az> <bx1> dy1 </>

<cx2> dy2 ey3 </> </>

where we have abbreviated leaves <l></> as l.
We propose a query language for K-UXML called K-UXQuery.

Its syntax, listed in Figure 2, corresponds to a core fragment of
XQuery [11] with one exception: the new construct annot k p
allows queries to modify the annotations on sets. With annot k p
any K-UXML value can be built with the K-UXQuery constructs.

We use the following types for K-UXML and K-UXQuery:

t ::= label | tree | {tree}

where label denotes L, tree denotes the set of all trees and {tree}
denotes the set of all finite K-sets of trees. The typing rules for
selected K-UXQuery operators are given in Figure 3.

At the end of this section we discuss this syntax in more de-
tail, and in §6.3 we present a formal semantics that uses the oper-
ations of the semiring to combine annotations. In the rest of this
section, however, we illustrate the semantics informally on some
simple examples to introduce the basic ideas. We start with very
simple queries demonstrating how the individual operators work,
and build up to a larger example corresponding to a translation of a
relational algebra query.

As a first example, let pi = element ai {()} for i 2 {1, 2}.
That is, each pi constructs a tree with no children. The query (p1)

produces the singleton K-set in which p1 is annotated with 1 2
K and the query annot k1 (p1) produces the singleton K-set in
which p1 is annotated with k1 · 1 = k1. We can also construct
a union of K-sets: let q be annot k1 (p1),annot k2 (p2). The
result computed by q depends on whether a1 and a2 are the same
label or different labels. If a1 = a2 = a, then p1 and p2 are the
same tree and so the query then element b {q} produces the left
tree below. If a1 6= a2, then the same query produces the tree on
the right.

b

ak1+k2

b

ak1
1 ak2

2

Next, let us examine a query that uses iteration:

p = element p { for $t in $S return
for $x in ($t)/* return
($x)/* }

� ` p1 : {tree} � ` p2 : {tree}
� ` p1,p2 : {tree}

� ` p1 : {tree} �, x : tree ` p2 : {tree}
� ` for $x in p1 return p2 : {tree}

� ` p1 : label � ` p2 : label � ` p3 : t � ` p4 : t

� ` if (p1=p2) then p3 else p4 : t

� ` p1 : label G ` p2 : {tree}
� ` element p1 {p2} : tree

� ` p1 : tree

� ` name(p1) : label

� ` p : {tree}
� ` p/ax::nt : {tree}

� ` k 2 K � ` p : {tree}
� ` annot k p : {tree}

Figure 3: Selected K-UXQuery Typing Rules.

Source:

(
a

bx1

a

cy3 d

cy1

d

a

cy2 bx2)
Answer:

r

cq1 cy1

d

a

cy2 bx2

where q1 = x1 · y3 + y1 · y2

Figure 4: XPath Example.

If $S is the (source) set on the left side of Figure 1, then the answer
produced by p is the tree on the right in the same figure.6 Oper-
ationally, the query works as follows. First, the outer for-clause
iterates over the set given by $S. As $S is a singleton in our exam-
ple, $t is bound to the tree whose root is labeled a and annotation
in $S is z. Next, the inner for-clause iterates over the set of trees
given by ($t)/*:

( bx1

dy1 ,

cx2

dy2 ey3
)

It binds $x to each of these trees, evaluates the return-clause in
this extended context, and multiplies the resulting set by the anno-
tation on $x. For example, when $x is bound to the b child, the
return-clause produces the singleton set (dy1). Multiplying this
set by the annotation x1 yields (dx1·y1). After combining all the
sets returned by iterations of this inner for-clause, we obtain the
set (dx1·x1+x2·y2, ex2·y3). The final answer for p is obtained by
multiplying this set by z. Note that the annotation on each child in
the answer is the sum, over all paths that lead to that child in $t,
of the product of the annotations from the root of $t to that child,
thus recording how it arises from subtrees of $S.

Next we illustrate the semantics of XPath descendant naviga-
tion (shorthand //). Consider the query

r = element r { $T//c }

which picks out the set of subtrees of elements of $T whose la-
bel is c. A sample source and corresponding answer computed by
r are shown in Figure 4. In §6.3 we define the semantics of the
descendant operator using structural recursion and iteration. It
6Actually this query is equivalent to the shorter “grandchildren”
XPath query $S/*/*; we use the version with a for-clauses to
illustrate the semantics of iteration.
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Example

58

<p>{$doc/*/*}</p>

A

B B

C D D

a

c2c1

b1 b2

c3
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Example

58

<p>{$doc/*/*}</p>

A

B B

C D D

a

c2c1

b1 b2

c3

P

C D
b1c1+b2c3 b1c2
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On the other hand...
• Semiring model is not the end of the story

• For example, where-provenance is not an 
instance of semiring model

• There are other non-instances.

• Only handles unordered XML

• also does not handle negation

• So, further generalization may be 
possible.
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Provenance in other 
settings

• Scientific workflows/distributed computing

• Business process modeling

• Semantic Web

• Operating systems, file systems

• This work is generally not as formal

• not as clear what is implemented and why

• Understanding and relating these models is 
important future work
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Summary of course
• Standards/languages for XML

• XPath/XQuery

• XSLT

• DTDs + XML Schema

• From XML to relations, and back

• XML shredding

• XML publishing
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Summary of course
• Updates

• XQuery Update

• Updating XML stored in relations

• Types

• Regular expression types/XDuce

• XQuery typing, query/update independence

• Provenance - today
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Presentations
• 10, 15, or 20 minutes (depending on 

group size)

• Each group member must participate

• Cover:

• background

• what you did (papers read, development)

• status; experimental results

• conclusions
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