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Storing XML data
• Flat streams: store XML data as is in text files

• fast for storing and retrieving whole documents

• query support: limited; concurrency control: no

• Native XML Databases: designed specifically for XML

• XML document stored in XML specific way

• Goal: Efficient support for XML queries

• Colonial Strategies: Re-use existing DB storage systems

• Leverage mature systems (DBMS)

• Simple integration with legacy data

• Map XML document into underlying structures

• E.g., shred document into flat tables
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Why transform XML 
data to relations?

• Native XML databases need:

• storing XML data, indexing, 

• query processing/optimization 

• concurrency control 

• updates

• access control,  . . . 

• Nontrivial: the study of these issues is still in its infancy – 
incomplete support for general data management tasks

• Haven't these already been developed for relational 
DBMS!?

• Why not take advantage of available DBMS techniques? 
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From XML (+ DTD?) 
to relations

• Store and query XML data using traditional DBMS 

• Derive a relational schema (generic or from XML DTD/schema)

• Shred XML data into relational tuples

• Translate XML queries to SQL queries

• Convert query results back to XML

RDB 

query answer 

store query 
translation 

DBMS 

XML 
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Architecture: 
XML Shredding

RDB 

query answer 

store 

DBMS 

XML 

XML query parsing  
query rewriting 

XML tagger  
Tagging results 

query translation 

Relational schema 
generator 

XML document 
shredder 
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Nontrivial issues
• Data model mismatch 

• DTD: recursive, regular expressions/nested content

• relational schema: tables, single-valued attributes

• Information preservation

• lossless: there should be an effective method to reconstruct the 
original XML document from its relational storage

• propagation/preservation of integrity constraints

• Query language mismatch

• XQuery, XSLT: Turing-complete 

• XPath: transitive edges (descendant, ancestor)

• SQL: first-order, limited / no recursion

QSX February 5-8, 2013

Schema-conscious 
& selective shredding
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Derivation of relational 
schema from DTD

• Should be lossless

• the original document can be effectively reconstructed from 
its relational representation

• Should support querying

• XML queries should be able to be rewritten to efficient 
relational queries 

Relational schema generator 

XML document shredder 
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Running example – a 
book document

• DTD: 

<!ELEMENT db  (book*)>
<!ELEMENT book (title,authors*,chapter*, ref*)>
<!ELEMENT chapter  (text | section)*>
<!ELEMENT ref  book>
<!ELEMENT title  #PCDATA>
<!ELEMENT author  #PCDATA>
<!ELEMENT section  #PCDATA>
<!ELEMENT text  #PCDATA>

• Recursive (book, ref, book, ref, ...)

• Complex regular expressions
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Graph representation 
of the (simplified) DTD
• Each element type/attribute is 

represented by a unique node

• Edges represent the subelement 
(and attribute) relations

• *: 0 or more occurrences of 
subelements

• Cycles indicate recursion

• e.g., book

• Simplification: e.g., (text | 
section)*

•   text*  |   section*  -- ignore order

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 
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Canonical 
representation

• Store an XML document as a graph (tree)

• Node relation:    node(nodeId, tag, type)

• e.g., node(02, book, element),  node(03, author, element)

• Edge relation:    edge(parent, child)

• parent, child:  source and destination nodes; e.g., edge(02, 03)

• Pros and cons

• Lossless: the original document can be reconstructed

• Querying efficiency: Requires many joins

• A simple query  /db/book[author=“Bush”]/title  requires 3 joins 
of the edge relation!

• //book//title - requires recursive SQL queries (not well supported) 
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Schema-conscious 
shredding/inlining

• Require DTD

• Represent the DTD as a graph 
(simplifying regular expressions)

• Traverse the DTD graph depth-first 
and create relations for the nodes

• the root

• each * node

• each recursive node

• each node of in-degree > 1

• Inlining: nodes with in-degree of 1 
are inlined as fields

• no relation is created

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 
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Schema-conscious 
shredding/inlining

• Require DTD

• Represent the DTD as a graph 
(simplifying regular expressions)

• Traverse the DTD graph depth-first 
and create relations for the nodes

• the root

• each * node

• each recursive node

• each node of in-degree > 1

• Inlining: nodes with in-degree of 1 
are inlined as fields

• no relation is created

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 

Assumption 1: 
Order doesn't matter

Assumption 2:
Correlations between elements 

don't matter
(a,b)* -> a*,b*

Resulting DTD still correct, but less 
precise
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Relational schema 
• db(dbID) 

• book(bookID, parentID, code,  title: string)   

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string) 

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note:  title is inlined

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 
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Relational schema 
• db(dbID) 

• book(bookID, parentID, code,  title: string)   

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string) 

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note:  title is inlined

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 
Dealing with recursion:

code needed to 
distinguish book and ref 

parents
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Relational schema 
• db(dbID) 

• book(bookID, parentID, code,  title: string)   

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string) 

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note:  title is inlined

db 

title 

book 

author chapter ref 

* 

* * * 

* * 

section text 
Keys: book.bookID, author.authorID,...

Foreign keys:
book.parentID ⊆ db.dbID          if code = 1
book.parentID ⊆ ref.refID   if code = 0 

 author.bookID ⊆ book.bookID, ...
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Summary of schema-
driven shredding

• Use DTD/XML Schema to decompose document 

• Shared inlining:

• Rule of thumb: Inline as much as possible to minimize number of joins 

• Shared: do not inline if shared, set-valued, recursive

• Hybrid: also inline if shared but not set-valued or recursive

• Reorganization of regular expressions: 

• (text | section)* →  text*  |   section* 

• Querying: Supports a large class of common XML queries 

• Fast lookup & reconstruction of inlined elements

• Systematic translation unclear (not given in Shanmagusundaram et al.)

• But can use XML Publishing techniques (next week)
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Summary of schema-
driven shredding (2)
• Instance mapping can be easily derived from schema mapping.

• Is it lossless? No

• The order information is lost (simplification of regular expressions 
defining element types)

• Is there anything missing?

• “core dumping” the entire document to a new database

• In practice one often wants to select relevant data from the document

• to store the selected data in an existing database of a predefined 
schema

• XML Schema: type + constraints

• What happens to XML constraints? Can we achieve normal forms (BNCF, 
3NF) for the relational storage?
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Selective shredding
example

• Existing relational database R :

• book (id, title)   ref (id1, id2) 

• Select data from XML and store it in R

• books with title containing “WMD”, and 

• books cited, directly or indirectly

• Difference:

• select only part of the data from an input document

• store the data in an existing database with a fixed schema

R 
XML 

existing DB book document 
SQL inserts 

db 

title 

book 

author chapter ref 

* 

* * * 

* * 
section text 
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Mapping specification: 
XML2DB mappings

• XML2DB Mapping:

• Input: XML document T of a DTD D, and an existing database schema R

• Output: a list of SQL inserts ΔR, updating the database of R

• An extension of Attribute Grammars: 

• treat the DTD D as an ECFG (extended context-free grammar)

• associate semantic attributes and actions with each production of the 
grammar

• attributes: passing data top-down $book, ...

• actions: generate SQL inserts ΔR 

• Evaluation: generate SQL inserts in parallel with XML parsing

• [Fan, Ma DEXA 2006] --- see additional readings
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XML2DB mappings
• Simplified DTD: element type definitions e → r where

• r ::=    PCDATA   |  ε   |   a1, …, an   |   a1 + … + an   |   a*

• Note: subset of full DTD regexps (e.g. (a|b)*,c not directly 
allowed)

• Relation variables: for each relation schema Ri, define 
a variable ΔRi, which holds tuples to be inserted into Ri

• Attributes: $e associated with each element type e

• $e: tuple-valued, to pass data values top-down 

• Associate "semantic actions" with each e → r

• written rule(a -> r)
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Semantic actions
rule(p) ::= stmts

stmts ::= ε | stmt ; stmts

stmt ::= $a := (x1,...,xn) | ΔRi := ΔRi ∪ {(x1,...,xn)} | id = gen_id()

         |   if C then stmt else stmt

x ::= $b.A | text(b) | str | id | ⊤ | ⊥

C ::= x = x' | x <> x' | x contains x' | ...

• Given (a -> r), rule(a -> r) can read from (fields of) $a and should assign 
values to $b for each element name b appearing in r

• Can also extract values of text fields of a using text(b) (left to right)

• Special values "top" and "bot", fresh IDs

• Rules can also generate tuples to be added to relations ΔRi 

• Conditional tests C can include equality, string containment, ...
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Example: XML2DB 
mapping

db ! book*

   $book  := top    /* children of the root */

db 

title 

book 

author chapter ref 

* 

* * * 

* * 
section text 

 db 

book ... book book book 
$book $book $book $book 
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Example: XML2DB 
mapping

db ! book*

   $book  := top    /* children of the root */

db 

title 

book 

author chapter ref 

* 

* * * 

* * 
section text 

 db 

book ... book book book 
$book $book $book $book 

This is 
rule(db ! book*)

We'll just write it below 
the DTD rule like this.
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Example: Semantic 
action

book ! title, author*, chapter*, ref*
    if (text(title) contains “WMD” 
        or ($book <> ⊤ and $book <> ⊥))
    then id := gen_id( );!!
         book := ∆book ∪ { (id, text(title)) };
         if $book <> ⊤ ! !
         then ref := ∆ref ∪ { ($book, id) };!
         $ref := id; 
    else  $ref := ⊥

• target relation schema: book (id, title),  ref (id1, id2)

• gen_id( ): a function generating a fresh unique id

• conditional: title is “WMD” or is referenced by a book of title "WMD"

db 

ref 
title 

�WMD� 

book 

chapter chapter ref 

$book 

$ref $ref 

ref 

... 
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Implementing 
XML2DB mappings

• SAX parsing  extended with corresponding semantic actions

• startDocument( ), endDocument( )

• startElement(A, eventNo), endElement(A), text(s) 

• SQL updates:

! insert into book

! select *

! from ! ∆book

XML 

XML2DB 
R parsing 

SAX parsing: 
SQL inserts 
generation 

SAX  actions 

SQL inserts 
execution 
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Schema-oblivious shredding 
and indexing
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Schema-oblivious 
storage

• Storage easier if we have a fixed schema

• But:

• Often don't have schema

• Or schema may change over time 

• schema updates require reorganizing or 
reloading!  Not fun.

• Alternative: schema-oblivious XML 
storage
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Stupid idea #1: 
CLOB

• Well, XML is just text, right?

• Most databases allow CLOB (Character Large 
Object) columns - unbounded length string

• So you just store the XML text in one of these

• Surprisingly popular

• and can make sense for storing "document-like" 
parts of XML data (eg HTML snippets)

• But not a good idea if you want to query the XML
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Stupid (?) idea #2: 
SQL/XML

• Instead of blindly using CLOBs...

• Extend SQL with XML-friendly features

• "XML" column type

• Element/attribute construction primitives

• Ability to run XPath or XQuery queries (or updates) on XML 
columns

• Also surprisingly popular (MS, IBM, Oracle)

• Pro: At least DB knows it's XML, and can (theoretically) act 
accordingly (e.g. store DOM tree, shred, use XML DB, ...)

• Pro?: Part of SQL 2003 (SQL/XML extensions)

• Con: Frankenstein's query language
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SQL/XML example

SELECT CustomerName, 
       query(PurchaseOrders, 
  'for $p in /po:purchase-order
   where $p/@date < xs:date("2002-10-31")
   return <purchaseorder date="{$p/@date}">
            {$p/*}
          </purchaseorder>')
FROM  Customers
WHERE CustomerID = 42

CREATE TABLE Customers(
  CustomerID int PRIMARY KEY,
  CustomerName nvarchar(100),
  PurchaseOrders XML, ...}
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Schema-oblivious 
shredding/indexing
• Can we store arbitrary XML in a relational 

schema (even without DTD)?

• Of course we can (saw last time):

• node(nodeID, tag, type)

• edge(parent, child)

• attribute(nodeID, key, value)

• text(nodeID, text)

• What's wrong with this?
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parent child nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

Ramakrishnan

Gehrke

edge node

text
nodeId text
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nodeId text

o4 Database Management 
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
... ... ...

parent child
o1 o2
o2 o3
o3 o4
... ...

parent child nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text
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nodeId text

o4 Database Management 
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
... ... ...

parent child
o1 o2
o2 o3
o3 o4
... ...

nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text
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nodeId text

o4 Database Management 
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
... ... ...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text
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nodeId text

o4 Database Management 
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
... ... ...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
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nodeId text

o4 Database Management 
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
... ... ...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database 
Management 

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text

/db/book/title/text() in SQL:

SELECT txt.text 
FROM node w, edge e1, 
     node x, edge e2, 
     node y, edge e3, 
     node z, text txt
WHERE w.tag = "db" AND w.type = "ELT"
  AND e1.parent = w.nodeId 
  AND e1.child = x.nodeId 
  AND x.tag = "book" 
  AND ...
  AND z.type = "TEXT" 
  AND z.nodeId = txt.nodeId
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Problems with edge 
storage

• Indexing unaware of tree structure

• hard to find needles in haystacks

• fragmentation - subtree might be spread across db

• Incomplete query translation

• descendant axis steps involve recursion

• need additional information to preserve document order

• filters, sibling, following edges also painful

• Lots of joins

• joins + no indexing = trouble
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Node IDs and 
Indexing

• Idea: Embed navigational information in each 
node's identifier

• Then indexing the ids can improve query 
performance

• and locality, provided ids are ordered (and order ~ 
tree distance)

• Two main approaches (with many refinements):

• Dewey Decimal Encoding

• Interval Encoding
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Dewey Decimal 
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2. ... .in)

• giving the "path" from root to this node

db

book

title author author

Database 
Management 

Systems

Ramakrishnan

Gehrke
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Dewey Decimal 
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2. ... .in)

• giving the "path" from root to this node

db

book

title author author

Database 
Management 

Systems

[]

Ramakrishnan

Gehrke

1.1

1.1.1

1

1.2

1.2.1

1.3

1.3.1
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Dewey Decimal 
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2. ... .in)

• giving the "path" from root to this node

db

book

title author author

Database 
Management 

Systems

[]

Ramakrishnan

Gehrke

1.1

1.1.1

1

1.2

1.2.1

1.3

1.3.1

nodeID tag type

[] db ELT

1 book ELT

1.1 title ELT

1.1.1 TEXT

1.2 author ELT

1.2.1 TEXT

1.3 author ELT

1.3.1 TEXT

February 5-8, 2013QSX

Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q 

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q
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Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q 

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q

Prefix:
1 ≺ 1.2 ≺ 1.2.3 ≺ 1.2.3.4.5

...
Length:

|1.2.3| = 3
|3.2.1.2| = 4 

...
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Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q 

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q
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Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
  AND PREFIX(a.nodeID,b.nodeID)
  AND EXISTS(SELECT * 
             FROM node c 
             WHERE c.tag='c' 
               AND PREFIX(b.nodeID,c.nodeID)
               AND LEN(b.nodeID) + 1 = 
                   LEN(c.nodeID))
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Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
  AND PREFIX(a.nodeID,b.nodeID)
  AND EXISTS(SELECT * 
             FROM node c 
             WHERE c.tag='c' 
               AND PREFIX(b.nodeID,c.nodeID)
               AND LEN(b.nodeID) + 1 = 
                   LEN(c.nodeID))

//a//b
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Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
  AND PREFIX(a.nodeID,b.nodeID)
  AND EXISTS(SELECT * 
             FROM node c 
             WHERE c.tag='c' 
               AND PREFIX(b.nodeID,c.nodeID)
               AND LEN(b.nodeID) + 1 = 
                   LEN(c.nodeID))

//a//b

[c]
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Sibling, following 
axis steps

• Following Sibling: same immediate prefix, 
with final step 

• Sibling(p,q) ⟺ ∃r. p = r.i and q = r.j and i < j

• can also define this as a UDF

• Following: Definable as composition of 
ancestor, following-sibling, descendant

• or: ∃r. p = r.i.p' and q = r.j.q' and i < j

• Preceding-sibling, preceding: dual (swap p,q)
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Interval encoding
• Drawback of DDE: needs strings, UDFs

• DBMS may not know how to optimize, rewrite effectively 
for query optimization

• But RDBMSs generally support numerical values, 
indexing, rewriting

• most business applications involve numbers after all...

• Interval encoding: alternative ID-based indexing/
shredding scheme

• IDs are pairs of numbers

• Several ways of doing this
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Pre/post numbering

db

book

title author author

Database 
Management 

Systems

Ramakrishnan

Gehrke
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Pre/post numbering

db

book

title author author

Database 
Management 

Systems

Ramakrishnan

Gehrke

1

3

4

2

5

6

7

8
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Pre/post numbering

db

book

title author author

Database 
Management 

Systems

8

Ramakrishnan

Gehrke

2

7

4

3

6

1

3

4 1

2

5

6

7

8 5
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pre post par tag type

1 8 db ELT

2 7 1 book ELT

3 2 2 title ELT

4 1 3 TEXT

5 4 2 author ELT

6 3 5 TEXT

7 6 2 author ELT

8 5 7 TEXT

Pre/post numbering

db

book

title author author

Database 
Management 

Systems

8

Ramakrishnan

Gehrke

2

7

4

3

6

1

3

4 1

2

5

6

7

8 5
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Begin/end 
numbering

db

book

title author author

Database 
Management 

Systems

Ramakrishnan

Gehrke
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Begin/end 
numbering

db

book

title author author

Database 
Management 

Systems

16

Ramakrishnan

Gehrke

6

15

10

9

14

1

3

4 5

2

7

8

11

12 13
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Begin/end 
numbering

db

book

title author author

Database 
Management 

Systems

16

Ramakrishnan

Gehrke

6

15

10

9

14

1

3

4 5

2

7

8

11

12 13

begin end par tag type

1 16 db ELT

2 15 1 book ELT

3 6 2 title ELT
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Fig. 3. Preorder/postorder rank assignment and node distribution in the resulting pre/post plane.
Also indicated are the XML document regions as seen from context nodes f (−−) and i (· · · · · ·).

v′ of node v. We have that
v′ is a descendant of v

⇔
pre(v) < pre(v′) ∧ post(v′) < post(v).

Intuitively, this may be read as: During a sequential read of the XML docu-
ment, we have seen the start tag <v> before <v′> and the end tag </v> after
</v′>. In other words, the element corresponding to v′ is part of the contents
of the element corresponding to v.

This characterizes the descendant axis of context node v, but we can use
pre(v) and post(v) to characterize all four major axes in an equally simple
manner.

Figure 3 illustrates the node distribution of the example document after its
nodes have been mapped into a pre/post plane. For example, document root
element a is located at coordinates 〈pre(a) = 0, post(a) = 9〉 like its preorder
and postorder ranks determine.

As indicated before, node f induces a partition of the plane into four disjoint
regions (cf. Figure 2):

(1) the lower-right partition U contains all descendants of f ,
(2) in the upper-left partition R, we find the ancestors of f , i.e., node a only,
(3) the lower-left partition T hosts the nodes preceding f , and finally
(4) the upper-right partition S represents the nodes following f (as we have

noted earlier, this region is empty for this example instance).

This characterization of document regions applies to all nodes in the plane
(note that the descendant axis of node i is empty, since i is a leaf node). This
means that we may pick any node v and use its location in the plane to start an
XPath traversal, that is, make v the context node. The index has no bias towards
a specific context node set, for example, the document root element, or a specific
set of queries. This turns out to be an important feature when it comes to the
implementation of XQuery. XQuery is a fully compositional query language:
Arbitrary expressions (e.g., variables bound in iteration constructs like for and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Pre/post plane
[Grust et al. 2004]
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Fig. 6. Stretched preorder/postorder rank assignment and node distribution in the resulting
pre/post plane. The dashed lines (−−) mark a pre and a post range, any of which characterizes
the descendants d , e of context node c.

Note that the document regions with respect to a context node v, as displayed
in Table II, are defined relative to pre(v) and post(v). The absolute pre and post
values, however, are insignificant. We can exploit this observation and modify
the computation of pre(v) and post(v): Couple the preorder and postorder ranks
such that whenever pre is incremented, post is as well and vice versa.

In the resulting preorder and postorder rank assignment (depicted in
Figure 6) for all descendants v of node c, say, we thus have

pre(c) < pre(v) < post(c) as well as pre(c) < post(v) < post(c). (5)

No other nodes v fulfill the inequalities in (5) since we continue to monotonically
increment pre and post once we are done traversing the subtree below c (see
the empty pre/post plane regions marked ∅ in Figure 6). The evaluation of a
descendant window query in the stretched pre/post plane consequently never
encounters any false hits.

Additionally, we lose no other valuable properties of the pre/post plane:

(1) all axis query windows continue to work as before,
(2) the < order on pre still reflects document order,
(3) both pre(v) and post(v) still uniquely identify document node v, and
(4) the estimation of the subtree size below node v is now completely accurate:

size(v) = 1
2

(post(v)− pre(v)− 1), (6)

that is, the maximal error of height(t) is gone.

From the query evaluation perspective, Eq. (5) gives us the freedom to choose
one of the following query windows to evaluate a descendant step from v (note
the ∗ entries in the pre and post positions, respectively):

window(descendant, v) = 〈(pre(v), post(v)), ∗, ∗, elem, ∗〉
or

window(descendant, v) = 〈∗, (pre(v), post(v)), ∗, elem, ∗〉
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Begin/end plane
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• Think of XML text as a linear string

• Begin and end are ~ positions of opening 
and closing tags

• Each tag corresponds to an interval on line

• Interval inclusion = descendant

Why "Interval"?

<db><book><title>Database Management Systems</title><author>Ramakrishnan</author><author>Gehrke</author></book></db>
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Querying
(begin/end)

•  Child: use parent field

• Child(p,q) ⟺ p.begin = q.par

• Descendant: use interval inclusion

• Descendant(p,q) ⟺ p.begin < q.begin and 
q.end < p.end 

• DescendantOrSelf(p,q) ⟺ p.begin ≤ q.begin 
and q.end ≤ p.end 

• Ancestor, parent: just flip p,q, as before

February 5-8, 2013QSX

Sibling, following
(begin/end)

• Can define following as follows:

• Following(p,q) ⟺ p.end < q.begin

• Then following-sibling is just:

• FollowingSibling(p,q) ⟺ p.end < q.begin and 
p.par = q.par
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Example:
• No need for UDFs.  Index on begin, end.

• How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
  AND a.begin < b.begin 
  AND b.end < a.end
  AND EXISTS(SELECT * 
             FROM node c 
             WHERE c.tag='c' 
               AND c.par = b.begin
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Node IDs and 
indexing: summary
• Goal: leverage existing RDBMS indexing

• Dewey: string index, requires PREFIX, LEN UDFs

• Interval: integer pre/post indexes, only requires 
arithmetic

• For both techniques: what about updates?

• DDE: requires renumbering

• but there are update-friendly variants

• Interval encoding: can require re-indexing 50% of 
document
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Next time
• XML publishing

• Efficiently Publishing Relational Data as XML 
Documents

• SilkRoute : a framework for publishing 
relational data in XML

• Querying XML Views of Relational Data

• Reviews due Monday 4pm


