
Querying and
storing XML

Week 4
XML Shredding

February 5-8, 2013

February 5-8, 2013QSX

Storing XML data
• Flat streams: store XML data as is in text files

• fast for storing and retrieving whole documents

• query support: limited; concurrency control: no

• Native XML Databases: designed specifically for XML

• XML document stored in XML specific way

• Goal: Efficient support for XML queries

• Colonial Strategies: Re-use existing DB storage systems

• Leverage mature systems (DBMS)

• Simple integration with legacy data

• Map XML document into underlying structures

• E.g., shred document into flat tables

February 5-8, 2013QSX

Why transform XML
data to relations?

• Native XML databases need:

• storing XML data, indexing,

• query processing/optimization

• concurrency control

• updates

• access control, . . .

• Nontrivial: the study of these issues is still in its infancy –
incomplete support for general data management tasks

• Haven't these already been developed for relational
DBMS!?

• Why not take advantage of available DBMS techniques?

February 5-8, 2013QSX

From XML (+ DTD?)
to relations

• Store and query XML data using traditional DBMS

• Derive a relational schema (generic or from XML DTD/schema)

• Shred XML data into relational tuples

• Translate XML queries to SQL queries

• Convert query results back to XML

RDB

query answer

store query
translation

DBMS

XML

February 5-8, 2013QSX

Architecture:
XML Shredding

RDB

query answer

store

DBMS

XML

XML query parsing
query rewriting

XML tagger
Tagging results

query translation

Relational schema
generator

XML document
shredder

February 5-8, 2013QSX

Nontrivial issues
• Data model mismatch

• DTD: recursive, regular expressions/nested content

• relational schema: tables, single-valued attributes

• Information preservation

• lossless: there should be an effective method to reconstruct the
original XML document from its relational storage

• propagation/preservation of integrity constraints

• Query language mismatch

• XQuery, XSLT: Turing-complete

• XPath: transitive edges (descendant, ancestor)

• SQL: first-order, limited / no recursion

QSX February 5-8, 2013

Schema-conscious
& selective shredding

February 5-8, 2013QSX

Derivation of relational
schema from DTD

• Should be lossless

• the original document can be effectively reconstructed from
its relational representation

• Should support querying

• XML queries should be able to be rewritten to efficient
relational queries

Relational schema generator

XML document shredder

February 5-8, 2013QSX

Running example – a
book document

• DTD:

<!ELEMENT db (book*)>
<!ELEMENT book (title,authors*,chapter*, ref*)>
<!ELEMENT chapter (text | section)*>
<!ELEMENT ref book>
<!ELEMENT title #PCDATA>
<!ELEMENT author #PCDATA>
<!ELEMENT section #PCDATA>
<!ELEMENT text #PCDATA>

• Recursive (book, ref, book, ref, ...)

• Complex regular expressions

February 5-8, 2013QSX

Graph representation
of the (simplified) DTD
• Each element type/attribute is

represented by a unique node

• Edges represent the subelement
(and attribute) relations

• *: 0 or more occurrences of
subelements

• Cycles indicate recursion

• e.g., book

• Simplification: e.g., (text |
section)*

• text* | section* -- ignore order

db

title

book

author chapter ref

*

* * *

* *

section text

February 5-8, 2013QSX

Canonical
representation

• Store an XML document as a graph (tree)

• Node relation: node(nodeId, tag, type)

• e.g., node(02, book, element), node(03, author, element)

• Edge relation: edge(parent, child)

• parent, child: source and destination nodes; e.g., edge(02, 03)

• Pros and cons

• Lossless: the original document can be reconstructed

• Querying efficiency: Requires many joins

• A simple query /db/book[author=“Bush”]/title requires 3 joins
of the edge relation!

• //book//title - requires recursive SQL queries (not well supported)

February 5-8, 2013QSX

Schema-conscious
shredding/inlining

• Require DTD

• Represent the DTD as a graph
(simplifying regular expressions)

• Traverse the DTD graph depth-first
and create relations for the nodes

• the root

• each * node

• each recursive node

• each node of in-degree > 1

• Inlining: nodes with in-degree of 1
are inlined as fields

• no relation is created

db

title

book

author chapter ref

*

* * *

* *

section text

February 5-8, 2013QSX

Schema-conscious
shredding/inlining

• Require DTD

• Represent the DTD as a graph
(simplifying regular expressions)

• Traverse the DTD graph depth-first
and create relations for the nodes

• the root

• each * node

• each recursive node

• each node of in-degree > 1

• Inlining: nodes with in-degree of 1
are inlined as fields

• no relation is created

db

title

book

author chapter ref

*

* * *

* *

section text

Assumption 1:
Order doesn't matter

Assumption 2:
Correlations between elements

don't matter
(a,b)* -> a*,b*

Resulting DTD still correct, but less
precise

February 5-8, 2013QSX

Relational schema
• db(dbID)

• book(bookID, parentID, code, title: string)

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string)

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note: title is inlined

db

title

book

author chapter ref

*

* * *

* *

section text

February 5-8, 2013QSX

Relational schema
• db(dbID)

• book(bookID, parentID, code, title: string)

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string)

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note: title is inlined

db

title

book

author chapter ref

*

* * *

* *

section text
Dealing with recursion:

code needed to
distinguish book and ref

parents

February 5-8, 2013QSX

Relational schema
• db(dbID)

• book(bookID, parentID, code, title: string)

• author(authorID, bookID, author: string)

• chapter(chapterID, bookID)

• text(textID, chapterID, text: string)

• section(sectionID, chapterID, section: string)

• ref(refID, bookID)

• To preserve the semantics

• ID: each relation has an artificial ID (key)

• parentID: foreign key coding edge relation

• Column naming: path in the DTD graph

• Note: title is inlined

db

title

book

author chapter ref

*

* * *

* *

section text
Keys: book.bookID, author.authorID,...

Foreign keys:
book.parentID ⊆ db.dbID if code = 1
book.parentID ⊆ ref.refID if code = 0

 author.bookID ⊆ book.bookID, ...

February 5-8, 2013QSX

Summary of schema-
driven shredding

• Use DTD/XML Schema to decompose document

• Shared inlining:

• Rule of thumb: Inline as much as possible to minimize number of joins

• Shared: do not inline if shared, set-valued, recursive

• Hybrid: also inline if shared but not set-valued or recursive

• Reorganization of regular expressions:

• (text | section)* → text* | section*

• Querying: Supports a large class of common XML queries

• Fast lookup & reconstruction of inlined elements

• Systematic translation unclear (not given in Shanmagusundaram et al.)

• But can use XML Publishing techniques (next week)

February 5-8, 2013QSX

Summary of schema-
driven shredding (2)
• Instance mapping can be easily derived from schema mapping.

• Is it lossless? No

• The order information is lost (simplification of regular expressions
defining element types)

• Is there anything missing?

• “core dumping” the entire document to a new database

• In practice one often wants to select relevant data from the document

• to store the selected data in an existing database of a predefined
schema

• XML Schema: type + constraints

• What happens to XML constraints? Can we achieve normal forms (BNCF,
3NF) for the relational storage?

February 5-8, 2013QSX

Selective shredding
example

• Existing relational database R :

• book (id, title) ref (id1, id2)

• Select data from XML and store it in R

• books with title containing “WMD”, and

• books cited, directly or indirectly

• Difference:

• select only part of the data from an input document

• store the data in an existing database with a fixed schema

R
XML

existing DB book document
SQL inserts

db

title

book

author chapter ref

*

* * *

* *
section text

February 5-8, 2013QSX

Mapping specification:
XML2DB mappings

• XML2DB Mapping:

• Input: XML document T of a DTD D, and an existing database schema R

• Output: a list of SQL inserts ΔR, updating the database of R

• An extension of Attribute Grammars:

• treat the DTD D as an ECFG (extended context-free grammar)

• associate semantic attributes and actions with each production of the
grammar

• attributes: passing data top-down $book, ...

• actions: generate SQL inserts ΔR

• Evaluation: generate SQL inserts in parallel with XML parsing

• [Fan, Ma DEXA 2006] --- see additional readings

February 5-8, 2013QSX

XML2DB mappings
• Simplified DTD: element type definitions e → r where

• r ::= PCDATA | ε | a1, …, an | a1 + … + an | a*

• Note: subset of full DTD regexps (e.g. (a|b)*,c not directly
allowed)

• Relation variables: for each relation schema Ri, define
a variable ΔRi, which holds tuples to be inserted into Ri

• Attributes: $e associated with each element type e

• $e: tuple-valued, to pass data values top-down

• Associate "semantic actions" with each e → r

• written rule(a -> r)

February 5-8, 2013QSX

Semantic actions
rule(p) ::= stmts

stmts ::= ε | stmt ; stmts

stmt ::= $a := (x1,...,xn) | ΔRi := ΔRi ∪ {(x1,...,xn)} | id = gen_id()

 | if C then stmt else stmt

x ::= $b.A | text(b) | str | id | ⊤ | ⊥

C ::= x = x' | x <> x' | x contains x' | ...

• Given (a -> r), rule(a -> r) can read from (fields of) $a and should assign
values to $b for each element name b appearing in r

• Can also extract values of text fields of a using text(b) (left to right)

• Special values "top" and "bot", fresh IDs

• Rules can also generate tuples to be added to relations ΔRi

• Conditional tests C can include equality, string containment, ...

February 5-8, 2013QSX

Example: XML2DB
mapping

db ! book*

 $book := top /* children of the root */

db

title

book

author chapter ref

*

* * *

* *
section text

 db

book ... book book book
$book $book $book $book

February 5-8, 2013QSX

Example: XML2DB
mapping

db ! book*

 $book := top /* children of the root */

db

title

book

author chapter ref

*

* * *

* *
section text

 db

book ... book book book
$book $book $book $book

This is
rule(db ! book*)

We'll just write it below
the DTD rule like this.

February 5-8, 2013QSX

Example: Semantic
action

book ! title, author*, chapter*, ref*
 if (text(title) contains “WMD”
 or ($book <> ⊤ and $book <> ⊥))
 then id := gen_id();!!
 book := ∆book ∪ { (id, text(title)) };
 if $book <> ⊤ ! !
 then ref := ∆ref ∪ { ($book, id) };!
 $ref := id;
 else $ref := ⊥

• target relation schema: book (id, title), ref (id1, id2)

• gen_id(): a function generating a fresh unique id

• conditional: title is “WMD” or is referenced by a book of title "WMD"

db

ref
title

�WMD�

book

chapter chapter ref

$book

$ref $ref

ref

...

February 5-8, 2013QSX

Implementing
XML2DB mappings

• SAX parsing extended with corresponding semantic actions

• startDocument(), endDocument()

• startElement(A, eventNo), endElement(A), text(s)

• SQL updates:

! insert into book

! select *

! from ! ∆book

XML

XML2DB
R parsing

SAX parsing:
SQL inserts
generation

SAX actions

SQL inserts
execution

QSX February 5-8, 2013

Schema-oblivious shredding
and indexing

February 5-8, 2013QSX

Schema-oblivious
storage

• Storage easier if we have a fixed schema

• But:

• Often don't have schema

• Or schema may change over time

• schema updates require reorganizing or
reloading! Not fun.

• Alternative: schema-oblivious XML
storage

February 5-8, 2013QSX

Stupid idea #1:
CLOB

• Well, XML is just text, right?

• Most databases allow CLOB (Character Large
Object) columns - unbounded length string

• So you just store the XML text in one of these

• Surprisingly popular

• and can make sense for storing "document-like"
parts of XML data (eg HTML snippets)

• But not a good idea if you want to query the XML

February 5-8, 2013QSX

Stupid (?) idea #2:
SQL/XML

• Instead of blindly using CLOBs...

• Extend SQL with XML-friendly features

• "XML" column type

• Element/attribute construction primitives

• Ability to run XPath or XQuery queries (or updates) on XML
columns

• Also surprisingly popular (MS, IBM, Oracle)

• Pro: At least DB knows it's XML, and can (theoretically) act
accordingly (e.g. store DOM tree, shred, use XML DB, ...)

• Pro?: Part of SQL 2003 (SQL/XML extensions)

• Con: Frankenstein's query language

February 5-8, 2013QSX

SQL/XML example

SELECT CustomerName,
 query(PurchaseOrders,
 'for $p in /po:purchase-order
 where $p/@date < xs:date("2002-10-31")
 return <purchaseorder date="{$p/@date}">
 {$p/*}
 </purchaseorder>')
FROM Customers
WHERE CustomerID = 42

CREATE TABLE Customers(
 CustomerID int PRIMARY KEY,
 CustomerName nvarchar(100),
 PurchaseOrders XML, ...}

February 5-8, 2013QSX

Schema-oblivious
shredding/indexing
• Can we store arbitrary XML in a relational

schema (even without DTD)?

• Of course we can (saw last time):

• node(nodeID, tag, type)

• edge(parent, child)

• attribute(nodeID, key, value)

• text(nodeID, text)

• What's wrong with this?

February 5-8, 2013QSX

parent child nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

Ramakrishnan

Gehrke

edge node

text
nodeId text

February 5-8, 2013QSX

nodeId text

o4 Database Management
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
...

parent child
o1 o2
o2 o3
o3 o4
... ...

parent child nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text

February 5-8, 2013QSX

nodeId text

o4 Database Management
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
...

parent child
o1 o2
o2 o3
o3 o4
... ...

nodeId tag type

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text

February 5-8, 2013QSX

nodeId text

o4 Database Management
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text
nodeId text

February 5-8, 2013QSX

nodeId text

o4 Database Management
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text

February 5-8, 2013QSX

nodeId text

o4 Database Management
Systems

o6 Ramakrishnan
o8 Gehrke

nodeId tag type
o1 db ELT
o2 book ELT
o4 TEXT
...

parent child
o1 o2
o2 o3
o3 o4
... ...

Quiz
• Fill in tables

• Write SQL query for:

• /db/book/title/text()

db

book

title author author

Database
Management

Systems

o1

Ramakrishnan

Gehrke

o3

o4

o2

o5

o6

o7

o8

edge node

text

/db/book/title/text() in SQL:

SELECT txt.text
FROM node w, edge e1,
 node x, edge e2,
 node y, edge e3,
 node z, text txt
WHERE w.tag = "db" AND w.type = "ELT"
 AND e1.parent = w.nodeId
 AND e1.child = x.nodeId
 AND x.tag = "book"
 AND ...
 AND z.type = "TEXT"
 AND z.nodeId = txt.nodeId

February 5-8, 2013QSX

Problems with edge
storage

• Indexing unaware of tree structure

• hard to find needles in haystacks

• fragmentation - subtree might be spread across db

• Incomplete query translation

• descendant axis steps involve recursion

• need additional information to preserve document order

• filters, sibling, following edges also painful

• Lots of joins

• joins + no indexing = trouble

February 5-8, 2013QSX

Node IDs and
Indexing

• Idea: Embed navigational information in each
node's identifier

• Then indexing the ids can improve query
performance

• and locality, provided ids are ordered (and order ~
tree distance)

• Two main approaches (with many refinements):

• Dewey Decimal Encoding

• Interval Encoding

February 5-8, 2013QSX

Dewey Decimal
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2.in)

• giving the "path" from root to this node

db

book

title author author

Database
Management

Systems

Ramakrishnan

Gehrke

February 5-8, 2013QSX

Dewey Decimal
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2.in)

• giving the "path" from root to this node

db

book

title author author

Database
Management

Systems

[]

Ramakrishnan

Gehrke

1.1

1.1.1

1

1.2

1.2.1

1.3

1.3.1

February 5-8, 2013QSX

Dewey Decimal
Encoding

• Each node's ID is a list of integers

• [i1,i2, ... ,in] (often written i1.i2.in)

• giving the "path" from root to this node

db

book

title author author

Database
Management

Systems

[]

Ramakrishnan

Gehrke

1.1

1.1.1

1

1.2

1.2.1

1.3

1.3.1

nodeID tag type

[] db ELT

1 book ELT

1.1 title ELT

1.1.1 TEXT

1.2 author ELT

1.2.1 TEXT

1.3 author ELT

1.3.1 TEXT

February 5-8, 2013QSX

Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q

February 5-8, 2013QSX

Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q

Prefix:
1 ≺ 1.2 ≺ 1.2.3 ≺ 1.2.3.4.5

...
Length:

|1.2.3| = 3
|3.2.1.2| = 4

...

February 5-8, 2013QSX

Querying
• Descendant (or self) = (strict) prefix

• Descendant(p,q) ⟺ p ≺ q

• DescendantOrSelf(p,q) ⟺ p ≼ q

• Child: immediate prefix

• Child(p,q) ⟺ p ≺ q and |p| + 1 = |q|

• Parent, ancestor : reverse p and q

February 5-8, 2013QSX

Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND PREFIX(a.nodeID,b.nodeID)
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND PREFIX(b.nodeID,c.nodeID)
 AND LEN(b.nodeID) + 1 =
 LEN(c.nodeID))

February 5-8, 2013QSX

Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND PREFIX(a.nodeID,b.nodeID)
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND PREFIX(b.nodeID,c.nodeID)
 AND LEN(b.nodeID) + 1 =
 LEN(c.nodeID))

//a//b

February 5-8, 2013QSX

Example
• Extend SQL with prefix, length UDFs

• How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND PREFIX(a.nodeID,b.nodeID)
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND PREFIX(b.nodeID,c.nodeID)
 AND LEN(b.nodeID) + 1 =
 LEN(c.nodeID))

//a//b

[c]

February 5-8, 2013QSX

Sibling, following
axis steps

• Following Sibling: same immediate prefix,
with final step

• Sibling(p,q) ⟺ ∃r. p = r.i and q = r.j and i < j

• can also define this as a UDF

• Following: Definable as composition of
ancestor, following-sibling, descendant

• or: ∃r. p = r.i.p' and q = r.j.q' and i < j

• Preceding-sibling, preceding: dual (swap p,q)

February 5-8, 2013QSX

Interval encoding
• Drawback of DDE: needs strings, UDFs

• DBMS may not know how to optimize, rewrite effectively
for query optimization

• But RDBMSs generally support numerical values,
indexing, rewriting

• most business applications involve numbers after all...

• Interval encoding: alternative ID-based indexing/
shredding scheme

• IDs are pairs of numbers

• Several ways of doing this

February 5-8, 2013QSX

Pre/post numbering

db

book

title author author

Database
Management

Systems

Ramakrishnan

Gehrke

February 5-8, 2013QSX

Pre/post numbering

db

book

title author author

Database
Management

Systems

Ramakrishnan

Gehrke

1

3

4

2

5

6

7

8

February 5-8, 2013QSX

Pre/post numbering

db

book

title author author

Database
Management

Systems

8

Ramakrishnan

Gehrke

2

7

4

3

6

1

3

4 1

2

5

6

7

8 5

February 5-8, 2013QSX

pre post par tag type

1 8 db ELT

2 7 1 book ELT

3 2 2 title ELT

4 1 3 TEXT

5 4 2 author ELT

6 3 5 TEXT

7 6 2 author ELT

8 5 7 TEXT

Pre/post numbering

db

book

title author author

Database
Management

Systems

8

Ramakrishnan

Gehrke

2

7

4

3

6

1

3

4 1

2

5

6

7

8 5

February 5-8, 2013QSX

Begin/end
numbering

db

book

title author author

Database
Management

Systems

Ramakrishnan

Gehrke

February 5-8, 2013QSX

Begin/end
numbering

db

book

title author author

Database
Management

Systems

16

Ramakrishnan

Gehrke

6

15

10

9

14

1

3

4 5

2

7

8

11

12 13

February 5-8, 2013QSX

Begin/end
numbering

db

book

title author author

Database
Management

Systems

16

Ramakrishnan

Gehrke

6

15

10

9

14

1

3

4 5

2

7

8

11

12 13

begin end par tag type

1 16 db ELT

2 15 1 book ELT

3 6 2 title ELT

4 5 3 TEXT

7 10 2 author ELT

8 9 7 TEXT

11 14 2 author ELT

12 13 11 TEXT

February 5-8, 2013QSX

Accelerating XPath Evaluation in Any RDBMS • 97

Fig. 3. Preorder/postorder rank assignment and node distribution in the resulting pre/post plane.
Also indicated are the XML document regions as seen from context nodes f (−−) and i (· · · · · ·).

v′ of node v. We have that
v′ is a descendant of v

⇔
pre(v) < pre(v′) ∧ post(v′) < post(v).

Intuitively, this may be read as: During a sequential read of the XML docu-
ment, we have seen the start tag <v> before <v′> and the end tag </v> after
</v′>. In other words, the element corresponding to v′ is part of the contents
of the element corresponding to v.

This characterizes the descendant axis of context node v, but we can use
pre(v) and post(v) to characterize all four major axes in an equally simple
manner.

Figure 3 illustrates the node distribution of the example document after its
nodes have been mapped into a pre/post plane. For example, document root
element a is located at coordinates 〈pre(a) = 0, post(a) = 9〉 like its preorder
and postorder ranks determine.

As indicated before, node f induces a partition of the plane into four disjoint
regions (cf. Figure 2):

(1) the lower-right partition U contains all descendants of f ,
(2) in the upper-left partition R, we find the ancestors of f , i.e., node a only,
(3) the lower-left partition T hosts the nodes preceding f , and finally
(4) the upper-right partition S represents the nodes following f (as we have

noted earlier, this region is empty for this example instance).

This characterization of document regions applies to all nodes in the plane
(note that the descendant axis of node i is empty, since i is a leaf node). This
means that we may pick any node v and use its location in the plane to start an
XPath traversal, that is, make v the context node. The index has no bias towards
a specific context node set, for example, the document root element, or a specific
set of queries. This turns out to be an important feature when it comes to the
implementation of XQuery. XQuery is a fully compositional query language:
Arbitrary expressions (e.g., variables bound in iteration constructs like for and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Pre/post plane
[Grust et al. 2004]

February 5-8, 2013QSX

Accelerating XPath Evaluation in Any RDBMS • 97

Fig. 3. Preorder/postorder rank assignment and node distribution in the resulting pre/post plane.
Also indicated are the XML document regions as seen from context nodes f (−−) and i (· · · · · ·).

v′ of node v. We have that
v′ is a descendant of v

⇔
pre(v) < pre(v′) ∧ post(v′) < post(v).

Intuitively, this may be read as: During a sequential read of the XML docu-
ment, we have seen the start tag <v> before <v′> and the end tag </v> after
</v′>. In other words, the element corresponding to v′ is part of the contents
of the element corresponding to v.

This characterizes the descendant axis of context node v, but we can use
pre(v) and post(v) to characterize all four major axes in an equally simple
manner.

Figure 3 illustrates the node distribution of the example document after its
nodes have been mapped into a pre/post plane. For example, document root
element a is located at coordinates 〈pre(a) = 0, post(a) = 9〉 like its preorder
and postorder ranks determine.

As indicated before, node f induces a partition of the plane into four disjoint
regions (cf. Figure 2):

(1) the lower-right partition U contains all descendants of f ,
(2) in the upper-left partition R, we find the ancestors of f , i.e., node a only,
(3) the lower-left partition T hosts the nodes preceding f , and finally
(4) the upper-right partition S represents the nodes following f (as we have

noted earlier, this region is empty for this example instance).

This characterization of document regions applies to all nodes in the plane
(note that the descendant axis of node i is empty, since i is a leaf node). This
means that we may pick any node v and use its location in the plane to start an
XPath traversal, that is, make v the context node. The index has no bias towards
a specific context node set, for example, the document root element, or a specific
set of queries. This turns out to be an important feature when it comes to the
implementation of XQuery. XQuery is a fully compositional query language:
Arbitrary expressions (e.g., variables bound in iteration constructs like for and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Pre/post plane
[Grust et al. 2004]

February 5-8, 2013QSX

Accelerating XPath Evaluation in Any RDBMS • 97

Fig. 3. Preorder/postorder rank assignment and node distribution in the resulting pre/post plane.
Also indicated are the XML document regions as seen from context nodes f (−−) and i (· · · · · ·).

v′ of node v. We have that
v′ is a descendant of v

⇔
pre(v) < pre(v′) ∧ post(v′) < post(v).

Intuitively, this may be read as: During a sequential read of the XML docu-
ment, we have seen the start tag <v> before <v′> and the end tag </v> after
</v′>. In other words, the element corresponding to v′ is part of the contents
of the element corresponding to v.

This characterizes the descendant axis of context node v, but we can use
pre(v) and post(v) to characterize all four major axes in an equally simple
manner.

Figure 3 illustrates the node distribution of the example document after its
nodes have been mapped into a pre/post plane. For example, document root
element a is located at coordinates 〈pre(a) = 0, post(a) = 9〉 like its preorder
and postorder ranks determine.

As indicated before, node f induces a partition of the plane into four disjoint
regions (cf. Figure 2):

(1) the lower-right partition U contains all descendants of f ,
(2) in the upper-left partition R, we find the ancestors of f , i.e., node a only,
(3) the lower-left partition T hosts the nodes preceding f , and finally
(4) the upper-right partition S represents the nodes following f (as we have

noted earlier, this region is empty for this example instance).

This characterization of document regions applies to all nodes in the plane
(note that the descendant axis of node i is empty, since i is a leaf node). This
means that we may pick any node v and use its location in the plane to start an
XPath traversal, that is, make v the context node. The index has no bias towards
a specific context node set, for example, the document root element, or a specific
set of queries. This turns out to be an important feature when it comes to the
implementation of XQuery. XQuery is a fully compositional query language:
Arbitrary expressions (e.g., variables bound in iteration constructs like for and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Pre/post plane
[Grust et al. 2004]

ancestor following

preceding descendant

February 5-8, 2013QSX

102 • T. Grust et al.

Fig. 6. Stretched preorder/postorder rank assignment and node distribution in the resulting
pre/post plane. The dashed lines (−−) mark a pre and a post range, any of which characterizes
the descendants d , e of context node c.

Note that the document regions with respect to a context node v, as displayed
in Table II, are defined relative to pre(v) and post(v). The absolute pre and post
values, however, are insignificant. We can exploit this observation and modify
the computation of pre(v) and post(v): Couple the preorder and postorder ranks
such that whenever pre is incremented, post is as well and vice versa.

In the resulting preorder and postorder rank assignment (depicted in
Figure 6) for all descendants v of node c, say, we thus have

pre(c) < pre(v) < post(c) as well as pre(c) < post(v) < post(c). (5)

No other nodes v fulfill the inequalities in (5) since we continue to monotonically
increment pre and post once we are done traversing the subtree below c (see
the empty pre/post plane regions marked ∅ in Figure 6). The evaluation of a
descendant window query in the stretched pre/post plane consequently never
encounters any false hits.

Additionally, we lose no other valuable properties of the pre/post plane:

(1) all axis query windows continue to work as before,
(2) the < order on pre still reflects document order,
(3) both pre(v) and post(v) still uniquely identify document node v, and
(4) the estimation of the subtree size below node v is now completely accurate:

size(v) = 1
2

(post(v)− pre(v)− 1), (6)

that is, the maximal error of height(t) is gone.

From the query evaluation perspective, Eq. (5) gives us the freedom to choose
one of the following query windows to evaluate a descendant step from v (note
the ∗ entries in the pre and post positions, respectively):

window(descendant, v) = 〈(pre(v), post(v)), ∗, ∗, elem, ∗〉
or

window(descendant, v) = 〈∗, (pre(v), post(v)), ∗, elem, ∗〉
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Begin/end plane

February 5-8, 2013QSX

102 • T. Grust et al.

Fig. 6. Stretched preorder/postorder rank assignment and node distribution in the resulting
pre/post plane. The dashed lines (−−) mark a pre and a post range, any of which characterizes
the descendants d , e of context node c.

Note that the document regions with respect to a context node v, as displayed
in Table II, are defined relative to pre(v) and post(v). The absolute pre and post
values, however, are insignificant. We can exploit this observation and modify
the computation of pre(v) and post(v): Couple the preorder and postorder ranks
such that whenever pre is incremented, post is as well and vice versa.

In the resulting preorder and postorder rank assignment (depicted in
Figure 6) for all descendants v of node c, say, we thus have

pre(c) < pre(v) < post(c) as well as pre(c) < post(v) < post(c). (5)

No other nodes v fulfill the inequalities in (5) since we continue to monotonically
increment pre and post once we are done traversing the subtree below c (see
the empty pre/post plane regions marked ∅ in Figure 6). The evaluation of a
descendant window query in the stretched pre/post plane consequently never
encounters any false hits.

Additionally, we lose no other valuable properties of the pre/post plane:

(1) all axis query windows continue to work as before,
(2) the < order on pre still reflects document order,
(3) both pre(v) and post(v) still uniquely identify document node v, and
(4) the estimation of the subtree size below node v is now completely accurate:

size(v) = 1
2

(post(v)− pre(v)− 1), (6)

that is, the maximal error of height(t) is gone.

From the query evaluation perspective, Eq. (5) gives us the freedom to choose
one of the following query windows to evaluate a descendant step from v (note
the ∗ entries in the pre and post positions, respectively):

window(descendant, v) = 〈(pre(v), post(v)), ∗, ∗, elem, ∗〉
or

window(descendant, v) = 〈∗, (pre(v), post(v)), ∗, elem, ∗〉
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Begin/end plane

February 5-8, 2013QSX

• Think of XML text as a linear string

• Begin and end are ~ positions of opening
and closing tags

• Each tag corresponds to an interval on line

• Interval inclusion = descendant

Why "Interval"?

<db><book><title>Database Management Systems</title><author>Ramakrishnan</author><author>Gehrke</author></book></db>

February 5-8, 2013QSX

• Think of XML text as a linear string

• Begin and end are ~ positions of opening
and closing tags

• Each tag corresponds to an interval on line

• Interval inclusion = descendant

Why "Interval"?

<db><book><title>Database Management Systems</title><author>Ramakrishnan</author><author>Gehrke</author></book></db>

February 5-8, 2013QSX

• Think of XML text as a linear string

• Begin and end are ~ positions of opening
and closing tags

• Each tag corresponds to an interval on line

• Interval inclusion = descendant

Why "Interval"?

<db><book><title>Database Management Systems</title><author>Ramakrishnan</author><author>Gehrke</author></book></db>

166 15109 141 3 4 52 7 8 11 1213

February 5-8, 2013QSX

Querying
(begin/end)

• Child: use parent field

• Child(p,q) ⟺ p.begin = q.par

• Descendant: use interval inclusion

• Descendant(p,q) ⟺ p.begin < q.begin and
q.end < p.end

• DescendantOrSelf(p,q) ⟺ p.begin ≤ q.begin
and q.end ≤ p.end

• Ancestor, parent: just flip p,q, as before

February 5-8, 2013QSX

Sibling, following
(begin/end)

• Can define following as follows:

• Following(p,q) ⟺ p.end < q.begin

• Then following-sibling is just:

• FollowingSibling(p,q) ⟺ p.end < q.begin and
p.par = q.par

February 5-8, 2013QSX

Example:
• No need for UDFs. Index on begin, end.

• How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND a.begin < b.begin
 AND b.end < a.end
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND c.par = b.begin

February 5-8, 2013QSX

Example:
• No need for UDFs. Index on begin, end.

• How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND a.begin < b.begin
 AND b.end < a.end
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND c.par = b.begin

//a//b

February 5-8, 2013QSX

Example:
• No need for UDFs. Index on begin, end.

• How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
 AND a.begin < b.begin
 AND b.end < a.end
 AND EXISTS(SELECT *
 FROM node c
 WHERE c.tag='c'
 AND c.par = b.begin

//a//b

[c]

February 5-8, 2013QSX

Node IDs and
indexing: summary
• Goal: leverage existing RDBMS indexing

• Dewey: string index, requires PREFIX, LEN UDFs

• Interval: integer pre/post indexes, only requires
arithmetic

• For both techniques: what about updates?

• DDE: requires renumbering

• but there are update-friendly variants

• Interval encoding: can require re-indexing 50% of
document

February 5-8, 2013QSX

Next time
• XML publishing

• Efficiently Publishing Relational Data as XML
Documents

• SilkRoute : a framework for publishing
relational data in XML

• Querying XML Views of Relational Data

• Reviews due Monday 4pm

