Querying and
storing XML

Week 4
XML Shredding
February 5-8, 2013

Why transform XML
data to relations?

® Native XML databases need:
@ storing XML data, indexing,

query processing/optimization

concurrency control

updates

access control, ...

Nontrivial: the study of these issues is still in its infancy -
incomplete support for general data management tasks

® Haven't these already been developed for relational
DBMS!?

® Why not take advantage of available DBMS techniques?

Storing XML data

@ Flat streams: store XML data as is in text files
@ fast for storing and retrieving whole documents
® query support: limited; concurrency control: no
® Native XML Databases: designed specifically for XML
® XML document stored in XML specific way
® Goal: Efficient support for XML queries
® Colonial Strategies: Re-use existing DB storage systems
® Leverage mature systems (DBMS)
® Simple integration with legacy data
® Map XML document into underlying structures
°

E.g., shred document into flat tables

QsSX February 5-8,2013

From XML (+ DTD?)
to relations

® Store and query XML data using traditional DBMS
® Derive a relational schema (generic or from XML DTD/schema)
® Shred XML data into relational tuples
® Translate XML queries to SQL queries
[

Convert query results back to XML
query anfwer

query
translation

QSX February 5-8,2013

L1
_
RDB
QSX February 5-8,2013

Architecture:
XML Shredding

query anfwe r

Nontrivial issues

® Data model mismatch

® DTD: recursive, regular expressions/nested content

® relational schema: tables, single-valued attributes
store ‘ \ lati . .
query franslation ® Information preservation

Relational schema [

generator original XML document from its relational storage

query rewriting Tagging results

® lossless: there should be an effective method to reconstruct the
XML query parsing| | XML tagger l

® propagation/preservation of integrity constraints

[&l

XML document . @® Query language mismatch
shredcer ® XQuery, XSLT: Turing-complete
\ T ® XPath: transitive edges (descendant, ancestor)
® SQL: first-order, limited / no recursion

QSX February 5-8,2013 QSX February 5-8,2013

Derivation of relational
schema from DTD

® Should be lossless

® the original document can be effectively reconstructed from
its relational representation

SChema'ConSCIOus @ Should support querying
& SeIeCtive S h I‘edd | ng i fel‘l’lal-ti%l;:i:isggsld be able to be rewritten to efficient

| Relational schema generator ’
'
[XML document shredder |

QSX February 5-8,2013 QSX February 5-8,2013

Running example - a
book document

e DTD:

<!ELEMENT db (book*)>

<!ELEMENT book (title,authors*,chapter*, ref*)>
<!ELEMENT chapter (text | section)*>

<!ELEMENT ref book>

<!ELEMENT title #PCDATA>

<!ELEMENT author #PCDATA>

<!ELEMENT section #PCDATA>

<!ELEMENT text #PCDATA>

® Recursive (book, ref, book, ref, ...)

® Complex regular expressions

Graph representation

of the (simplified) DTD

® Each element type/attribute is
represented by a unique node df)

® Edges represent the subelement
(and attribute) relations

e *: 0 or more occurrences of /\

subelements

title T T T
® Cycles indicate recursion
author chapter ref

® e.g., book /\ |

® Simplification: e.g., (text | T T

section)*

text section
® text* | section* --ignore order

QSX February 5-8,2013

Canonical
representation

@ Store an XML document as a graph (tree)

® Node relation: node(nodeId, tag, type)

® ¢€.dg.,, node(02, book, element), node(03, author, element)
® Edge relation: edge(parent, child)

® parent, child: source and destination nodes; e.g., edge (02, 03)
® Pros and cons

Lossless: the original document can be reconstructed
® Querying efficiency: Requires many joins

A simple query /db/book[author=“Bush”]/title requires 3 joins
of the edge relation!

® //book//title - requires recursive SQL queries (not well supported)

QsSX February 5-8,2013

Schema-conscious
shredding/inlining

Require DTD

Represent the DTD as a graph
(simplifying regular expressions)

® Traverse the DTD graph depth-first
and create relations for the nodes book

the root /\

each * node fe T T T

author chapter ref

o
S % «—Z&

each recursive node

each node of in-degree > 1 * *

Inlining: nodes with in-degree of 1 l l
. N . text section
are inlined as fields

® o relation is created

QSX February 5-8,2013

QSX February 5-8,2013

Schema-conscious

<hreddina/inl . Relational schema

. o dp
re Assumpt:on I: o db(dbId) i
Re order doesn t matter ® Dbook(bookID, parentID, title: string)
. book
(si ® author(authorID, bookID, author: string) /0\‘
® Trg Assumption 2: ® chapter(chapterID, bookID) title T T
an 2 . i
Correlations between elements| © ‘text(textlD, chapterlD, text: string) author chapter
hd don,t matter T ® section(sectionID, chapterID, section: string) /\
° * *
* - * b* b f l l
d (a’b) >a ’b \r " e To preserve the semantics text section
. * ® ID: each relation has an artificial ID (key)
e Inl Resulting DTD Stl” correct, but |ess ltion ® parentID: foreign key coding edge relation
are & ® Column naming: path in the DTD graph
° precise . o
N Y, ® Note: title isinlined
QSX February 5-8,2013 QSX February 5-8,2013

Relational schema Relational schema

dp dp
® db(dbID) l ® db(dbiID) l
® book(bookID, parentID, code, title: string) T ® book(bookID, parentID, code, title: string) T
book book
® author(authorID, bookID, audor: string) /\ ® author(authorID, bookID, author: string) /\
® chapter(chapterID, bookID) title T T T ® chapter(chapterID, bookID) title T T T
® text(textID, chapterID, text: ing) author chapter ref ® text(textID, chapterID, text: string) author chapter ref
® section(sectionID, chapterID, sed \on: string) ® section(sectionID, chapterID, section: string)
* * *
® ref(refID, bookID) . . .
. Dealing with recursion: l, Keys: book .bookID, author.authorID,. l l.
® To preserve the semantics ction Foreion keys: text section
® ID: each relation has an arti COde needed to oreign keys: "
book.parentID C db.dbID if code = |

e parentID: foreign key coding distingUiSh book and ref

e Column naming: path in the parents
® Note: titleisinlined

book.parentID C ref.refID ifcode=0
author.bookID <€ book.bookID, ..

QSX February 5-8,2013 QSX February 5-8,2013

Summary of schema-
driven shredding

Use DTD/XML Schema to decompose document

Shared inlining:
® Rule of thumb: Inline as much as possible to minimize number of joins
® Shared: do not inline if shared, set-valued, recursive
® Hybrid: also inline if shared but not set-valued or recursive
® Reorganization of regular expressions:
® (text | section)* = text* | section*
® Querying: Supports a large class of common XML queries
® Fast lookup & reconstruction of inlined elements
® Systematic translation unclear (not given in Shanmagusundaram et al.)

® But can use XML Publishing techniques (next week)

QSX February 5-8,2013

Selective shredding
example

P
existing DB

— !

book document)
SQL inserts

N

® Existing relational database R : title ¥ ¥
® book (id, title) ref (id1, id2) author ‘}ha@

® Select data from XML and store it in R T T
® books with title containing “WMD”, and text section
® books cited, directly or indirectly

@ Difference:

® select only part of the data from an input document

@ store the data in an existing database with a fixed schema

QSX February 5-8,2013

!

Summary of schema-
driven shredding (2)

Instance mapping can be easily derived from schema mapping.

Is it lossless? No

® The order information is lost (simplification of regular expressions
defining element types)

® Is there anything missing?
® “core dumping” the entire document to a new database
® In practice one often wants to select relevant data from the document

® to store the selected data in an existing database of a predefined
schema

® XML Schema: type + constraints

® What happens to XML constraints? Can we achieve normal forms (BNCF,
3NF) for the relational storage?

T

QsSX February 5-8,2013

Mapping specification:
XML2DB mappings

® XML2DB Mapping:
® Input: XML document T of a DTD D, and an existing database schema R
® Output: a list of SQL inserts Ag, updating the database of R

® An extension of Attribute Grammars:
® treat the DTD D as an ECFG (extended context-free grammar)

® associate semantic attributes and actions with each production of the
grammar

® attributes: passing data top-down $book, ...
® actions: generate SQL inserts Ar
® Evaluation: generate SQL inserts in parallel with XML parsing

® [Fan, Ma DEXA 2006] --- see additional readings

QSX February 5-8,2013

XML2DB mappings Semantic actions

e Simplified DTD: element type definitions e = r where rule(p) ::= stmts

tmts ::= tmt ; stmt:
® r::= PCDATA | € | ai ..,an | ar+..+an | a* stmts € | stmt ; stmts
stmt ::= $a 1= (X1,...,Xn) | Ari := Ari v {(X1,...,Xn)} | id = gen_id()
® Note: subset of full DTD regexps (e.g. (a|b)*,c not directl
allowed) gexps (e.g. (alb) Y | if C then stmt else stmt
. x::=$b.A | text(b) |str|id | T | L
® Relation variables: for each relation schema Ri, define

a variable Ar;, which holds tuples to be inserted into Ri C=x=x]x<>x'| xcontains x' | ...

® Given (a ->r), rule(a -> r) can read from (fields of) $a and should assign
@ Attributes: $e associated with each element type e values to $b for each element name b appearing in r

e se: tuple-valued, to pass data values top-down ® Can also extract values of text fields of a using text(b) (left to right)
. !

. .\ .) b ® Special values "top" and "bot", fresh IDs

® Associate "semantic actions" with each e — r)

® Rules can also generate tuples to be added to relations Ag;

e written rule(a -> r) ® Conditional tests C can include equality, string containment, ...

QSX February 5-8,2013 QSX February 5-8,2013

Example: XML2DB Example: XML2DB
mapping mapping

db -» book* db » book*
$book := top /* children of the root */ $book := top /* children of the root */
db dP This is dP
/\ ¥ rule(db » book¥*) ¥
oot bolk 2 ok o ‘/'/bGK book bock We'll just write it below
00 00 oo 00! 00 00. 00. XX . .
$book $book $book $book title T f T $book $book $boo the DTD rule like this. T ;f T
author m ref author W ref
T 1 T 1
text section text section

QSX February 5-8,2013 QSX February 5-8,2013

Example: Semantic
action

book » title, author*, chapter*, ref*

if (text(title) contains “WMD”
or ($book <> T and $book <> 1))

then id := gen_id();
book := Apcox U { (id, text(title)) };
if $book <> T
then ref := Arer U { ($book, id) };
$ref := id; db ------2z% book $book

else Sref := 1 —/”M
ref \

chapter chapter g
$ref

$ref
“WMD”
® target relation schema: book (id, title), ref (idl, id2)
® gen_id(): a function generating a fresh unique id
® conditional: title is “WMD” or is referenced by a book of title "WMD"
QSX February 5-8,2013

Schema-oblivious shredding
and indexing

QsSX February 5-8,2013

Implementing
XML2DB mappings

XML2DB SAX actions [SAX parsing:
SQL inserts
P ar‘smg generation SQL inserts
execution

® SAX parsing extended with corresponding semantic actions

° startDocument(), endDocument()
[] startElement (A, eventNo), endElement(A), text(s)
® SQL updates:
insert into book
select *

from Abook

QsSX February 5-8,2013

Schema-oblivious
storage

@ Storage easier if we have a fixed schema
e But:
@ Often don't have schema

® Or schema may change over time

® schema updates require reorganizing or
reloading! Not fun.

® Alternative: schema-oblivious XML
storage

QsSX February 5-8,2013

Stupid idea #1:
CLOB

® Well, XML is just text, right?

® Most databases allow CLOB (Character Large
Object) columns - unbounded length string

® So you just store the XML text in one of these
® Surprisingly popular

® and can make sense for storing "document-like"
parts of XML data (eg HTML snippets)

® But not a good idea if you want to query the XML

Stupid (?) idea #2:
SQL/XML

® Instead of blindly using CLOBs...
® Extend SQL with XML-friendly features

® "XML" column type
® Element/attribute construction primitives

® Ability to run XPath or XQuery queries (or updates) on XML
columns

® Also surprisingly popular (MS, IBM, Oracle)

® Pro: At least DB knows it's XML, and can (theoretically) act
accordingly (e.g. store DOM tree, shred, use XML DB, ...)

Pro?: Part of SQL 2003 (SQL/XML extensions)

Con: Frankenstein's query language

QSX February 5-8,2013

SQL/XML example

CREATE TABLE Customers (
CustomerID int PRIMARY KEY,
CustomerName nvarchar(100),
PurchaseOrders XML, ...}

SELECT CustomerName,
query (PurchaseOrders,
"for $p in /po:purchase-order
where $p/@date < xs:date("2002-10-31")
return <purchaseorder date="{S$p/@date}">
{$p/*}
</purchaseorder>")
FROM Customers
WHERE CustomerID = 42

QsSX February 5-8,2013

Schema-oblivious
shredding/indexing

® Can we store arbitrary XML in a relational
schema (even without DTD)?

® Of course we can (saw last time):
® node(nodelID, tag, type)
® edge(parent, child)

® attribute(nodelID, key, value)

® text(nodelID, text)

® What's wrong with this?

QSX February 5-8,2013

QSX February 5-8,2013

Quiz

edge node
® Fill in tables parent | child nodeld | tag type
® Write SQL query for:
® /db/book/title/text()
db
| text
/ b°|°k nodeld text
title author author
Database .
Management Ramakrishnan
Systems Gehrke
QSX February 5-8,2013

@ Fill in tables
® Write SQL query for:
® /db/book/title/text()

db

book o2
|
author o5

ol

title

Database o4
Management
Systems

o3

o6
Ramakrishnan

Qu

1Z

e node
parent | child nodeld | tag type
ol 02
02 o3
o3 o4
text
nodeld text
o7
author
o8
Gehrke

QSX

February 5-8,2013

Quiz

edge node
® Fill in tables parent | child nodeld | tag type
® Write SQL query for:
® /db/book/title/text()
db ,
|) text
0.
/ bOIOk nodeld text
o7
title 3 author o5 author
Database o4 Ramakrish o6
Management amakrishnan -
Systems Gehrke
QsSX February 5-8,2013

Quiz

node
® Fill in tables parent [child nodeld | tag type
® Write SQL query for: ol 02 ol db ELT
02 o3 o2 book ELT
® /db/book/title/text() o3 o4 o4 TEXT
db
| 2 text
0.
bOIOk ; nodeld text
title author o5 author0
| o3
Database o4) o6
Management Ramakrishnan -
Systems Gehrke
QSX February 5-8,2013

Quiz

edge node
® Fill in tables parent | child nodeld | tag type
e Write SQL query for: ol 02 ol db ELT
] o2 o3 o2 book | ELT
® /db/book/title/text() o3 o4 o4 TEXT
db ,
|) text
O
b°|°k nodeld text
o7
title 7, author o5 author o4 Database Management
| ° Systems
ob Ramakrishnan
Database o4 o6
; o8 Gehrke
Management Ramakrishnan s
Systems Gehrke
QSX February 5-8,2013

Problems with edge
storage

@ Indexing unaware of tree structure
@ hard to find needles in haystacks
e fragmentation - subtree might be spread across db
® Incomplete query translation
® descendant axis steps involve recursion
@ need additional information to preserve document order
o filters, sibling, following edges also painful
@ Lots of joins

@ joins + no indexing = trouble

QsSX February 5-8,2013

Quiz

/db/book/title/text() in SQL.:

SELECT txt.text
FROM node w, edge el,
node x, edge e2,
node y, edge e3,
node z, text txt
WHERE w.tag = "db" AND w.type = "ELT"
AND el.parent = w.nodeld
AND el.child = x.nodeIld

AND x.tag = "book"
N AND ...
AND z.type = "TEXT"
AND z.nodeld = txt.nodeld
QsSX February 5-8,2013

Node IDs and
Indexing

® Idea: Embed navigational information in each
node's identifier

® Then indexing the ids can improve query
performance

@ and locality, provided ids are ordered (and order ~
tree distance)

® Two main approaches (with many refinements):
® Dewey Decimal Encoding

® Interval Encoding

QsSX February 5-8,2013

Dewey Decimal
Encoding

® Each node's ID is a list of integers
® [i1 iz, ... ,in] (Often written iz.iz.in)

® giving the "path" from root to this node

db

book
|
title author author

Database
Management
Systems Gehrke

Ramakrishnan

QSX February 5-8,2013

Dewey Decimal
Encoding

Dewey Decimal
Encoding

® Each node's ID is a list of integers

® [iii>, ... ,in] (Often written iz.iz.in)

® giving the "path" from root to this node

db

I
book _ |

! 13

titleII author |2 author

Database !l
Management
Systems Gehrke

a0

1.2.1
Ramakrishnan

1.3.1

® Each node's ID is a list of integers
nodelD| tag type
® [i1iz, ... ,in] (Often written iz.iz.in)
0 db ELT
® giving the "path" from root to this node
I book | ELT
dlb 0 Il | tite | ELT
I.1.1 TEXT
book _ |
I~ 13 12 |author| ELT
title Ll author |2 author
| ’ 1.2.1 TEXT
Database !-I.! A [.3 |author| ELT
Management Ramakrishnan . 131 TEXT
Systems Gehrke

QSX February 5-8,2013

QsSX February 5-8,2013

Querying

® Descendant (or self) = (strict) prefix
@ Descendant(p,g) ® p<qg
® DescendantOrSelf(p,g) ® p < g

@ Child: immediate prefix
e Child(p,q) ® p<qgand |p| +1 = |q|

® Parent, ancestor : reverse p and q

QSX February 5-8,2013

Querying

® Descendant (or self) = (strict) prefix

® Descendant(p,g) & p < g

Querying

® Descendant (or self) = (strict) prefix
® Descendant(p,g) & p <g
® DescendantOrSelf(p,g) & p < g

® Child: immediate prefix
e Child(p,q) ®p<gand |p| +1 = |q|

® Parent, ancestor : reverse p and q

(N\
d Prefix:
e C 1<1.2<1.2.3<1.2.3.4.5
o Length:
| [1.2.3]| = 3
® P 13.2.1.2| = 4
\§ J
QSX February 5-8,2013

Example

® Extend SQL with prefix, length UDFs
How to solve //a//b[c]?

SELECT b.nodelID
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
AND PREFIX(a.nodeID,b.nodeID)
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND PREFIX(b.nodeID,c.nodelD)
AND LEN(b.nodeID) + 1 =
LEN(c.nodelID))

QsSX February 5-8,2013

Example

@ Extend SQL with prefix, length UDFs

® How to solve //a//b[c]?

SELECT b.nodeID
FROM node a, node b //allb
WHERE a.tag = 'a', b.tag = 'b'

AND PREFIX(a.nodeID,b.nodeID)
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND PREFIX(b.nodeID,c.nodelD)
AND LEN(b.nodeID) + 1 =
LEN(c.nodelID))

QsSX February 5-8,2013

QsSX February 5-8,2013

Example

Extend SQL with prefix, length UDFs

® How to solve //a//b[c]?
SELECT b.nodelD

//allb
WHERE a.tag = 'a', b.tag = 'b’'

FROM node a, node b
AND PREFIX(a.nodelD,b.nodeID)
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND PREFIX(b.nodeID,c.nodeID)
AND LEN(b.nodeID) + 1 =
LEN(c.nodeID))

QSX February 5-8,2013

Interval encoding

® Drawback of DDE: needs strings, UDFs

e DBMS may not know how to optimize, rewrite effectively
for query optimization

® But RDBMSs generally support numerical values,
indexing, rewriting

@ most business applications involve numbers after all...

@ Interval encoding: alternative ID-based indexing/
shredding scheme

® IDs are pairs of numbers

@ Several ways of doing this

QSX February 5-8,2013

Sibling, following
axis steps

® Following Sibling: same immediate prefix,
with final step

® Sibling(p,q) ®ar.p=riandg=rjandi<j
® can also define this as a UDF

® Following: Definable as composition of
ancestor, following-sibling, descendant

@ or:ar.p=ri.p'andg=r.jqg'andi<j

® Preceding-sibling, preceding: dual (swap p,q)

QsSX February 5-8,2013

Pre/post numbering

db
/bOOk
|
title author author
Database Rarmakrish
Management amakrishnan
Systems Gehrke
X February 5-8,2013

4

4

Pre/post humbering

, db
2book
|
3 title 5 author 7 author
Database .
Management 6 Ramakrishnan
Systems g Gehrke
QSX February 5-8,2013

Pre/post numbering

3 title

Database
Management
Systems

2

[db g

2book _7
|

5 author 4

3
6 Ramakrishnan

8

7 author

Gehrke

6

5

pre | post | par tag type
I | 8 db | ELT
2 | 7 [1| book | ELT
3| 2 |2 tite | ELT
4113 TEXT
5 4 | 2 |author| ELT
613]5 TEXT
7 | 6 |2 |author| ELT
815]|7 TEXT

QSX

February 5-8,2013

Pre/post humbering

ydb g
|
2book _7
1
3 title 2 5 author 4 7author
Database . 3
Management 6 Ramakrishnan
4 Systems 1 g Gehrke .
> February 5-8,2013
db
/bOOk
|
title author author
Database .
Management Ramakrishnan
Systems Gehrke
X February 5-8,2013

Begin/end
numbering

1 db g
I
2book _15
! 14
3 title o 7 author 10 11 author
Database . 9
Management 8 Ramakrishnan
4 Systems 2 Gehrke |5
QSX February 5-8,2013
[Grust et al. 2004]
post
R S
*a |
1 ¢£ - — s - =
0,9 1 I on
1b3/ 5.8 T : LY
| \ 5 S
2.2 69/1 TR 1 | g ’L
/S VAN I :
340 41 8;5 9]'0 +— ep |
-+ oC |
1+ 7 oc : U
(0,0) 1 T :i T ol T T T T pre
QSX February 5-8,2013

Begin/end

numbering

begin|end|par| tag | type
1 db g
| | 16 db ELT
2book _15 2 [I5] I | book | ELT
! 14)
; title 7, 7 author 10 |1 author 3 (6] 2] dtde | ELT
| 4 |53 TEXT
Database ¢ Ramakrish 9 7 | 10| 2 |author| ELT
Management amakrishnan ” g —
4 Systems 2 Gehrke |5
Il | 14| 2 [author| ELT
12 [13] 11 TEXT
QsSX February 5-8,2013
[Grust et al. 2004]
049
1b3/ T
| PN
2.2 69'1 ThT
/S SN
Sd() 461 Z-!') 9j()

QSX

February 5-8,2013

Pre/post plane

[Grust et al. 2004]

Oq
/ \
lb 5f 8
| 7N\
2¢ g h
/N s :
de 8¢ 9,7‘6

post
J Fancestor | following

lf

preceding

QSX

February 5-8,2013

Begin/end plane

Oa]”
lllj,\ 9fl\
7\
QC' 109H 12hly
AN N\
3d[P 1311] l;)jl(

|
T
1 5
pre(c) pos

(c)

H______
3
o

QSX

February 5-8,2013

Begin/end plane

post
da ! I
r | | of oh
- | i
0,19 ' 1! ! .Z
a™ [I
lbx 9,18 L | .g
I v) VT g
2,7 10411 1217 3. |
AN post(c) —+—o— — = — — — — — — — —
344 566 13,14 15 516 1| ee |
5+ .
(D] o | g
+ 4d |
re(c) = — — — — — — — — — — —
P () 1 VT".. | j%} |
- tt+++ttt+t+++++t—>pre
(0,0 1 ' 5 ’ 10 15
pre(c) post(c)
QsSX February 5-8,2013

Why "Interval”?

® Think of XML text as a linear string

® Begin and end are ~ positions of opening

and closing tags

<db><book><title>Database Management Systems</title><author>Ramakrishnan</author><author>Gehrke</author></book></db>

® Each tag corresponds to an interval on line

® Interval inclusion = descendant

QSX

February 5-8,2013

Why "Interval"?

® Think of XML text as a linear string

® Begin and end are ~ positions of opening
and closing tags

Why "Interval"?

® Think of XML text as a linear string

® Begin and end are ~ positions of opening
and closing tags

<db3<book>Ktitle>patabase Mana: gement Systemg</titlej<author3jRamakrishnarf</author>Kauthor>Gehrkef/author3</book>k/db>

| 2] 3 |4 5 6 7 |8 9 10 1 {1213 14 I5| 16

<db><book>ktitle>Database Management Systemsg</titlej<author3jRamakrishnarf</author>Kauthor>Gehrkef/author></book></db>

® Each tag corresponds to an interval on line

® Interval inclusion = descendant

® Each tag corresponds to an interval on line

® Interval inclusion = descendant

QSX February 5-8,2013

Querying
(begin/end)

® Child: use parent field
e Child(p,q) © p.begin = g.par
® Descendant: use interval inclusion

® Descendant(p,q) < p.begin < g.begin and
g.end < p.end

® DescendantOrSelf(p,q) & p.begin < g.begin
and g.end < p.end

® Ancestor, parent: just flip p,g, as before

QSX February 5-8,2013

QsSX February 5-8,2013

Sibling, following
(begin/end)

® Can define following as follows:
@ Following(p,q) p.end < g.begin
® Then following-sibling is just:

@ FollowingSibling(p,q) & p.end < g.begin and
p.par = q.par

QSX February 5-8,2013

Example:

® No need for UDFs. Index on begin, end.
® How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
AND a.begin < b.begin
AND b.end < a.end
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND c.par = b.begin

Example:

® No need for UDFs. Index on begin, end.
® How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b’
AND a.begin < b.begin
AND b.end < a.end
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND c.par = b.begin

QSX February 5-8,2013

Example:

® No need for UDFs. Index on begin, end.
® How to solve //a//b[c]?

SELECT b.pre
FROM node a, node b
WHERE a.tag = 'a', b.tag = 'b'
AND a.begin < b.begin
AND b.end < a.end
AND EXISTS(SELECT *
FROM node c
WHERE c.tag='c'
AND c.par = b.begin

QsSX February 5-8,2013

Node IDs and
indexing: summary

® Goal: leverage existing RDBMS indexing
® Dewey: string index, requires PREFIX, LEN UDFs

® Interval: integer pre/post indexes, only requires
arithmetic

® For both techniques: what about updates?
@ DDE: requires renumbering
® but there are update-friendly variants

® Interval encoding: can require re-indexing 50% of
document

QSX February 5-8,2013

QSX February 5-8,2013

Next time

® XML publishing

@ Efficiently Publishing Relational Data as XML
Documents

@ SilkRoute : a framework for publishing
relational data in XML

® Querying XML Views of Relational Data

® Reviews due Monday 4pm

QSX February 5-8,2013

