
Querying and
Storing XML

Week 3
XSLT, DTDs, Schemas, Constraints

January 29-Feb 1, 2013

January 29-February 1, 2013QSX

XSLT
• XML StyLesheet Language Transformations

• Goal: Transform XML to other formats

• HTML

• other XML languages

• text

• PDF, formatting (XSL:FO)

• Mainly aimed at generating/transforming
“XML documents”, not querying "XML data"

January 29-February 1, 2013QSX

Basic idea
• A stylesheet is a collection of rules

• Each rule specifies a selector and an action

<xsl:template match=”xpath”>

 action

</xsl:template>

• The selector defines when the rule applies

• If more than one rule applies, use "most specific"

• The action defines the result produced by the rule

January 29-February 1, 2013QSX

Simple example
<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output method="text"/>

 <xsl:template match=”*”>

 Hello world!

 </xsl:template>

</xsl:stylesheet>

• Selects any node

• Replaces with “Hello world!”

• Doesn’t recurse - just ignores rest of document

January 29-February 1, 2013QSX

Example (1)
• Say we have some “XML data”:

<records>

 <record>

 <a>1

 2

 </record>

 ...

</records>

January 29-February 1, 2013QSX

Example (2)
• Start at root, generate HTML boilerplate

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html>

 <head><title>Example</title></head>

 <body>

! <table frame="box" rules="all">

 <tr><th> A </th><th> B </th>!</tr>

! <xsl:apply-templates/>

! </table>

 </body>

 </html>

 </xsl:template>

January 29-February 1, 2013QSX

Example (3)
• Replace “records” with table rows

 <xsl:template match="record">

 <tr>

 <td><xsl:copy-of select="a/text()"/></td>

 <td><xsl:copy-of select="b/text()"/></td>

 </tr>

 </xsl:template>

January 29-February 1, 2013QSX

More XSLT
• Can use names and modes to organize templates

• Define subsets of rules callable/applicable by name

• Allows variables & parameters

• Can generate unique IDs for nodes

• Essentially a full-featured programming language

• Turing-complete

• but some things still “hard”, e.g. XQuery-style joins

• More examples online, e.g iTunes album listing

• http://www.movable-type.co.uk/scripts/itunes-albumlist.html

January 29-February 1, 2013QSX

DTDs

January 29-February 1, 2013QSX

Types and XML
• XML stands for eXtensible Markup Language

• Extensibility means you can define your own
markup languages

• via types, or schemas

• Well-formed: just means the opening &
closing tags match etc.

• Valid: means there is a schema and the
document matches it

January 29-February 1, 2013QSX

Goals of typing
• Interoperability/reliability

• specify required, optional, default values

• Consistency

• ensure updates or generated output is
“sensible”

• Efficiency

• use to organize storage

• use as basis for query optimization

January 29-February 1, 2013QSX

Schemas
• Many schema languages/formalisms

have been considered

• DTDs (XML 1.0)

• XML Schema (W3C)

• Relax/NG (OASIS), DSD, Schematron, ...

• Regular expression types (XDuce, XQuery)

• Most of these are based on regular
expressions in some way

January 29-February 1, 2013QSX

Document type
definitions (DTDs)
• Came with XML 1.0

• Element declarations <!ELEMENT elt (content)>

• declare elt to have content content

• content usually a regular expression over element names

• also allowed: ANY, EMPTY, PCDATA (text)

• Attribute declarations <!ATTLIST elt att ...>

• declare elt to have an attribute named att

• where att's type is CDATA (text)

• other types possible, more later

January 29-February 1, 2013QSX

Regular expressions
• Recall simple regular expressions

• r ::= ∅ | ε | a | rs | r + s | r*

• ∅ - empty set

• ϵ - empty sequence

• a - single symbol "a" (in DTD, an elt name)

• rs - sequential composition {xy | x ϵ r, y ϵ s }

• r+s - union

• r* - iteration {x1..xn | xi ϵ r}

January 29-February 1, 2013QSX

Regular expressions
• Recall simple regular expressions

• r ::= ∅ | ε | a | rs | r + s | r*

• ∅ - empty set

• ϵ - empty sequence

• a - single symbol "a" (in DTD, an elt name)

• rs - sequential composition {xy | x ϵ r, y ϵ s }

• r+s - union

• r* - iteration {x1..xn | xi ϵ r}

Written r | s in DTDs

January 29-February 1, 2013QSX

Regular expressions
• Recall simple regular expressions

• r ::= ∅ | ε | a | rs | r + s | r*

• ∅ - empty set

• ϵ - empty sequence

• a - single symbol "a" (in DTD, an elt name)

• rs - sequential composition {xy | x ϵ r, y ϵ s }

• r+s - union

• r* - iteration {x1..xn | xi ϵ r}

Written r | s in DTDs
Definable:
r+ = r,r*
r? = r+ε

January 29-February 1, 2013QSX

Example
<!ELEMENT root (row*)>

<!ATTLIST root title CDATA #REQUIRED>

<!ELEMENT row (A,(B|C))>

<!ATTLIST row id CDATA #REQUIRED>

<!ELEMENT A (#PCDATA)>

<!ELEMENT B (#PCDATA)>

<!ELEMENT C (#PCDATA)>

January 29-February 1, 2013QSX

Alternative presentation
(ignoring attributes)
root ➝ row*

row ➝ A,(B|C)

A ➝ PCDATA

B ➝ PCDATA

C ➝ PCDATA

January 29-February 1, 2013QSX

Attributes
• Attributes can be required (#REQUIRED), optional (#IMPLIED),

fixed (#FIXED), or have a specified default value

• Attribute declarations can specify other types including:

• ID: Attribute value must be unique within document

• <!ATTLIST book isbn ID #REQUIRED>

• IDREF: Attribute must refer to an ID elsewhere in
document

• <!ATTLIST book previous_isbn IDREF #IMPLIED>

• IDREFS: a list of multiple IDs

• Enumerations: one of a list

• <!ATTLIST book type (comic|novel|textbook) #REQUIRED>

January 29-February 1, 2013QSX

Valid
root

row id=1 row id=2

A B A C

1 2 3 4

"Some data"

title

January 29-February 1, 2013QSX

Still valid
root

row id=1 row id=2

A B A C

1 2 3

"Some data"

title

row id=3

A B

5 6

January 29-February 1, 2013QSX

Invalid
root

row id=1 row id=2

B C A

1 2 3

"Some data"

title

January 29-February 1, 2013QSX

Invalid
root

row id=1 row id=2

B C A

1 2 3

"Some data"

title

January 29-February 1, 2013QSX

Quiz
root

row id=1 row id=1

A B A A

1 2 4B

2

row id=3

B A

5 6

January 29-February 1, 2013QSX

Quiz
root

row id=1 row id=1

A B A A

1 2 4B

2

row id=3

B A

5 6

January 29-February 1, 2013QSX

Quiz
root

row id=1 row id=1

A B A A

1 2 4B

2

row id=3

B A

5 6

January 29-February 1, 2013QSX

Example:
bibliography

bib -> (book|article)*

book -> author*, title, publisher, year

article -> author*, title, journal, volume, pages, year

author -> first, middle?, last

first -> PCDATA

middle -> PCDATA

last -> PCDATA

...

January 29-February 1, 2013QSX

Example:
syntax trees

exp -> plus|minus|times|div|num

num -> PCDATA

plus -> exp,exp+

minus -> exp,exp

times -> exp,exp+

div -> exp,exp

January 29-February 1, 2013QSX

Restrictions on DTD
• Regular expressions must be "deterministic"

• Example: ((a|b),(a|c)) not determinstic

• can't decide whether "a" in input matches first or
second "a"

• However, equivalent to (a,(a|c))|(b,(a|c)),
which is deterministic

• [Brueggemann-Klein & Wood, Inf. Comput.
229-253 (1998)]

January 29-February 1, 2013QSX

Checking validity
• Traverse document

• check that each element's actual children match
specified regular expression

• Check attribute types

• Check ids are unique and idrefs refer to ids

• Can be done more efficiently

• e.g. with one streaming pre-order pass over
document

• compiling regular expressions to automata

January 29-February 1, 2013QSX

Recursive DTDs
• DTD rules can be recursive

• node ➝ (node,node)?

• Recursion increases complexity of DTD

• This leads to documents of unbounded depth

• Some element types might not have any finite
matching trees

• but this is easy to detect (look for unguarded
cycles)

• silly ➝ (silly, silly)

January 29-February 1, 2013QSX

Limitations
• Can't constrain text / attribute content

(except in very limited ways)

• Element, attribute content context
insensitive

• can't use same tag, e.g. "name", in different ways

• Interleaving/unordered content not well
supported

• ID/IDREF too simplistic (lack of typing,
scope)

January 29-February 1, 2013QSX

Next time
• XML Schemas

• Constraints on XML documents: Keys for
XML

January 29-February 1, 2013QSX

XML Schemas & Constraints

January 29-February 1, 2013QSX

XML Schemas
• W3C standard, intended as replacement

for DTDs

• Namespaces

• Built-in & defined types besides plain strings

• Context sensitive typing/reuse of elt and att
names

• Numerical cardinality constraints, interleaving

• Keys/uniqueness constraints

January 29-February 1, 2013QSX

Namespaces
• XSLT, XML Schema are dialects of XML

• XSLT can contain tags from other dialects

• XML Schema can refer to other dialects when defining
new one

• Namespace mechanism used to allow use of
same element tag name in different contexts

• xsl:element vs xs:element

• Not a major issue for "XML as data"

• but needed to author XSLT, XML Schema documents

January 29-February 1, 2013QSX

Simple types
• Simple types are (subsets of) strings

• string

• boolean (true, false, 0, 1)

• decimal, float, double

• duration, time, date, dateTime, ..

• hexBinary, base64Binary

• anyURI, QName (qualified name)

• Can define new simple types by restricting,
forming lists, or taking unions of existing types

January 29-February 1, 2013QSX

Complex types
• Describe possible element content

• simple content, or

• allowed attributes (must have simple types)

• regular expression describing subelement structure

• sequence (,), choice (|), any as in DTD

• references to other elements, or inline declarations

• cardinality constraints (minOccurs, maxOccurs) ,
generalizing regexp *, +, ?

• interleaving/shuffling (sometimes written &)

• subject to determinacy & other restrictions

• can refer to named groups of elements

January 29-February 1, 2013QSX

Example
<complexType name="DTDExample">
 <sequence>
 <element ref="A"/>
 <choice>
 <element ref="B"/>
 <element ref="C"/>
 </choice>
 </sequence>
</complexType>

<element name="A" simpleType="string"/>
<element name="B" simpleType="decimal"/>
<element name="C" simpleType="dateTime"/>

≅ (A,(B|C))
but with different types

for content of A,B,C

January 29-February 1, 2013QSX

Example:
inlined version

<complexType name="DTDExample">
 <sequence>
 <element name="A" simpleType="string"/>
 <choice>
 <element name="B" simpleType="decimal"/>
 <element name="C" simpleType="dateTime"/>
 </choice>
 </sequence>
</complexType>

January 29-February 1, 2013QSX

Example:
inlined version

<complexType name="DTDExample">
 <sequence>
 <element name="A" simpleType="string"/>
 <choice>
 <element name="B" simpleType="decimal"/>
 <element name="C" simpleType="dateTime"/>
 </choice>
 </sequence>
</complexType> Element type information

can be given inline (but then
cannot be shared)

January 29-February 1, 2013QSX

Cardinality
constraints

• Most tags can have "minOccurs" and "maxOccurs"
constraints; default minOccurs = maxOccurs = 1

• minOccurs = 0 to simulate ?

• minOccurs = unbounded to simulate +

• minOccurs = 0, maxOccurs = unbounded to simulate *

• Can always be simulated using regexps but causes
blowup in size of expression

• consider minOccurs = 10, maxOccurs = 20

• vs. (a,a,a,a,a,a,a,a,a,a?,a?,a?,a?,a?,a?,a?,a?,a?,a?)

• (note this regexp is not determinstic either...)

January 29-February 1, 2013QSX

Unordered content
<all>
 <element ref="A"/>
 <element ref="B"/>
 <element ref="C"/>
</all>

• All of A,B,C must appear, but can be in
any order

• Restriction: Only distinct element
references

A B C

r

...

January 29-February 1, 2013QSX

Unordered content
<all>
 <element ref="A"/>
 <element ref="B"/>
 <element ref="C"/>
</all>

• All of A,B,C must appear, but can be in
any order

• Restriction: Only distinct element
references

AB C

r

...

January 29-February 1, 2013QSX

Context-sensitive
typing

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

January 29-February 1, 2013QSX

Context-sensitive
typing

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

Want to use
“name” tag in 2
different ways

January 29-February 1, 2013QSX

Context-sensitive
typing

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

Want to use
“name” tag in 2
different ways

In DTD, would have to badly over-approximate:
name → (first|last|PCDATA)*

January 29-February 1, 2013QSX

Context-sensitive
typing

<element name="person">
 <sequence> <element name="name">
 <sequence>
 <element name="first" type="string"/>
 <element name="last" type="string"/>
 </sequence>
 </element>
 <element name="machine">
 <sequence>
 <element name="name" type="string"/>
 ... </sequence>

 </element>
 </sequence>
</element>

January 29-February 1, 2013QSX

Element declarations
must be consistent

• Cannot use same name in different ways within a type

• For example, this is not allowed:

<element name="person">
 <sequence>
 <element name="name">
 <sequence>
 <element name="first" type="string"/>
 <element name="last" type="string"/>
 </sequence>
 </element>
 <element name="name" type="string"/>
 </sequence>
</element>

January 29-February 1, 2013QSX

Named groups
<element name="person">
 <sequence>
 <group ref=”PName” />
 <element name="name" type="string"/>
 </sequence>
</element>
<group name=”PName”>
 <element name="name">
 <sequence>
 <element name="first" type="string"/>
 <element name="last" type="string"/>
 </sequence>
 </element>
</group>

January 29-February 1, 2013QSX

Making life easier
• Extended regular expressions

r ::= ∅ | ε | T | rs | r + s | r[n-m] | r & s

• m can be number or ∞

• T is a type name (generalizing element
names)

• & means unordered concatenation (any
shuffle of the two languages)

• XML schemas only allow a1 & ... & an

January 29-February 1, 2013QSX

Making life easier
• Can think of (the element part of) XML

schema as a collection of type rules: T → r

• where each type name T is associated with an
element name elt(T)

• Separating type names from element names
means that elements can appear with different
content in different contexts

• Cf. [Martens, Neven, Schwentick, Bex
TODS 2006]

January 29-February 1, 2013QSX

Name overloading
example

Person → Name, Machine

PName → First, Last

First → string

Last → string

Machine → MName, IP

MName → string

• elt(PName) = name, elt(MName) = name,
others obvious

January 29-February 1, 2013QSX

Checking validity for
XML Schemas

• For DTDs, validity of each element's content can be
checked independently

• For schemas, context matters

• can be done using tree automata

• efficiently, given some restrictions on rules

• all (&), cardinality constraints (slightly) complicate
picture

• naive translation to automata can be expensive

• n! blowup for shuffle operator

• cardinality constraints can cause exponential blowup

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...
LastFirst

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

PName

LastFirst

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

PName

MName IPLastFirst

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

PName Machine

MName IPLastFirst

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Example: bottom-up
checking

Person → Name, Machine
PName → First, Last
First → string
Last → string
Machine → MName, IP
MName → string

elt(PName) = name,
elt(MName) = name
...

person

name

first last

machine

George Bush www.whitehouse.gov

name ip ...

Person

PName Machine

MName IPLastFirst

string string string

For each elt node with label L, find rule T → r
such that elt(T) = L and content matches r

January 29-February 1, 2013QSX

Keys & constraints
• Constraints are a fundamental part of the semantics of the data

• XML may not come with a DTD/type

• thus constraints are often the only means to specify the semantics of the
data

• Constraints have proved useful in

• semantic specifications/data modeling

• database conversion to an XML encoding

• data integration: information preservation

• update anomaly prevention/consistency checking

• normal forms for XML specifications: “BCNF”, “3NF”

• efficient storage/access, query optimization, indexing

• ...

January 29-February 1, 2013QSX

Keys: Generalizing
ID/IDREF

•XML Schema allows more general key
specifications
<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <group ref="PName"/>
 </element>
</element>
<key name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
</key>

January 29-February 1, 2013QSX

Keys: Generalizing
ID/IDREF

•XML Schema allows more general key
specifications
<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <group ref="PName"/>
 </element>
</element>
<key name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
</key>

Each person element has
id attribute

Must be unique
throughout document

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

Each comment id must
match one of the

person ids

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

January 29-February 1, 2013QSX

Local keys
•Key specifications can be made local

to an element
<element name="group">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <element ref="PName"/>
 </element>
 <key name="local_person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 </key>
</element>

January 29-February 1, 2013QSX

Local keys
•Key specifications can be made local

to an element
<element name="group">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <element ref="PName"/>
 </element>
 <key name="local_person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 </key>
</element>

Each person element
has unique id

attribute within
group element

January 29-February 1, 2013QSX

Multiple key fields
<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <attribute name="favColor" type="string"/>
 <element ref="PName"/>
 </element>
</element>
<key name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 <field xpath="@favColor"/>
</key>

January 29-February 1, 2013QSX

Multiple key fields
<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <attribute name="favColor" type="string"/>
 <element ref="PName"/>
 </element>
</element>
<key name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 <field xpath="@favColor"/>
</key>

Both id and favColor
must exist; no two

people have the same
id and same favColor

January 29-February 1, 2013QSX

Uniqueness
constraints

<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <attribute name="favColor" type="string"/>
 <element ref="PName"/>
 </element>
</element>
<unique name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 <field xpath="@favColor"/>
 </unique>

January 29-February 1, 2013QSX

Uniqueness
constraints

<element name="people">
 <element name="person" maxOccurs="unbounded">
 <attribute name="id" type="string"/>
 <attribute name="favColor" type="string"/>
 <element ref="PName"/>
 </element>
</element>
<unique name="person_id">
 <selector xpath="/group/person"/>
 <field xpath="@id"/>
 <field xpath="@favColor"/>
 </unique>

One or both key fields
can be missing, but

must uniquely identify
person if present

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

Each comment id must
match one of the

person ids

January 29-February 1, 2013QSX

Key references
(inclusion constraints)
• Can require that all comments refer to the id

of a person (according to person_id
constraint)

<keyref name="comment" refer="person_id">
 <selector xpath=".//comment"/>
 <field xpath="@id"/>
</keyref>

• Generalizes IDREF

• (ID and IDREF still available as attribute
types, for backward compatibility)

January 29-February 1, 2013QSX

Formalizing Keys for
XML

• XML Schema’s keys are somewhat complex

• Buneman et al. [2002, 2003] consider general forms of
keys for XML, focusing on downward XPath

• Absolute: (/people/person, {@id,@favColor})

• Relative: (/people, (person, {@id,@favColor}))

• Weak (~ xs:unique), strong (~ xs:key)

• Relative uses path to specify starting point/scope

• whereas XML Schema keys are tied to elements/complex types

• Still an active research area, see e.g. [Hartmann &
Link 2007, 2008, 2010]

January 29-February 1, 2013QSX

Other features of XML
Schema

(that we won’t really use)

• Support for OO type derivation, reuse

• Derivation by restriction

• Groups - named parts of types

• Import, include, redefine

• Explicit "nil" values

• alternative to "missing"

• Default values

January 29-February 1, 2013QSX

Limitations
• Complicated restrictions on complex types

• regexp determinism

• any

• element description consistency

• Overall complexity daunting!

• corollaries: limited tool support; schemas tend to be
write-only

• Fortunately, most applications do not exercise
all of the features

January 29-February 1, 2013QSX

Limitations
• Complicated restrictions on complex types

• regexp determinism

• any

• element description consistency

• Overall complexity daunting!

• corollaries: limited tool support; schemas tend to be
write-only

• Fortunately, most applications do not exercise
all of the features

What does this mean?!
If the item cannot be strictly assessed, because

neither clause 1.1 nor clause 1.2 above are
satisfied, [Definition:] an element information

item’s schema validity may be laxly assessed if its
context-determined declaration is not skip by

validating with respect to the ur-type definition as
per Element Locally Valid (Type) (§3.3.4).

January 29-February 1, 2013QSX

Next time
• Techniques for storing XML in relational DB

• shredding strategies

• query translation

• Reading: (reviews due Monday 4pm)

• Relational Databases for Querying XML Documents:
Limitations and Opportunities.

• XML-SQL Query Translation Literature: The State of
the Art and Open Problems

• Accelerating XPath Evaluation in any DBMS

