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XML publishing

• Exporting and importing XML data shared over Web

• Key problem: defining relational-XML views specifying 
mappings from relational to XML data sources

• Useful for querying shredded XML stored in RDBMSs

• define reconstructing view, then translate queries on view to SQL

DB DB 

XML 

Web 

XML 
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From relations to 
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears
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<Actor id="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie id="11">
  <Title>Spider-Man</Title>
  <Year>2002</Year>
 </Movie>
</Actor>
<Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 <Movie id="11">
  <Title>Spider-Man</Title>
  <Year>2002</Year>
 </Movie>
 <Movie id="32">
  <Title>Elizabethtown</Title>
  <Year>1999</Year>
 </Movie> 
</Actor>

From relations to 
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears
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<Actor id="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie id="11">
  <Title>Spider-Man</Title>
  <Year>2002</Year>
 </Movie>
</Actor>
<Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 <Movie id="11">
  <Title>Spider-Man</Title>
  <Year>2002</Year>
 </Movie>
 <Movie id="32">
  <Title>Elizabethtown</Title>
  <Year>1999</Year>
 </Movie> 
</Actor>

<Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 <Actor id="1">
  <LName>Maguire</LName>
  <FName>Tobey</FName>
 </Actor>
 <Actor id="2">
  <LName>Dunst</LName>
  <FName>Kirsten</FName>
 </Actor>
</Movie>
<Movie id="32">
 <Title>Elizabethtown</Title>
 <Year>1999</Year>
 <Actor id="2">
  <LName>Dunst</LName>
  <FName>Kirsten</FName>
 </Actor>
</Movie> 

From relations to 
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears
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Commercial systems -  
canonical publishing

• Canonical publishing: the universal-relation approach 

• Embedding single SQL query in XSL stylesheet

• Result:  canonical XML representation of relations

• Systems: 

• Oracle 10g XML SQL facilities: SQL/XML, XMLGen

• IBM DB2 XML Extender: SQL/XML, DAD

• Microsoft SQL Server 2005: FOR-XML, XSD

• incapable of expressing practical XML publishing: 
default fixed XML document template
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Canonical publishing
aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears
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Canonical publishing
aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

<Actor aid="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
</Actor>
<Actor aid="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
</Actor>

<Movie mid="11">
 <Title>Spider-Man</title>
 <Year>2002</Year>
</Movie>
<Movie mid="32">
 <Title>Elizabethtown</title>
 <Year>2005</Year>
</Movie>

<Appears mid="11" aid="1"/>
<Appears mid="11" aid="2"/>
<Appears mid="32" aid="2"/>
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Generating canonical 
XML view

• Goal: Push computation to DB

• use DB sort or join to generate tuples in same order as needed 
in XML document

• Several approaches:

• Redundant relation: join all relations relating parents to children

• Unsorted path outer union: reduce redundancy

• Unsorted outer union

• Sorted outer union: single SQL query; best

• All approaches: require "tagging" post-processing stage 
to generate actual XML
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Outer union query: 
example

((SELECT 1 AS tag, aid, lname, fname, NULL, ... NULL

 FROM Actors)

UNION

(SELECT 2 AS tag, NULL,..., mid, title, year, NULL... 

 FROM Movies) 

UNION

(SELECT 3 AS tag, NULL, ..., aid, mid

 FROM Appears))

ORDER BY tag, aid, mid, ...
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XPERANTO
[Shanmagusundaram et al.]

• Commercial system:   IBM DB2 XML extender, SQL/XML

• Middleware (vendor-independent):  XPERANTO 

• Extends SQL with XML constructors:  

 select   XML-aggregation

 from     R1, . . .,  Rn

 where    conditions

• XML constructors (XML-aggregation): functions

• Input: tables and  XML trees (forest)

• Output: XML tree 
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XML publishing with 
XPERANTO (SQL/XML)

• Extended SQL: 

 select XMLAGG(ACTOR(lname, fname, 
! !              select   XMLAGG ( MOVIE(title,   year)
! !              from     Appears Ap, Movies M
! !              where    Ap.aid = A.aid and Ap.mid = M.mid
! !              group    order by  A.lname, A.fname ))
 from       Actor  A

Actor (aid,  lname,  fname) 

Appears (mid, aid) 

Movie (mid,  title,  year) 

<Actor>
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie>
  <Title>Spider-Man</Title>
  <Year>2002</Year>
 </Movie>
</Actor>
...
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XML constructors 
(SQL/XML)

• Actor constructor:

create function ACT(lname: str, fname: str, mlist: XML)
!      <Actor>  
! !   <Lname>{lname}</Lname> 
! !   <Fname>{fname}</Fname>
! !   {mlist}
!     </Actor>

• Movie constructor (mlist)

create function Mov(title: str, year: int)
! <Movie year=“{year}”>{title}</Movie>

• Verbose and cumbersome

• small document: tedious

• large documents: unthinkable
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SilkRoute
[Fernandez et al. 2002]

• Annotated template: embedding SQL in a fixed XML tree 

• Middleware: SilkRoute

• Commercial: SQL Server 2005 XSD, IBM DB2 DAD

• Advantages:

• More `modular’ compared to the universal relation approach

• Limited schema-driven: conforming to a fixed doc template

root 

Q1 Q2 Q3 

Q4 Q5 

tag1 tag2 tag3 

tag5 tag6 
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Data exchange: insurance 
company and hospital

• Daily report      

• Relational database R at the hospital:

  Patient (SSN, name, tname, policy#, date)

! ! inTreatment (tname, cost)

! ! outTreatment (tname, referral#)

! ! Procedure (tname1, tname2)!

• treatment

• in hospital: composition hierarchy in Procedure

• outside of the hospital: referral#

R XML 

hospital insurance company XML view 
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Example: insurance 
company and hospital
• DTD D predefined by the insurance company:

       report       !    patient*

        patient      !    SSN,  pname,  treatment,  policy#

        treatment    !    tname,(inTreatment + outTreatment)

        inTreatment  !    treatment*

        outTreatment !    referral# 

•  How to define a mapping σ such that for any instance DB of R,  

• σ (DB) is an XML document containing all the patients and their 
treatments (hierarchy, referral#) from DB, and 

• σ (DB) conforms to D?
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Challenge: 
recursive types

• XML data: unbounded depth -- cannot be decided 
statically 

treatment   ! tname, (inTreatment + outTreatment)

inTreatment ! treatment*   --- recursive

treatment 

inTreatment 

... 
treatment 

... 

... 
report 

patient patient patient patient 

treatment name 

tname 
�Joe� 

... 

Policy# 

<-- unbounded 
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Challenge: 
non-determinism

• The choice of a production (element type definition) 

 treatment ! tname,  (inTreatment + outTreatment)

• depends on the underlying relational data

report 

... patient patient patient patient 

... 
treatment treatment referral# 

inTreatment 
tname 

outTreatment 

treatment <-- data-dependent 
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Limitations of 
existing systems

• uses fixed XML tree template or ignores DTD-conformance

• middleware: SilkRoute (AT&T), XPERANTO (IBM), …  

• systems: SQL Server 2005, IBM DB2 XML extender, …

• incapable of coping with a predefined DTD (e.g. recursion)

• type checking: define a view and then check its 
conformance

• undecidable in general, co-NEXPTIME for extremely restricted view 
definitions (but cf. week 7)

• no guidance on how to define XML views that typecheck

• one gets an XML view that typechecks only after repeated 
failures and with luck
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Schema-directed 
XML publishing
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Attribute Translation 
Grammar (ATG)

[Benedikt et al. 2002]

• DTD: normalized; element type definitions a → r where:

r  ::=    PCDATA   |   ε   |   a1, …, an   |   a1 + … + an   |   a*

• Attributes: $a associated with each element type a

• $a: tuple-valued, to pass data value as well as control info

• Rules: associated with each a → r:

• for each b in r, define $b := Q($a)  

• SQL query Q extracts data from DB

• tuple-valued parent attribute $a is a parameter in Q   

ATG DTD 

Semantic rules attributes 

= 
+ 
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Semantics: 
conceptual evaluation
• Top-down

report ! patient*

  $patient ← select  SSN, name, tname, policy

              from    Patient  ---  SQL query

• recall Patient (SSN,  name, tname,  policy#)

• Data-driven: one patient element for each tuple in Patient 
relation

report 

patient ... patient patient patient 
$patient $patient $patient $patient 
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Inherited attributes
• Inherited: $child is computed using $parent

patient   !    SSN,  name,  treatment, policy#

   $SSN       ← $patient.SSN!  

   $name      ← $patient.name

   $treatment ← $patient.tname 

   $policy#   ← $patient.policy

• recall $patient = (SSN, name, tname, policy)

SSN  !  PCDATA

   $PCDATA  ← $SSN

report 

SSN 

�123� 

patient ... patient patient patient 

treatment name 

�Joe� 

policy# 

�LU23� 

$patient 

$SSN 

$PCDATA 
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Coping with non-
determinism

treatment  !  tname,  (inTreatment + outTreatment)

  $tname ← $treatment!

  ($inTreatment, $outTreatment) ← case  Qc($treatment).tag

                                      1:  ($treatment, null)

                                   else:  (null, $treatment)

• Qc: SELECT 1 as tag FROM inTreatment WHERE tname = $treatment

• conditional query: the choice of production

• $parent a parameter in SQL query

inTreatment tname 

treatment 

outTreatment 

treatment 

tname 

... Qc($treatment)=null Qc($treatment)=1 
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Coping with 
recursion

inTreatment  ! treatment* 

  $treatment ← select tname2

                from  Procedure

                where $inTreatment = tname1

• recall Procedure (tname1,  tname2) 

• $parent as constant parameter in SQL query Q

• inTreatment is further expanded as long as Q(DB) is nonempty

inTreatment 

treatment treatment 

treatment 

tname 

... 
$treatment $treatment 
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DTD-directed 
publishing with ATGs
• DTD-directed: the XML tree is constructed strictly following the 

productions of a DTD  

• guaranteed DTD conformance

• Data-driven: the choice of productions and expansion of the XML 
tree (recursion) depends on relational data

• static analysis to guarantee termination

treatment 

inTreatment 

... 
treatment 

... 

... 
report 

patient patient patient patient 

treatment name 

tname 
�Joe� 

... 

policy# SSN 

<-- unbounded 

    data-dependent 
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ATGs vs. existing 
systems

• DTD-conformance: 

• ATGs: provide guidance for how to define DTD-
directed publishing

• Other systems: based on a fixed tree template 

• Expressive power: strictly more expressive 
than others

• ATGs: capable of expressing XML views supported by 
other systems

• Other systems: cannot handle recursion/
nondeterminism
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$id := ...         $lname := ...
$fname := ...   $Movie := ...

Quiz: 
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year 

$id := ...     $year = ...
$title := ...

$Movie := ...

$Actor := ...
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$id := ...         $lname := ...
$fname := ...   $Movie := ...

Quiz: 
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year 

$id := ...     $year = ...
$title := ...

$Movie := ...

$Actor := ...$Actor := select aid,lname,fname 
          from Actors
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$id := ...         $lname := ...
$fname := ...   $Movie := ...

$id := $Actor.aid      $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz: 
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year 

$id := ...     $year = ...
$title := ...

$Movie := ...

$Actor := ...$Actor := select aid,lname,fname 
          from Actors
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$id := ...         $lname := ...
$fname := ...   $Movie := ...

$id := $Actor.aid      $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz: 
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year 

$id := ...     $year = ...
$title := ...

$Movie := ...

$Actor := ...

$Movie := select m.mid,m.title,m.year
          from movies m, appears app
          where app.aid=$Movie.aid, app.mid=m.mid

$Actor := select aid,lname,fname 
          from Actors
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$id := ...         $lname := ...
$fname := ...   $Movie := ...

$id := $Actor.aid      $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz: 
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year 

$id := ...     $year = ...
$title := ...

$Movie := ...

$Actor := ...

$id := $Movie.mid 
$year = $Movie.year
$title := $Movie.title

$Movie := select m.mid,m.title,m.year
          from movies m, appears app
          where app.aid=$Movie.aid, app.mid=m.mid

$Actor := select aid,lname,fname 
          from Actors
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Querying XML views of
 relational data
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XML views
• Materialized views: store data in the views

• Query support: straightforward and efficient

• Consistency: the views should be updated in response 
to changes to the underlying database

XML View 

RDB 

query answer 

DBMS middleware 

updates 

query 
translation 

• Virtual views: do not store data

• Query support: view queries should 
be translated to equivalent ones over 
the underlying data

• Updates: not an issue
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Virtual vs. 
materialized

• XML views are important for data exchange, Web services, access 
control (security), Web interface for scientific databases, …

• Materialized views: publishing

• sometimes necessary, e.g., XML publishing

• when response time is critical, e.g., active system

• “static”: the underlying database is not frequently updated

• Virtual views: shredding

• “dynamic”: when the underlying data source constantly changes and/or 
evolves

• Web interface: when the underlying database and the views are large

• Access control: multiple views of the same databases are supported 
simultaneously for different user groups
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Middleware approach
• Query answering/rewriting with views has been extensively 

studied

• Define publishing mapping that inverts shredding

• Treat the inverse as a virtual view of the relational data

• Make use of techniques for view query rewriting 

XML 

RDB 

query answer 

DBMS 

XML View 

Middleware: 
view query rewriting 

inverse 

store 
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Challenging issues
• Schema-directed XML view definition: we know how 

to do it now

• Query translation: given a query over a virtual XML 
view, rewrite the query to an equivalent one over 
the underlying database – from views to relations

XML 

RDB 

query answer 

publishing query 
translation 

DBMS middleware 

schema 
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Querying a View
• The middleware must respond to view queries/

requests by

• generating SQL queries/requests at runtime

• composing and  tagging the results

SQL 
Generator 

View 
Definition Query-cost 

Estimates 
Source Capabilities 

Tagger 

Query 
Composer 

SQL 
Queries ? ? ? 

Result 
Tables 

Composed 
 XQuery 
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The XPERANTO 
approach

• Middleware:

• A library of XQuery functions

• Transformation rules (algebra)

• A cost model and optimization techniques

• An intermediate language -- middleware

• accept an XML query

• rewrite the query with the rules and library

• push work down to the underlying DBMS

• conduct computations that DBMS cannot do

• optimize the rewritten queries

• compose query results from DBMS and middleware to build the answer 
to the XML query

RDB 

query answer 

DBMS 

XML View 

Middleware: 
view query rewriting 
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Research issues
• Optimization: can one effectively find an optimal rewriting?

• How much work should be pushed down to DBMS?

• communication cost between DBMS and the middleware

• leveraging the DBMS optimizer

• Multi-query optimization – hard

• accurate cost model?

• composition – when to tag?

• query dependency

• workload

• Effective generic optimization techniques are beyond reach for 
Turing-complete query languages 

• (NP-hard at least, can easily become undecidable)

RDB 

query answer 

DBMS 

XML View 

Middleware: 
view query rewriting 
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The SilkRoute 
Approach

• Uses XQuery to specify view

• Advantage: easy to compose query with view

• Running example: 

• relations → canonical XML 

Query 
Generator ? 

Query 
Composer 

Request 
(XQuery) 

Actor (aid,  lname,  fname) 

Appearance (mid, aid) 

Movie (mid,  title,  year) 

Appear 

DB 

Actor 

ActorRow 

Movie 

MovieRow AppearRow 

@fname @lname @aid @mid @aid @year 

@title 

@mid 

* * * 
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Query Composition
? = ° ? 

for $act in //Actor return <Actor> {$act/Lname} 
 for $movie in $act/Movie[@year=1999] 
 return <Movie>{$movie}</Movie> 

           </Actor> 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
 <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname> 
  for $actapp in DB//AppearRow[@aid=$aid] 
   for $movie in DB//MovieRow[@mid=$actapp/@mid]      
   return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>  
  </Actor> 

View: Movies by Gibson 

Query: Get each Actor + Movies in 1999 

Composed Query: Movies by Gibson in 1999 
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for $aid in DB//ActorRow[@lname=�Gibson�]/@aid  
return <Actor> {$act/Lname} 

 for $movie in //Movie[@year=1999] 
 return <Movie>{$movie}</Movie> 

           </Actor> 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname> 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid]      
    return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>  
  </Actor> 

View: Movies by Gibson 

Query: Get each Actor + Movies in 1999 

Query Composition
? = ° ? 

February 12-15, 2013QSX

Query Composition
? = ° ? 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid  
return <Actor> Gibson 
  for $movie in //Movie[@year=1999] 
  return <Movie>{$movie}</Movie> 
           </Actor> 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname> 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid]      
    return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>  
  </Actor> 

View: Movies by Gibson 

Query: Get each Actor + Movies in 1999 



February 12-15, 2013QSX

Query Composition
? = ° ? 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid  
return <Actor> Gibson 
  for $actapp in DB//AppearRow[@aid=$aid]  
  for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999] 

 return <Movie>{$movie}</Movie> 
              </Actor> 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname> 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid]      
    return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>  
  </Actor> 

View: Movies by Gibson 

Query: Get each Actor + Movies in 1999 
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Query Composition
? = ° ? 

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor>Gibson 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]   
    return <Movie> {$movie/@title} </Movie>  
  </Actor> 

Composed Query on Canonical XML:= 

•  Efficient query composition involves:

•  substitution

•  filtering

•  pattern matching
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Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor>Gibson 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]   
    return <Movie> {$movie/@title} </Movie>  
  </Actor> 

Composed Query on Canonical XML:= 
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Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor>Gibson 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]   
    return <Movie> {$movie/@title} </Movie>  
  </Actor> 

Composed Query on Canonical XML:= 

SELECT a.aid, app.mid
FROM   Actors a, Appear app
WHERE  app.aid = a.aid
  AND  a.lname = 'Gibson'
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Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid 
return  
  <Actor>Gibson 
   for $actapp in DB//AppearRow[@aid=$aid] 
    for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]   
    return <Movie> {$movie/@title} </Movie>  
  </Actor> 

Composed Query on Canonical XML:= 

SELECT a.aid, app.mid, m.title
FROM   Actor a, Appears app, Movie m
WHERE  app.mid = m.mid
  AND  m.year = 1999
  AND  a.lname = 'Gibson'
  AND  a.aid = app.aid
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SilkRoute:
Query trees

• Tree annotated with SQL clauses

Actor

aid lname fname

string string string

FROM Actors

FROM ()FROM ()FROM ()

SELECT a.aid SELECT a.lname SELECT a.fname

Canonical view (similar for Movies, Appears)
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SilkRoute:
Query composition

• Can compose XQuery queries to form new trees

Actor

@aid
lname

fname

string
string

string

FROM Actors

FROM ()

FROM ()
FROM ()

SELECT a.aid
SELECT a.lname

SELECT a.fname

for $a in Actor
return 
 <Actors @aid={$x/aid}>
  <lname>{$a/lname}</lname>
  <fname>{$a/fname}</fname>
  {for $app in Appears[@aid=$a/aid]
   for $m in Movie[@mid=$app/mid]
   return 
    <Movie mid={$m/mid}>
     <Title>{$m/title}</Title>
     <Year>{$m/year}</Year>
    </Movie>}
 </Actors>

February 12-15, 2013QSX

SilkRoute:
Composition

• A composed query tree

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid 
  AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year
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SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid 
  AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year
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SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid 
  AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

SELECT a.aid, a.lname, a.fname
FROM   Actors a
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SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid 
  AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

SELECT a.aid, m.mid, m.title, m.year
FROM   Actors a, Movies m, Appears app
WHERE  m.mid = app.mid 
  AND  a.aid = app.aid
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Query translation
• Works, but several challenges:

• can we guarantee Q produces data matching D?

• efficiency: if we materialize result, how to recompute 
when relational data updated?

• can we translate Q ○ V to an efficient query/query plan?

• how can we translate updates to Q(V(DB)) back to DB?

• Complications:

• recursion (in query or DTD)

• typechecking (XQuery typechecking intractable/
undecidable)
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Commercial RDBMS 
support for XML 

storage/publishing/
views
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 IBM DB2 XML Extender
(storage)

• XML Columns: CLOBs + side tables for 
indexing individual elements

• SQL/XML: an extension of SQL with XML constructors 
(XMLAGG, XMLELEMENT, etc) as discussed earlier

• XML Collections: Declarative decomposition of 
XML into multiple tables

• Data loading: follows DAD mapping 

• Able to incrementally update existing tables (DB2)

• Nonrecursive schema only
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 IBM DB2 XML Extender 
(publishing)

• User-defined mapping through DAD (Document 
Access Definition)

• a fixed XML tree template (nonrecusive)

• SQL mapping: a single SQL query, constructing XML trees of 
depth bounded by the arity of the tuples returned and 
group-by

• RDB node mapping: a fixed tree template with nodes 
annotated with conjunctive queries

• Summary: 

• incapable of supporting schema-directed publishing

• can’t define recursive XML views

February 12-15, 2013QSX

MS SQL Server 2005
(storage)

• CLOB (character large objects), XML data 
type 

• XQuery: query(), value(), exist(), nodes();  
binding relational data

• Combine INSERT and node( ), value( ), XPath

• OPENXML: access to XML data as a relational 
rowset

• selective shredding, limited recursion, can’t 
store the entire document in a single pass
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MS SQL Server 2005
(publishing)

• Annotated schema (XSD): fixed tree templates

• nonrecursive schema

• associate elements and attributes with table and column names

• Given a relational database, XSD populates an XML elements/
attributes with corresponding tuples/columns

• FOR-XML

• An extension of SQL with an FOR-XML construct

• Nested FOR-XML to construct XML documents

• Summary:

• incapable of supporting schema-directed publishing

• can’t define recursive XML views (bounded recursion depth)
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 Oracle 10g XML DB
(storage)

• Store XML data in CLOB (character large objects) or 
tables 

• Canonical mapping into object-relational tables

• tag names are mapped to column names

• elements with text-only map to scalar columns

• elements with sub-elements map to object types

• list of elements maps to collections

• Indexing: standard relational

• cannot insert into existing tables (DB2)

• Annotated schema: recursive, selective
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Oracle 10g XML DB
(publishing)

• SQL/XML

• DBMS_XMLGEN, a PL/SQL package

• Supports recursive XML view definition (via 
linear recursion of SQL’99)

• does not support schema-directed XML 
publishing
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Commercial Systems: 
Summary

• Storage and XML-relational mappings:

• CLOBs (or XML columns)

• Fixed canonical mappings

• Mappings in terms of annotated schema

• Querying: 

• SQL as the main access method to XML documents 

• “XML-aware” extensions to SQL

• Limited support for 

• recursive schema (Microsoft, IBM DB2)

• incrementing/updating existing tables (Oracle)

• XQuery, updates

• context-dependent tuple construction
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Update Support
• How to update?

• Flat streams: overwrite document

• Colonial: SQL updates?

• Native: DOM, proprietary APIs

• But how do you know you have not violated schema?

• Flat streams: re-parse document

• Colonial: need to understand the mapping and translate/
maintain integrity constraints

• Native: supported in some systems (e.g., eXcelon)

• XQuery Update Facility: relatively new 
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Next time
• No lectures next week!

• Innovative learning week

• After that: XML Updates

• XQuery Update for the impatient

• Updating XML

• Updating XML Views of Relations

• Reading: Monday 4pm (as usual)


