Querying and
storing XML

Week 5
Publishing relational data as XML
February 12-15, 2013

From relations to
XML Views

Actors
aid Iname | fname
| Maguire | Tobey
2 Dunst | Kirsten
Movies
mid title year

I Spider-Man | 2002
32 Elizabethtown | 2005

Appears 700 T aid
L |
TH !
2 | 2

XML publishing

.0

Exporting and importing XML data shared over Web

Key problem: defining relational-XML views specifying
mappings from relational to XML data sources

® Useful for querying shredded XML stored in RDBMSs

® define reconstructing view, then translate queries on view to SQL

QSX February 12-15,2013

QsSX February 12-15,2013

From relations to
XML Views

Actors
<Actor id="1">
aid Iname fname <LName>Maguire</LName>
<FName>Tobey</FName>
I Maguire | Tobey ,:> <Movie id="11">
<Title>Spider-Man</Title>
2 Dunst | Kirsten <Year>2002</Year>
</Movie>
Movies </Actor>
. . <Actor id="2">
mid title year <LName>Dunst</LName>

<FName>Kirsten</FName>

<Movie id="11">

<Title>Spider-Man</Title>

<Year>2002</Year>

</Movie>

Appears [T <Movie id="32">
<Title>Elizabethtown</Title>

L I <Year>1999</Year>

11 2 </Movie>

32 2 </Actor>

I Spider-Man | 2002
32 Elizabethtown | 2005

QSX February 12-15,2013

From relations to
XML Views

<Movie id="11">
aid Iname fname <Title>Spider-Man</Title>
<Year>2002</Year>

| Maguire | Tobey ':{> <Actor id="1">
- <LName>Maguire</LName>
2 Dunst | Kirsten <FName>Tobey</FName>

. </Actor>

Movies <Actor id="2">

id itl <LName>Dunst</LName>
oo title Y/ <FName>Kirsten</FName>
I Spider-Man | 2002 & Bl

</Movie>

32 | Elizabethtown | 2005 <Movie id="32">
<Title>Elizabethtown</Title>
<Year>1999</Year>

aid <Actor id="2">
<LName>Dunst</LName>

Actors

Appears -
PP mid
Ll | <FName>Kirsten</FName>
|1 2 </Actor>
32 2 </Movie>

Commercial systems -
canonical publishing

@ Canonical publishing: the universal-relation approach
® Embedding single SQL query in XSL stylesheet

® Result: canonical XML representation of relations

® Systems:
® Oracle 10g XML SQL facilities: SQL/XML, XMLGen
e IBM DB2 XML Extender: SQL/XML, DAD
@ Microsoft SQL Server 2005: FOR-XML, XSD

@ incapable of expressing practical XML publishing:
default fixed XML document template

QSX February 12-15,2013

Canonical publishing

Actors
aid Iname | fname
| Maguire | Tobey
2 Dunst | Kirsten
Movies
mid title year

I Spider-Man | 2002
32 Elizabethtown | 2005

Appears 700 T aid
L |
TH !
2 | 2

QsSX February 12-15,2013

Canonical publishing

Actors <Actor aid="1">
<LName>Maguire</LName>

aid Iname fname <FName>Tobey</FName>
</Actor>
I Maguire | Tobey |:> <Actor aid="2">
X <LName>Dunst</LName>
2 Dunst | Kirsten <FName>Kirsten</FName>
< >
Movies /hctor
id itl <Movie mid="11">
ol HHE pEd <Title>Spider-Man</title>
1 Spider—Man 2002 |:> <Year>2002</Year>
</Movie>
32 Elizabethtown | 2005 <Movie mid="32">
<Title>Elizabethtown</title>
<Year>2005</Year>

Ll I <Appears mid="11" aid="1"/>
11 2 |:> <Appears mid="11" aid="2"/>
32 2 <Appears mid="32" aid="2"/>

QSX February 12-15,2013

QSX February 12-15,2013

Generating canonical
XML view

® Goal: Push computation to DB

® use DB sort or join to generate tuples in same order as needed
in XML document

® Several approaches:
Redundant relation: join all relations relating parents to children
Unsorted path outer union: reduce redundancy

Unsorted outer union

Sorted outer union: single SQL query; best

® All approaches: require "tagging" post-processing stage
to generate actual XML

Outer union query:
example

((SELECT 1 AS tag, aid, lname, fname, NULL, ... NULL
FROM Actors)

UNION

(SELECT 2 AS tag, NULL,..., mid, title, year, NULL...
FROM Movies)

UNION

(SELECT 3 AS tag, NULL, ..., aid, mid

FROM Appears))

ORDER BY tag, aid, mid,

QSX February 12-15,2013

XPERANTO

[Shanmagusundaram et al.]

® Commercial system: IBM DB2 XML extender, SQL/XML
® Middleware (vendor-independent): XPERANTO
® Extends SQL with XML constructors:

select XML-aggregation

from R1,... Rn

where conditions

® XML constructors (XML-aggregation): functions
® Input: tables and XML trees (forest)
® Output: XML tree

QsSX February 12-15,2013

XML publishing with
XPERANTO (SQL/XML)

<Actor>
<LName>Maguire</LName>
<FName>Tobey</FName>
<Movie>

‘Actor (aid, Iname, fname)‘

QSX February 12-15,2013

Appears (mid, aid) <Title>Spider-Man</Title>
<Year>2002</Year>
Movie (mid, fitle, year) | </Movie>
</Actor>
® Extended SQL:
select XMLAGG(ACTOR(lname, fname,
select XMLAGG (MOVIE(title, year)
from Appears Ap, Movies M
where Ap.aid = A.aid and Ap.mid = M.mid
group order by A.lname, A.fname))
from Actor A
QSX February 12-15,2013

XML constructors
(SQL/XML)

® Actor constructor:

create function ACT(lname: str, fname: str, mlist: XML)
<Actor>
<Lname>{lname}</Lname>
<Fname>{fname}</Fname>
{mlist}
</Actor>

® Movie constructor (mlist)

create function Mov(title: str, year: int)
<Movie year="{year}”>{title}</Movie>

® Verbose and cumbersome
® small document: tedious

® large documents: unthinkable

SilkRoute

[Fernandez et al. 2002]

® Annotated template: embedding SQL in a fixed XML tree

root
Q&
tagl tag2 tag3
Q 5
tagb tagb

® Middleware: SilkRoute
® Commercial: SQL Server 2005 XSD, IBM DB2 DAD
® Advantages:
® More "modular’ compared to the universal relation approach

® Limited schema-driven: conforming to a fixed doc template

QSX February 12-15,2013

Data exchange: insurance
company and hospital

hospital XML view insurance company

]

e Daily report
® Relational database R at the hospital:

Patient (SSN, name, tname, policy#, date)

inTreatment (tname, cost)
outTreatment (tname, referral#)
Procedure (tnamel, tname2)

® treatment
° in hospital: composition hierarchy in Procedure

® outside of the hospital: referral#

QsSX February 12-15,2013

Example: insurance
company and hospital

® DTD D predefined by the insurance company:

report > patient*

patient > SSN, pname, treatment, policy#
treatment - tname, (inTreatment + outTreatment)
inTreatment - treatment*

outTreatment - referral#

® How to define a mapping o such that for any instance DB of R,

@® O (DB) is an XML document containing all the patients and their
treatments (hierarchy, referral#) from DB, and

® O (DB) conforms to D?

QSX February 12-15,2013

QSX February 12-15,2013

Challenge:
recursive types

® XML data: unbounded depth -- cannot be decided
statically

treatment > tname, (inTreatment + outTreatment)

inTreatment » treatment* --—- recursive
report
patient patient eee patient patient
name treatment Policy#
l inTreatment
tname

“Joe”
coe

treatment

/N

treatment <-- ynbounded

QSX February 12-15,2013

Limitations of
existing systems

® uses fixed XML tree template or ignores DTD-conformance

® middleware: SilkRoute (AT&T), XPERANTO (IBM), ...
® systems: SQL Server 2005, IBM DB2 XML extender, ...

® incapable of coping with a predefined DTD (e.g. recursion)

@ type checking: define a view and then check its
conformance

® undecidable in general, co-NEXPTIME for extremely restricted view

definitions (but cf. week 7)

® no guidance on how to define XML views that typecheck

® one gets an XML view that typechecks only after repeated

failures and with luck

Challenge:
non-determinism

® The choice of a production (element type definition)
treatment -» tname, (inTreatment + outTreatment)

® depends on the underlying relational data

report

QSX February 12-15,2013

patient patient patient patient
)

treatment <-- data-dependent
tname . oo >

inTreatment outTreatment

cee
treatment treatment referral#
QsX February 12-15,2013

Schema-directed
XML publishing

QSX February 12-15,2013

Attribute Translation
Grammar (ATG)

[Benedikt et al. 2002]
ATG = DTD

+ —

® DTD: normalized; element type definitions a — r where:
r ::= PCDATA | € | ai .,an | ai+..+an | a*
@ Attributes: $a associated with each element type a
® $a: tuple-valued, to pass data value as well as control info
® Rules: associated with each a — r:
e for each binr, define $b := Q($a)
® SQL query Q extracts data from DB

® tuple-valued parent attribute $a is a parameter in Q

QSX February 12-15,2013

Inherited attributes

® Inherited: $child is computed using $parent

patient > SSN, name, treatment, policy#
$SSN +— S$patient.SSN
$Sname +— S$patient.name

$Streatment ¢« $patient.tname

$policy# + $patient.policy

® recall $patient = (SSN, name, tname, policy)
SSN -» PCDATA report
,/\,
SPCDATA + $SSN | $patient patient patient ... patient patient
$55N SiN name treatment policy#
“123” “Joe” “LU23”

$PCDATA

QSX February 12-15,2013

Semantics:
conceptual evaluation

e Top-down

report -» patient*

Spatient ¢« select SSN, name, tname, policy

from Patient --- SQL query

recall Patient (SSN, name, tname, policy#)

Data-driven: one patient element for each tuple in patient
relation

report
patient patient ..., patient patient
$patient $patient $patient $patient
QsSX February 12-15,2013

Coping with non-
determinism

treatment - tname, (inTreatment + outTreatment)

$tname ¢+ S$treatment
($inTreatment, $outTreatment) ¢« case Qc(S$Streatment).tag
l: (Streatment, null)

else: (null, $treatment)

[J QcC: SELECT 1 as tag FROM inTreatment WHERE tname = S$treatment
° conditional query: the choice of production

° $parent a parameter in SQL query

Qc($treatment)=1 / \ Qc($treatment)=null

treatment treatment
cee

tname . tname
inTreatment outTreatment

QSX February 12-15,2013

Coping with
recursion

inTreatment -» treatment¥*

$treatment ¢ select tname2

from Procedure

where $inTreatment = tnamel

® recall Procedure (tnamel, tname2)
® S$parent as constant parameter in SQL query Q

® inTreatment is further expanded as long as Q(DB) is nonempty

treatment
tname inTreatment
treatment cee treatment
$treatment $treatment
QSX February 12-15,2013

ATGs vs. existing
systems

® DTD-conformance:

® ATGs: provide guidance for how to define DTD-
directed publishing

® Other systems: based on a fixed tree template

® Expressive power: strictly more expressive
than others

® ATGs: capable of expressing XML views supported by
other systems

® Other systems: cannot handle recursion/
nondeterminism

QSX February 12-15,2013

DTD-directed
publishing with ATGs

® DTD-directed: the XML tree is constructed strictly following the
productions of a DTD

guaranteed DTD conformance

@ Data-driven: the choice of productions and expansion of the XML
tree (recursion) depends on relational data

® static analysis to guarantee termination
report
——
patient patient 4,4 patient patient
SSN name treatment policy# \\
«--->data-dependent
| | mam ~3data-dependen
“Joe” ¥
treatment *** treatment <-- ynbounded
7\ AN
QsSX February 12-15,2013
UlZ.
]
Actors
aid Iname | fname doc -> Actor*
I Maguire | Tobey
, $Actor ;= ...
2 Dunst [Kirsten
Movies Actor -> id,lname, fname,Movies
mid title year :flld ' e :mame =
B name := ... ovie := ...
I Spider-Man | 2002 Movies -> Movie*
32 Elizabethtown | 2005
$Movie := ...
Appears d d - : -
"I“I all Movie -> id,title,year
T 2 $id:=.. S$year=..
32 2 $title := ...
QSX February 12-15,2013

Quiz: Quiz:
Fill in blanks Fill in blanks

Actors Actors
aid Iname | fname doc -> Actor* aid Iname | fname doc -> Actor*
I Maguire [Tobey $Actor := select aid,lname, fname | Maguire | Tobey $Actor := select aid,lname,fname
2 Dunst | Kirsten from Actors 2 Dunst | Kirsten from Actors
Movies Actor -> id,lname, fname,Movies Movies Actor -> id,lname, fname,Movies
md | _ade [yer SWHES . mid | atle [year] (3 RN e Shane. - e e

$fname := ... $Movie :
Movies -> Movie¥*

I Spider-Man | 2002 I Spider-Man | 2002

Movies -> Movie*

32 Elizabethtown | 2005 32 Elizabethtown | 2005
$Movie := ... $Movie := ...
Appears - - Appears : ; -
Tf af Movie -> id,title,year TT af Movie -> id,title,year
L 2 $id:=... $year=.. T 2 $id:=... $year=..
32 2 $title := ... 32 2 $title := ...
QSX February 12-15,2013 QSX February 12-15,2013

Quiz: Quiz:
Fill in blanks Fill in blanks

Actors Actors
aid Iname | fname doc -> Actor* aid Iname | fname doc -> Actor*
I Maguire [Tobey SActor := select aid,lname,fname | Maguire [Tobey $Actor := select aid,lname, fname
2 Dunst | Kirsten from Actors 2 Dunst | Kirsten from Actors
Movies Actor -> id,lname, fname,Movies Movies Actor -> id,lname, fname,Movies
. . $id := $Actor.aid $lname := $Actor.lname . . $id := $Actor.aid $lname := $Actor.lname
mid tltle year $fname := $Actor.fname $Movies := $Actor.aid mid tltle year $fname := S$Actor.fname $Movies := $Actor.aid
I Spider-Man | 2002 : : I Spider-Man | 2002 : :
P Movies -> Movie¥* P Movies -> Movie¥*
32 Ellzabethtown 2005 $Movie := select m.mid,m.title,m.year 32 Ellzabethtown 2005 $Movie := select m.mid,m.title,m.year
from movies m, appears app from movies m, appears app
where app.aid=$Movie.aid, app.mid=m.mid where app.aid=$Movie.aid, app.mid=m.mid
Appears o o _ - - Appears 'd i - _ -
T: a; Movie -> id,title,year Tn a: Movie -> id,title,year
id := ... ear = ... $id 1= §Movie.nid
Ll 2 $. $_y Ll 2 $year = $Movie.year
32 2 $title := ... 32 2 $title := $Movie.title

QSX February 12-15,2013 QSX February 12-15,2013

Querying XML views of
relational data

QSX February 12-15,2013

Virtual vs.
materialized

® XML views are important for data exchange, Web services, access
control (security), Web interface for scientific databases, ...

® Materialized views: publishing

® sometimes necessary, e.g., XML publishing

® when response time is critical, e.g., active system

® ‘“static”: the underlying database is not frequently updated
® Virtual views: shredding

® “dynamic”: when the underlying data source constantly changes and/or
evolves

® Web interface: when the underlying database and the views are large

® Access control: multiple views of the same databases are supported
simultaneously for different user groups

XML views

® Materialized views: store data in the views
® Query support: straightforward and efficient

® Consistency: the views should be updated in response
to changes to the underlying database

e Virtual views: do not store data q”eri’ arTswer

® Query support: view queries should er
be translated to equivalent ones over ﬁ query

the underlying data

® Updates: not an issue [‘nlddlewar'é ” DBMS I

QSX February 12-15,2013

QsSX February 12-15,2013

Middleware approach

® Query answering/rewriting with views has been extensively
studied

® Define publishing mapping that inverts shredding
® Treat the inverse as a virtual view of the relational data

® Make use of techniques for view query rewriting
) queI'y answer
inverse 1

M ————— XL View -

Middleware:
view query rewriting

QSX February 12-15,2013

translation

Challenging issues Querying a View

® Schema-directed XML view definition: we know how ® The middleware must respond to view queries/
to do it now requests by

e Query translation: given a query over a virtual XML ® generating SQL queries/requests at runtime

view, rewrite the query to an equivalent one over ® composing and tagging the results

the underlying database - from views to relations View
Definition Query-cost

Composed Estimates
Clueryl anfwer XQuery SOurceCapabilitiesE
[publshing | <CCXME > | saL —
dnslar Query —l> SQLj Queries
ﬁ translation :

kvl

Composer Generator
(middleware] [_DBMS | ‘
T Voo <__) Result
RDB == Tables
=
QSX February 12-15,2013 QSX February 12-15,2013

The XPERANTO

approach Research issues

® Middleware: ® Optimization: can one effectively find an optimal rewriting?
® Alibrary of XQuery functions qui?' 77777 T?\wer ® How much work should be pushed down to DBMS? quefy angwer
e Transformation rules (algebra))‘([MLVIe;v ® communication cost between DBMS and the middleware xMLV-ewT
® A cost model and optimization techniques ® leveraging the DBMS optimizer ¢ 1
® An intermediate language -- middleware view query rewriting ® Multi-query optimization - hard
® accept an XML query ® accurate cost model? | t
® rewrite the query with the rules and library ® composition - when to tag? |_DBMS |
® push work down to the underlying DBMS ® query dependency RTDB
e workload

® conduct computations that DBMS cannot do
@ Effective generic optimization techniques are beyond reach for

® optimize the rewritten queries -
Turing-complete query languages

® compose query results from DBMS and middleware to build the answer
to the XML query ® (NP-hard at least, can easily become undecidable)

QSX February 12-15,2013 QSX February 12-15,2013

The SilkRoute
Approach

Query Composition
View: Movies by Gibson A" A-A

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return
<Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid]
return <Movie year=“{$movie/@year}’> {$movie/@title} </Movie>
</Actor>

Query: Get each Actor + Movies in 1999

for $act in //Actor return <Actor> {$act/Lname}
for $movie in $act/Movie[@year=1999]
return <Movie>{$movie}</Movie>
</Actor>

Composed Query: Movies by Gibson in 1999

® Uses XQuery to specify view
® Advantage: easy to compose query with view
Request
(XQuery)
Query Query
‘ _ Composer Generator :
® Running example: DB
® relations — canonical XML
Actor Appear Movie
‘Actor (aid, Iname, fname)‘ l * l * J *
:> ActorRow AppearRow MovieRow
‘Appearance (mid aid)‘
‘Movie (mid, title, year) ‘ @aid @Iname @fname @aid @mid / @year @mid
@title
QSX February 12-15,2013

Query Composition
View: Movies by Gibson Ac" - B

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return
<Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid]
return <Movie year=“{$movie/@year}”> {$movie/@title} </Movie>
</Actor>

Query: Get each Actor + Movies in 1999

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return <Actor> {$act/Lname}
for $movie in //Movie[@year=1999]
return <Movie>{$movie}</Movie>
</Actor>

QsSX February 12-15,2013

Query Composition
View: Movies by Gibson Ao . - .

for $aid in DB//ActorRow[@Iname="“Gibson”])/@aid
return
<Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid]
return <Movie year="“{$movie/@year}”> {$movie/@title} </Movie>
</Actor>

Query: Get each Actor + Movies in 1999

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return <Actor> Gibson
for $movie in //Movie[@year=1999]
return <Movie>{$movie}</Movie>
</Actor>

QSX

February 12-15,2013

QSX February 12-15,2013

Query Composition Query Composition
AR - A AR - A

View: Movies by Gibson

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid

return
<Actor><Fname> Mel </Fname> <Lname> Gibson </Lname>
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid]
return <Movie year=“{$movie/@year}”> {$movie/@title} </Movie>

</Actor>

Query: Get each Actor + Movies in 1999

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return <Actor> Gibson
for $actapp in DB//AppearRow[@aid=%$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
return <Movie>{$movie}</Movie>
</Actor>

Composed Query on Canonical XML:=

for $aid in DB//ActorRow[@Iname=“Gibson”]/@aid
return
<Actor>Gibson
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
return <Movie> {$movie/@title} </Movie>
</Actor>

@ Efficient query composition involves:
® substitution
e filtering

® pattern matching

QSX

Generating SQL

Composed Query on Canonical XML:=

February 12-15,2013

for $aid in DB//ActorRow[@Iname="“Gibson”]/@aid
return
<Actor>Gibson
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
return <Movie> {$movie/@title} </Movie>
</Actor>

QSX

February 12-15,2013

QSX

Generating SQL

Composed Query on Canonical XML:=

February 12-15,2013

for $aid in DB//ActorRow[@Iname=“Gibson"]/@aid

return
<Actor>Gibson

SELECT a.aid, app.mid
FROM Actors a, Appear app
WHERE app.aid = a.aid

AND a.lname = 'Gibson'

QSX

February 12-15,2013

- SilkRoute:
Ge neratmgSQL Query trees

for $aid in DB//ActorRow[@Iname="Gibson"@aid ® Tree annotated with SQL clauses
return
<Actor>Gibson
for $actapp in DB//AppearRow[@aid=$aid]
for $movie in DB//MovieRow[@mid=$actapp/@mid and @year=1999]
return <Movie> {$movie/@title} </Movie>
</Actar>
SELECT a.aid, app.mid, m.title

FROM Actor a, Appears app, Movie m
WHERE app.mid = m.mid
AND m.year = 1999 |SELECT a.aid! |SELECT a.lname’

AND a.lname = 'Gibson' string string string
AND a.aid = app.aid

Canonical view (similar for Movies, Appears)
QSX February 12-15,2013 QSX February 12-15,2013

SilkRoute: SilkRoute:
Query composition Composition

® Can compose XQuery queries to form new trees ® A composed query tree

Actor {FROM Movies m, Appears app%

{WHERE m.mid = app.mid
i AND a.aid app.aid
Movie

Iname @mid title year

for $a in Actor
return
<Actors @aid={$x/aid}>
<lname>{$a/lname}</lname>
<fname>{$a/fname}</fname>
{for Sapp in Appears[@aid=$a/aid]
for $m in Movie[@mid=$app/mid]
return
<Movie mid={$m/mid}>
<Title>{$m/title}</Title>
<Year>{$m/year}</Year>
</Movie>} i e stﬁng i : [PRLELT moE
</Actors> string {SELECT a.lname§] : :

i SELECT m.year%

i i : strin i L
Sl SELECT a.fnanme| g string string

string

QSX February 12-15,2013 QSX February 12-15,2013

SilkRoute: evaluation SilkRoute: evaluation

® Compose SQL fragments along path FROM

SELECT a.aid, a.lname, a.fname

Actors a n

® (Similar to / can translate to ATGs)

FROM Movies m, Appears app
WHERE m.mid = app.mid

AND a.aid = app.aid

Movie

string

strlng

QSX February 12-15,2013 QSX

strlng ‘ strlng — —

FROM Movies m, Appears app
WHERE m.mid app.mid
AND a.aid app.aid

Movie

. s ‘ string
......................... February 12-15,2013

SilkRoute: evaluation Query translation

SELECT a.aid, m.mid, m.title, m.year
FROM Actors a, Movies m, Appears app
WHERE m.mid = app.mid

AND a.aid = app.aid i

FROM Movies m, Appears app: |

TROM Actors a! e RO °
Actor ¥ X :
WHERE m.mid = app.mid |
// ‘. i [

Movie

AR ‘

® Works, but several challenges:

can we guarantee Q produces data matching D?

efficiency: if we materialize result, how to recompute
when relational data updated?

can we translate Q o V to an efficient query/query plan?

how can we translate updates to Q(V(DB)) back to DB?

® Complications:

recursion (in query or DTD)

® typechecking (XQuery typechecking intractable/

undecidable)

@aid
Iname @m'd title year
frame . | 1 o
SELECT m. mJ.d
1 strmg
Strmg SELECT a. lname S ——— S Sy striné """""""""""""""
string """"""""""""""""""""""" {SELECT a.fname "-., : —
string string I
QSX February T2 vt 3 QSX

February 12-15,2013

Commercial RDBMS
support for XML
storage/publishing/
views

IBM DB2 XML Extender
(storage)

® XML Columns: CLOBs + side tables for
indexing individual elements

® SQL/XML: an extension of SQL with XML constructors
(XMLAGG, XMLELEMENT, etc) as discussed earlier

® XML Collections: Declarative decomposition of
XML into multiple tables

@ Data loading: follows DAD mapping
® Able to incrementally update existing tables (DB2)

® Nonrecursive schema only

QSX February 12-15,2013

IBM DB2 XML Extender
(publishing)

® User-defined mapping through DAD (Document
Access Definition)

® a fixed XML tree template (nonrecusive)

® SQL mapping: a single SQL query, constructing XML trees of
depth bounded by the arity of the tuples returned and
group-by

® RDB node mapping: a fixed tree template with nodes
annotated with conjunctive queries

® Summary:
® incapable of supporting schema-directed publishing

® can't define recursive XML views

QsSX February 12-15,2013

MS SQL Server 2005
(storage)

® CLOB (character large objects), XML data
type

® XQuery: query(), value(), exist(), nodes();
binding relational data

® Combine INSERT and node(), value(), XPath

® OPENXML: access to XML data as a relational
rowset

® selective shredding, limited recursion, can't
store the entire document in a single pass

QSX February 12-15,2013

QSX February 12-15,2013

MS SQL Server 2005
(publishing)

® Annotated schema (XSD): fixed tree templates
® nonrecursive schema
® associate elements and attributes with table and column names

® Given a relational database, XSD populates an XML elements/
attributes with corresponding tuples/columns

® FOR-XML
® An extension of SQL with an FOR-XML construct
® Nested FOR-XML to construct XML documents
® Summary:
® incapable of supporting schema-directed publishing

® can't define recursive XML views (bounded recursion depth)

QSX February 12-15,2013

Oracle 10g XML DB
(publishing)

® SQL/XML
® DBMS_XMLGEN, a PL/SQL package

® Supports recursive XML view definition (via
linear recursion of SQL'99)

® does not support schema-directed XML
publishing

Oracle 10g XML DB
(storage)

@ Store XML data in CLOB (character large objects) or
tables

® Canonical mapping into object-relational tables
tag names are mapped to column names

elements with text-only map to scalar columns
elements with sub-elements map to object types

list of elements maps to collections

Indexing: standard relational

cannot insert into existing tables (DB2)

® Annotated schema: recursive, selective

QSX February 12-15,2013

QsSX February 12-15,2013

Commercial Systems:
Summary

® Storage and XML-relational mappings:
® CLOBs (or XML columns)
® Fixed canonical mappings
® Mappings in terms of annotated schema
® Querying:
® SQL as the main access method to XML documents
® "XML-aware” extensions to SQL
® Limited support for
recursive schema (Microsoft, IBM DB2)
incrementing/updating existing tables (Oracle)

XQuery, updates

context-dependent tuple construction

QSX February 12-15,2013

Update Support Next time

e How to update? ® No lectures next week!

® Flat streams: overwrite document . .
® Innovative learning week
® Colonial: SQL updates?

® Native: DOM, proprietary APIs ® After that: XML Updates
® But how do you know you have not violated schema? e XQuery Update for the impatient

® Flat streams: re-parse document .
® Updating XML

® Colonial: need to understand the mapping and translate/
maintain integrity constraints Y Updating XML Views of Relations
® Native: supported in some systems (e.g., eXcelon)

Reading: Monday 4pm (as usual
® XQuery Update Facility: relatively new o 9 yap ()

QSX February 12-15,2013 QSX February 12-15,2013

