
Querying and
storing XML

Week 5
Publishing relational data as XML

February 12-15, 2013

February 12-15, 2013QSX

XML publishing

• Exporting and importing XML data shared over Web

• Key problem: defining relational-XML views specifying
mappings from relational to XML data sources

• Useful for querying shredded XML stored in RDBMSs

• define reconstructing view, then translate queries on view to SQL

DB DB

XML

Web

XML

February 12-15, 2013QSX

From relations to
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

February 12-15, 2013QSX

<Actor id="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 </Movie>
</Actor>
<Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 <Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 </Movie>
 <Movie id="32">
 <Title>Elizabethtown</Title>
 <Year>1999</Year>
 </Movie>
</Actor>

From relations to
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

February 12-15, 2013QSX

<Actor id="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 </Movie>
</Actor>
<Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 <Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 </Movie>
 <Movie id="32">
 <Title>Elizabethtown</Title>
 <Year>1999</Year>
 </Movie>
</Actor>

<Movie id="11">
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 <Actor id="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 </Actor>
 <Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 </Actor>
</Movie>
<Movie id="32">
 <Title>Elizabethtown</Title>
 <Year>1999</Year>
 <Actor id="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
 </Actor>
</Movie>

From relations to
XML Views

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

February 12-15, 2013QSX

Commercial systems -
canonical publishing

• Canonical publishing: the universal-relation approach

• Embedding single SQL query in XSL stylesheet

• Result: canonical XML representation of relations

• Systems:

• Oracle 10g XML SQL facilities: SQL/XML, XMLGen

• IBM DB2 XML Extender: SQL/XML, DAD

• Microsoft SQL Server 2005: FOR-XML, XSD

• incapable of expressing practical XML publishing:
default fixed XML document template

February 12-15, 2013QSX

Canonical publishing
aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

February 12-15, 2013QSX

Canonical publishing
aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

<Actor aid="1">
 <LName>Maguire</LName>
 <FName>Tobey</FName>
</Actor>
<Actor aid="2">
 <LName>Dunst</LName>
 <FName>Kirsten</FName>
</Actor>

<Movie mid="11">
 <Title>Spider-Man</title>
 <Year>2002</Year>
</Movie>
<Movie mid="32">
 <Title>Elizabethtown</title>
 <Year>2005</Year>
</Movie>

<Appears mid="11" aid="1"/>
<Appears mid="11" aid="2"/>
<Appears mid="32" aid="2"/>

February 12-15, 2013QSX

Generating canonical
XML view

• Goal: Push computation to DB

• use DB sort or join to generate tuples in same order as needed
in XML document

• Several approaches:

• Redundant relation: join all relations relating parents to children

• Unsorted path outer union: reduce redundancy

• Unsorted outer union

• Sorted outer union: single SQL query; best

• All approaches: require "tagging" post-processing stage
to generate actual XML

February 12-15, 2013QSX

Outer union query:
example

((SELECT 1 AS tag, aid, lname, fname, NULL, ... NULL

 FROM Actors)

UNION

(SELECT 2 AS tag, NULL,..., mid, title, year, NULL...

 FROM Movies)

UNION

(SELECT 3 AS tag, NULL, ..., aid, mid

 FROM Appears))

ORDER BY tag, aid, mid, ...

February 12-15, 2013QSX

XPERANTO
[Shanmagusundaram et al.]

• Commercial system: IBM DB2 XML extender, SQL/XML

• Middleware (vendor-independent): XPERANTO

• Extends SQL with XML constructors:

 select XML-aggregation

 from R1, . . ., Rn

 where conditions

• XML constructors (XML-aggregation): functions

• Input: tables and XML trees (forest)

• Output: XML tree

February 12-15, 2013QSX

XML publishing with
XPERANTO (SQL/XML)

• Extended SQL:

 select XMLAGG(ACTOR(lname, fname,
! ! select XMLAGG (MOVIE(title, year)
! ! from Appears Ap, Movies M
! ! where Ap.aid = A.aid and Ap.mid = M.mid
! ! group order by A.lname, A.fname))
 from Actor A

Actor (aid, lname, fname)

Appears (mid, aid)

Movie (mid, title, year)

<Actor>
 <LName>Maguire</LName>
 <FName>Tobey</FName>
 <Movie>
 <Title>Spider-Man</Title>
 <Year>2002</Year>
 </Movie>
</Actor>
...

February 12-15, 2013QSX

XML constructors
(SQL/XML)

• Actor constructor:

create function ACT(lname: str, fname: str, mlist: XML)
! <Actor>
! ! <Lname>{lname}</Lname>
! ! <Fname>{fname}</Fname>
! ! {mlist}
! </Actor>

• Movie constructor (mlist)

create function Mov(title: str, year: int)
! <Movie year=“{year}”>{title}</Movie>

• Verbose and cumbersome

• small document: tedious

• large documents: unthinkable

February 12-15, 2013QSX

SilkRoute
[Fernandez et al. 2002]

• Annotated template: embedding SQL in a fixed XML tree

• Middleware: SilkRoute

• Commercial: SQL Server 2005 XSD, IBM DB2 DAD

• Advantages:

• More `modular’ compared to the universal relation approach

• Limited schema-driven: conforming to a fixed doc template

root

Q1 Q2 Q3

Q4 Q5

tag1 tag2 tag3

tag5 tag6

February 12-15, 2013QSX

Data exchange: insurance
company and hospital

• Daily report

• Relational database R at the hospital:

 Patient (SSN, name, tname, policy#, date)

! ! inTreatment (tname, cost)

! ! outTreatment (tname, referral#)

! ! Procedure (tname1, tname2)!

• treatment

• in hospital: composition hierarchy in Procedure

• outside of the hospital: referral#

R XML

hospital insurance company XML view

February 12-15, 2013QSX

Example: insurance
company and hospital
• DTD D predefined by the insurance company:

 report ! patient*

 patient ! SSN, pname, treatment, policy#

 treatment ! tname,(inTreatment + outTreatment)

 inTreatment ! treatment*

 outTreatment ! referral#

• How to define a mapping σ such that for any instance DB of R,

• σ (DB) is an XML document containing all the patients and their
treatments (hierarchy, referral#) from DB, and

• σ (DB) conforms to D?

February 12-15, 2013QSX

Challenge:
recursive types

• XML data: unbounded depth -- cannot be decided
statically

treatment ! tname, (inTreatment + outTreatment)

inTreatment ! treatment* --- recursive

treatment

inTreatment

...
treatment

...

...
report

patient patient patient patient

treatment name

tname
�Joe�

...

Policy#

<-- unbounded

February 12-15, 2013QSX

Challenge:
non-determinism

• The choice of a production (element type definition)

 treatment ! tname, (inTreatment + outTreatment)

• depends on the underlying relational data

report

... patient patient patient patient

...
treatment treatment referral#

inTreatment
tname

outTreatment

treatment <-- data-dependent

February 12-15, 2013QSX

Limitations of
existing systems

• uses fixed XML tree template or ignores DTD-conformance

• middleware: SilkRoute (AT&T), XPERANTO (IBM), …

• systems: SQL Server 2005, IBM DB2 XML extender, …

• incapable of coping with a predefined DTD (e.g. recursion)

• type checking: define a view and then check its
conformance

• undecidable in general, co-NEXPTIME for extremely restricted view
definitions (but cf. week 7)

• no guidance on how to define XML views that typecheck

• one gets an XML view that typechecks only after repeated
failures and with luck

February 12-15, 2013QSX

Schema-directed
XML publishing

February 12-15, 2013QSX

Attribute Translation
Grammar (ATG)

[Benedikt et al. 2002]

• DTD: normalized; element type definitions a → r where:

r ::= PCDATA | ε | a1, …, an | a1 + … + an | a*

• Attributes: $a associated with each element type a

• $a: tuple-valued, to pass data value as well as control info

• Rules: associated with each a → r:

• for each b in r, define $b := Q($a)

• SQL query Q extracts data from DB

• tuple-valued parent attribute $a is a parameter in Q

ATG DTD

Semantic rules attributes

=
+

February 12-15, 2013QSX

Semantics:
conceptual evaluation
• Top-down

report ! patient*

 $patient ← select SSN, name, tname, policy

 from Patient --- SQL query

• recall Patient (SSN, name, tname, policy#)

• Data-driven: one patient element for each tuple in Patient
relation

report

patient ... patient patient patient
$patient $patient $patient $patient

February 12-15, 2013QSX

Inherited attributes
• Inherited: $child is computed using $parent

patient ! SSN, name, treatment, policy#

 $SSN ← $patient.SSN!

 $name ← $patient.name

 $treatment ← $patient.tname

 $policy# ← $patient.policy

• recall $patient = (SSN, name, tname, policy)

SSN ! PCDATA

 $PCDATA ← $SSN

report

SSN

�123�

patient ... patient patient patient

treatment name

�Joe�

policy#

�LU23�

$patient

$SSN

$PCDATA

February 12-15, 2013QSX

Coping with non-
determinism

treatment ! tname, (inTreatment + outTreatment)

 $tname ← $treatment!

 ($inTreatment, $outTreatment) ← case Qc($treatment).tag

 1: ($treatment, null)

 else: (null, $treatment)

• Qc: SELECT 1 as tag FROM inTreatment WHERE tname = $treatment

• conditional query: the choice of production

• $parent a parameter in SQL query

inTreatment tname

treatment

outTreatment

treatment

tname

... Qc($treatment)=null Qc($treatment)=1

February 12-15, 2013QSX

Coping with
recursion

inTreatment ! treatment*

 $treatment ← select tname2

 from Procedure

 where $inTreatment = tname1

• recall Procedure (tname1, tname2)

• $parent as constant parameter in SQL query Q

• inTreatment is further expanded as long as Q(DB) is nonempty

inTreatment

treatment treatment

treatment

tname

...
$treatment $treatment

February 12-15, 2013QSX

DTD-directed
publishing with ATGs
• DTD-directed: the XML tree is constructed strictly following the

productions of a DTD

• guaranteed DTD conformance

• Data-driven: the choice of productions and expansion of the XML
tree (recursion) depends on relational data

• static analysis to guarantee termination

treatment

inTreatment

...
treatment

...

...
report

patient patient patient patient

treatment name

tname
�Joe�

...

policy# SSN

<-- unbounded

 data-dependent

February 12-15, 2013QSX

ATGs vs. existing
systems

• DTD-conformance:

• ATGs: provide guidance for how to define DTD-
directed publishing

• Other systems: based on a fixed tree template

• Expressive power: strictly more expressive
than others

• ATGs: capable of expressing XML views supported by
other systems

• Other systems: cannot handle recursion/
nondeterminism

February 12-15, 2013QSX

$id := ... $lname := ...
$fname := ... $Movie := ...

Quiz:
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year

$id := ... $year = ...
$title := ...

$Movie := ...

$Actor := ...

February 12-15, 2013QSX

$id := ... $lname := ...
$fname := ... $Movie := ...

Quiz:
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year

$id := ... $year = ...
$title := ...

$Movie := ...

$Actor := ...$Actor := select aid,lname,fname
 from Actors

February 12-15, 2013QSX

$id := ... $lname := ...
$fname := ... $Movie := ...

$id := $Actor.aid $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz:
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year

$id := ... $year = ...
$title := ...

$Movie := ...

$Actor := ...$Actor := select aid,lname,fname
 from Actors

February 12-15, 2013QSX

$id := ... $lname := ...
$fname := ... $Movie := ...

$id := $Actor.aid $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz:
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year

$id := ... $year = ...
$title := ...

$Movie := ...

$Actor := ...

$Movie := select m.mid,m.title,m.year
 from movies m, appears app
 where app.aid=$Movie.aid, app.mid=m.mid

$Actor := select aid,lname,fname
 from Actors

February 12-15, 2013QSX

$id := ... $lname := ...
$fname := ... $Movie := ...

$id := $Actor.aid $lname := $Actor.lname
$fname := $Actor.fname $Movies := $Actor.aid

Quiz:
Fill in blanks

aid lname fname

1 Maguire Tobey

2 Dunst Kirsten

mid title year

11 Spider-Man 2002

32 Elizabethtown 2005

mid aid
11 1
11 2
32 2

Actors

Movies

Appears

doc -> Actor*

Actor -> id,lname,fname,Movies

Movies -> Movie*

Movie -> id,title,year

$id := ... $year = ...
$title := ...

$Movie := ...

$Actor := ...

$id := $Movie.mid
$year = $Movie.year
$title := $Movie.title

$Movie := select m.mid,m.title,m.year
 from movies m, appears app
 where app.aid=$Movie.aid, app.mid=m.mid

$Actor := select aid,lname,fname
 from Actors

February 12-15, 2013QSX

Querying XML views of
 relational data

February 12-15, 2013QSX

XML views
• Materialized views: store data in the views

• Query support: straightforward and efficient

• Consistency: the views should be updated in response
to changes to the underlying database

XML View

RDB

query answer

DBMS middleware

updates

query
translation

• Virtual views: do not store data

• Query support: view queries should
be translated to equivalent ones over
the underlying data

• Updates: not an issue

February 12-15, 2013QSX

Virtual vs.
materialized

• XML views are important for data exchange, Web services, access
control (security), Web interface for scientific databases, …

• Materialized views: publishing

• sometimes necessary, e.g., XML publishing

• when response time is critical, e.g., active system

• “static”: the underlying database is not frequently updated

• Virtual views: shredding

• “dynamic”: when the underlying data source constantly changes and/or
evolves

• Web interface: when the underlying database and the views are large

• Access control: multiple views of the same databases are supported
simultaneously for different user groups

February 12-15, 2013QSX

Middleware approach
• Query answering/rewriting with views has been extensively

studied

• Define publishing mapping that inverts shredding

• Treat the inverse as a virtual view of the relational data

• Make use of techniques for view query rewriting

XML

RDB

query answer

DBMS

XML View

Middleware:
view query rewriting

inverse

store

February 12-15, 2013QSX

Challenging issues
• Schema-directed XML view definition: we know how

to do it now

• Query translation: given a query over a virtual XML
view, rewrite the query to an equivalent one over
the underlying database – from views to relations

XML

RDB

query answer

publishing query
translation

DBMS middleware

schema

February 12-15, 2013QSX

Querying a View
• The middleware must respond to view queries/

requests by

• generating SQL queries/requests at runtime

• composing and tagging the results

SQL
Generator

View
Definition Query-cost

Estimates
Source Capabilities

Tagger

Query
Composer

SQL
Queries ? ? ?

Result
Tables

Composed
 XQuery

February 12-15, 2013QSX

The XPERANTO
approach

• Middleware:

• A library of XQuery functions

• Transformation rules (algebra)

• A cost model and optimization techniques

• An intermediate language -- middleware

• accept an XML query

• rewrite the query with the rules and library

• push work down to the underlying DBMS

• conduct computations that DBMS cannot do

• optimize the rewritten queries

• compose query results from DBMS and middleware to build the answer
to the XML query

RDB

query answer

DBMS

XML View

Middleware:
view query rewriting

February 12-15, 2013QSX

Research issues
• Optimization: can one effectively find an optimal rewriting?

• How much work should be pushed down to DBMS?

• communication cost between DBMS and the middleware

• leveraging the DBMS optimizer

• Multi-query optimization – hard

• accurate cost model?

• composition – when to tag?

• query dependency

• workload

• Effective generic optimization techniques are beyond reach for
Turing-complete query languages

• (NP-hard at least, can easily become undecidable)

RDB

query answer

DBMS

XML View

Middleware:
view query rewriting

February 12-15, 2013QSX

The SilkRoute
Approach

• Uses XQuery to specify view

• Advantage: easy to compose query with view

• Running example:

• relations → canonical XML

Query
Generator ?

Query
Composer

Request
(XQuery)

Actor (aid, lname, fname)

Appearance (mid, aid)

Movie (mid, title, year)

Appear

DB

Actor

ActorRow

Movie

MovieRow AppearRow

@fname @lname @aid @mid @aid @year

@title

@mid

* * *

February 12-15, 2013QSX

Query Composition
? = ° ?

for $act in //Actor return <Actor> {$act/Lname}
 for $movie in $act/Movie[@year=1999]
 return <Movie>{$movie}</Movie>

 </Actor>

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid]
 return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>
 </Actor>

View: Movies by Gibson

Query: Get each Actor + Movies in 1999

Composed Query: Movies by Gibson in 1999

February 12-15, 2013QSX

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return <Actor> {$act/Lname}

 for $movie in //Movie[@year=1999]
 return <Movie>{$movie}</Movie>

 </Actor>

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid]
 return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>
 </Actor>

View: Movies by Gibson

Query: Get each Actor + Movies in 1999

Query Composition
? = ° ?

February 12-15, 2013QSX

Query Composition
? = ° ?

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return <Actor> Gibson
 for $movie in //Movie[@year=1999]
 return <Movie>{$movie}</Movie>
 </Actor>

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid]
 return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>
 </Actor>

View: Movies by Gibson

Query: Get each Actor + Movies in 1999

February 12-15, 2013QSX

Query Composition
? = ° ?

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return <Actor> Gibson
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]

 return <Movie>{$movie}</Movie>
 </Actor>

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid]
 return <Movie year=�{$movie/@year}�> {$movie/@title} </Movie>
 </Actor>

View: Movies by Gibson

Query: Get each Actor + Movies in 1999

February 12-15, 2013QSX

Query Composition
? = ° ?

for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor>Gibson
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
 return <Movie> {$movie/@title} </Movie>
 </Actor>

Composed Query on Canonical XML:=

• Efficient query composition involves:

• substitution

• filtering

• pattern matching

February 12-15, 2013QSX

Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor>Gibson
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
 return <Movie> {$movie/@title} </Movie>
 </Actor>

Composed Query on Canonical XML:=

February 12-15, 2013QSX

Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor>Gibson
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
 return <Movie> {$movie/@title} </Movie>
 </Actor>

Composed Query on Canonical XML:=

SELECT a.aid, app.mid
FROM Actors a, Appear app
WHERE app.aid = a.aid
 AND a.lname = 'Gibson'

February 12-15, 2013QSX

Generating SQL
for $aid in DB//ActorRow[@lname=�Gibson�]/@aid
return
 <Actor>Gibson
 for $actapp in DB//AppearRow[@aid=$aid]
 for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
 return <Movie> {$movie/@title} </Movie>
 </Actor>

Composed Query on Canonical XML:=

SELECT a.aid, app.mid, m.title
FROM Actor a, Appears app, Movie m
WHERE app.mid = m.mid
 AND m.year = 1999
 AND a.lname = 'Gibson'
 AND a.aid = app.aid

February 12-15, 2013QSX

SilkRoute:
Query trees

• Tree annotated with SQL clauses

Actor

aid lname fname

string string string

FROM Actors

FROM ()FROM ()FROM ()

SELECT a.aid SELECT a.lname SELECT a.fname

Canonical view (similar for Movies, Appears)

February 12-15, 2013QSX

SilkRoute:
Query composition

• Can compose XQuery queries to form new trees

Actor

@aid
lname

fname

string
string

string

FROM Actors

FROM ()

FROM ()
FROM ()

SELECT a.aid
SELECT a.lname

SELECT a.fname

for $a in Actor
return
 <Actors @aid={$x/aid}>
 <lname>{$a/lname}</lname>
 <fname>{$a/fname}</fname>
 {for $app in Appears[@aid=$a/aid]
 for $m in Movie[@mid=$app/mid]
 return
 <Movie mid={$m/mid}>
 <Title>{$m/title}</Title>
 <Year>{$m/year}</Year>
 </Movie>}
 </Actors>

February 12-15, 2013QSX

SilkRoute:
Composition

• A composed query tree

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid
 AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

February 12-15, 2013QSX

SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid
 AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

February 12-15, 2013QSX

SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid
 AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

SELECT a.aid, a.lname, a.fname
FROM Actors a

February 12-15, 2013QSX

SilkRoute: evaluation
• Compose SQL fragments along path

• (Similar to / can translate to ATGs)

Actor

@aid

lname
fname

string

string
string

FROM Actors a

SELECT a.aid

SELECT a.lname
SELECT a.fname

Movie

FROM Movies m, Appears app
WHERE m.mid = app.mid
 AND a.aid = app.aid

@mid title year

string
SELECT m.mid

string
SELECT m.title

string
SELECT m.year

SELECT a.aid, m.mid, m.title, m.year
FROM Actors a, Movies m, Appears app
WHERE m.mid = app.mid
 AND a.aid = app.aid

February 12-15, 2013QSX

Query translation
• Works, but several challenges:

• can we guarantee Q produces data matching D?

• efficiency: if we materialize result, how to recompute
when relational data updated?

• can we translate Q ○ V to an efficient query/query plan?

• how can we translate updates to Q(V(DB)) back to DB?

• Complications:

• recursion (in query or DTD)

• typechecking (XQuery typechecking intractable/
undecidable)

February 12-15, 2013QSX

Commercial RDBMS
support for XML

storage/publishing/
views

February 12-15, 2013QSX

 IBM DB2 XML Extender
(storage)

• XML Columns: CLOBs + side tables for
indexing individual elements

• SQL/XML: an extension of SQL with XML constructors
(XMLAGG, XMLELEMENT, etc) as discussed earlier

• XML Collections: Declarative decomposition of
XML into multiple tables

• Data loading: follows DAD mapping

• Able to incrementally update existing tables (DB2)

• Nonrecursive schema only

February 12-15, 2013QSX

 IBM DB2 XML Extender
(publishing)

• User-defined mapping through DAD (Document
Access Definition)

• a fixed XML tree template (nonrecusive)

• SQL mapping: a single SQL query, constructing XML trees of
depth bounded by the arity of the tuples returned and
group-by

• RDB node mapping: a fixed tree template with nodes
annotated with conjunctive queries

• Summary:

• incapable of supporting schema-directed publishing

• can’t define recursive XML views

February 12-15, 2013QSX

MS SQL Server 2005
(storage)

• CLOB (character large objects), XML data
type

• XQuery: query(), value(), exist(), nodes();
binding relational data

• Combine INSERT and node(), value(), XPath

• OPENXML: access to XML data as a relational
rowset

• selective shredding, limited recursion, can’t
store the entire document in a single pass

February 12-15, 2013QSX

MS SQL Server 2005
(publishing)

• Annotated schema (XSD): fixed tree templates

• nonrecursive schema

• associate elements and attributes with table and column names

• Given a relational database, XSD populates an XML elements/
attributes with corresponding tuples/columns

• FOR-XML

• An extension of SQL with an FOR-XML construct

• Nested FOR-XML to construct XML documents

• Summary:

• incapable of supporting schema-directed publishing

• can’t define recursive XML views (bounded recursion depth)

February 12-15, 2013QSX

 Oracle 10g XML DB
(storage)

• Store XML data in CLOB (character large objects) or
tables

• Canonical mapping into object-relational tables

• tag names are mapped to column names

• elements with text-only map to scalar columns

• elements with sub-elements map to object types

• list of elements maps to collections

• Indexing: standard relational

• cannot insert into existing tables (DB2)

• Annotated schema: recursive, selective

February 12-15, 2013QSX

Oracle 10g XML DB
(publishing)

• SQL/XML

• DBMS_XMLGEN, a PL/SQL package

• Supports recursive XML view definition (via
linear recursion of SQL’99)

• does not support schema-directed XML
publishing

February 12-15, 2013QSX

Commercial Systems:
Summary

• Storage and XML-relational mappings:

• CLOBs (or XML columns)

• Fixed canonical mappings

• Mappings in terms of annotated schema

• Querying:

• SQL as the main access method to XML documents

• “XML-aware” extensions to SQL

• Limited support for

• recursive schema (Microsoft, IBM DB2)

• incrementing/updating existing tables (Oracle)

• XQuery, updates

• context-dependent tuple construction

February 12-15, 2013QSX

Update Support
• How to update?

• Flat streams: overwrite document

• Colonial: SQL updates?

• Native: DOM, proprietary APIs

• But how do you know you have not violated schema?

• Flat streams: re-parse document

• Colonial: need to understand the mapping and translate/
maintain integrity constraints

• Native: supported in some systems (e.g., eXcelon)

• XQuery Update Facility: relatively new

February 12-15, 2013QSX

Next time
• No lectures next week!

• Innovative learning week

• After that: XML Updates

• XQuery Update for the impatient

• Updating XML

• Updating XML Views of Relations

• Reading: Monday 4pm (as usual)

