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XPath
• A language of “path expressions”

• Loosely related to “file paths”

• root (/)

• sequential composition (p/q)

• wildcards (*)

• axis steps (child, parent, descendant, etc.)

• also: filters, text nodes, label tests

• plus positional & string functions

• Used for navigation

• component of XSLT, XQuery, etc.
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Context node 
(starting point)
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Child
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Descendant
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Descendant-or-self
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Parent
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Ancestor
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Ancestor-or-self
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Following-sibling
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Preceding-sibling
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Self
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Following
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Preceding
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Partition

self

ancestor

followingpreceding

descendant
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Syntax
• axis ::= 

• test ::= * | text() | node() | a | b | @a | ...

• p ::= ax::tst[q] | p/p’

• q ::= p | q and q’ | q or q’ | not(q) | ...

• ap ::= /p

child | descendant | descendant-or-self 
| parent | ancestor | ancestor-or-self 
| preceding-sibling | following-sibling 
| self | preceding | following
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Abbreviations
• /a = child::a

• //a = descendant-or-self::*/child::a

• . = self::*

• .. = parent::*

• Starting path with “/” means “start from 
document root”

• this is a special node above the root element
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Node label tests
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Node label tests
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Sequential composition
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Sequential composition
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Filters
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Filters
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Filters
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Positional tests
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Positional tests
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Positional tests
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Quiz
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1. Write XPath to select 
red nodes.
2. Without using child.
3. Or filters.
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Attributes & Text
r
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//a/@att
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Attributes & Text
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a/b/text()

“1234”

January 22-25, 2013QSX

Equality
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]//*/text()
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Equality
r
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//a[@att=”bar”]
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Equality
r
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“efgh”

“1234”

//a[@att=”bar”]//*

Child, 
Descendant do not 
select attributes!

“1234”
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Equality
r
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att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]//text()

“1234”
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Equality quiz
r
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c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

/r[a/b/text() = a/b/c/text()]

“1234”
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Equality quiz
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

/r[a/b/text() = a/b/c/text()]

“1234”

r is selected!
Equality of sequences evaluates 

to true if there is any 
common value in the two 

sequences
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Tree patterns
• A graphical notation for (downward) 

XPath queries/filters

a

b c

d

a[b]//c/d ≅
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Tree patterns
• A graphical notation for (downward) 

XPath queries/filters

a

b c

d

Descendant

a[b]//c/d ≅
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Tree patterns
• A graphical notation for (downward) 

XPath queries/filters

a

b c

d

Selected 
node

a[b]//c/d ≅
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Tree pattern 
matching
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• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths
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Tree pattern 
matching
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• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths
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Tree pattern 
matching
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• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths
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Tree pattern 
matching
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• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths
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Tree pattern 
matching
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• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths
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Semantics of XPath
• Represent tree as T = (V,E,λ,<)

• Σ is set of possible node labels

• E ⊆ V × V is parent/child edge relation

• λ : V → Σ gives node labels

• < ⊆ V × V linearly orders children of each node

• For simplicity, will ignore text nodes, 
attributes

• but in general these need to be modeled too!
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Semantics of XPath: 
steps

• Ax[self](T) = {(x,x) | x ∈ V}

• Ax[child](T) = E

• Ax[descendant](T) = E+

• Ax[descendant-or-self](T) = E*

• Ax[parent](T) = {(y,x) | (x,y) in E}

• ...

• Ax[following-sibling](T) = {(x,y) | x < y}
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Semantics of XPath: 
tests, paths & filters
• Test[*](T) = {x | x ∈ V}

• Test[a](T) = {x | x ∈ V, λ(x) = a}

• Path[ax::test](T) = {(x,y) ∈ Ax[ax](T) | y ∈ Test[test](T)}

• Path[p/p’](T) = {(x,z) | (x,y) ∈ Path[p](T), (y,z) ∈ Path[p’](T)}

• Path[p[q]](T) = {(x,y) | (x,y) ∈ Path[p](T), y ∈ Filt[q](T)}

• Filt[p](T) = {x | ∃y. (x,y) ∈ Path[p](T)}

• Filt[q and q’](T) = Filt[q](T) ∩ Filt[q’](T)

• Filt[q and q’](T) = Filt[q](T) ∪ Filt[q’](T)

• Filt(not(q))(T) = {x ∈ V | x ∉ Filt[q](T) }
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Next time
• XQuery

• Putting XPath to work

• Iteration, binding, sequences, and XML 
construction expressions

• Recursive functions
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XQuery
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What can XPath not 
do (well)?

• Construct new XML documents

• Combine information from different 
parts of document

• Joins

• Abstraction over parts of query

• Function definitions/recursion
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XQuery - a query 
language for XML

• Goals:

• “SQL-like” query language for XML

• Support query optimization

• Support data types/XML Schema (will cover next week)

• Design: 

• Purely functional (more or less)

• Every expression evaluates to a value (= sequence of 
XML trees or primitive values)

• Extends XPath 2.0 with comprehensions, functions
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A first example

January 22-25, 2013QSX

A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

         <title>{$x/title/text()}</title>

         <year>{$x/year/text()}</year></result>
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A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

         <title>{$x/title/text()}</title>

         <year>{$x/year/text()}</year></result>
document() loads data 

from file/by name
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A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

         <title>{$x/title/text()}</title>

         <year>{$x/year/text()}</year></result>

...

<result><title>Data on the Web</title>

        <year>2000</year></result>

<result><title>Web Data Management</title>

        <year>2011</year></result>
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Atomic values
• Integers 1,2,3 

• Strings 'abcd', "abcd"

• Dates / times

• Other basic types from XML Schema 
(will cover these later)
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Values
• Atomic constants (last slide)

• XML trees

• <elt att1=v1 ... attn=vn>...value seq...</elt>

• Value sequences are sequences of atomic/tree values

• (), (v1,v2, ..., vn)

• cannot be nested, i.e., ((v1,v2), v3) = (v1,v2,v3)

• however, v1 could be an element with another sequence as content

• Formally:

v ::= c | <elt att=v ... att=v>{vs}</elt>

vs ::= () | (v1,...,vn)
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Variables
• In XQuery, variables always start with $

• $x, $y, $z, $i

• This is common in other W3C standards 
with human-readable syntax

• A variable denotes a value sequence 
(more or less)
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XML constructors
• XML values can be embedded in XQuery directly

<element att1=”v1” ...>...</element>

• Can “antiquote” to embed XQuery expressions 
in elements

<element>{$x/a/b}</element>

• Can explicitly construct elements (with arbitrary 
names, attributes

element $foo { attribute {$bar} {$baz}, 

         text {$some_text}}
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Building sequences
• Empty sequence: ()

• like empty list in other languages

• Sequence concatenation: (e1,e2)

• evaluates e1, e2 to value sequences vs1,vs2

• concatenates vs1 and vs2 

• Examples: (expression equivalence)

• (1,2,()) ≡ (1,2) ≡ ((),1,2) ≡ (1,(),2)

• (1,(2,3)) ≡ (1,2,3) ≡ ((1,2),3)

• ((1,2), (3,4)) ≡ (1,2,3,4)
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Reminder:
Next review 

assignment due:
Monday (Jan 28) 4pm

Electronic handin only!
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Anatomy of a query: 
FLWOR

for $x in ...xpath...    

let $y := ...expression...

where ...condition...

order by ...ordering...

return ...expression...

iterates over items in 
sequence

binds variable to 
expression

filters results based on 
boolean test

orders results by key 
value

constructs return values
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Anatomy of a query: 
FLWOR

for $x in ...xpath...    

let $y := ...expression...

where ...condition...

order by ...ordering...

return ...expression...

iterates over items in 
sequence

binds variable to 
expression

filters results based on 
boolean test

orders results by key 
value

constructs return values

Essentially list 
comprehensions (see also 

Haskell, Python, ...)



January 22-25, 2013QSX

For / comprehension
for $x in ...xpath...    

• Evaluates xpath to a sequence

• actually can be any expression

• Generates one binding of $x for each element

• Evaluate rest of query once for each $x-binding

• Concatenate results in order
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Let binding
let $y := ...expression...

• Evaluates expression to value

• Binds $x to the value

• Evaluates rest of query with new binding
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Where clause
where ...condition...

• Evaluates condition expression to 
(Boolean) value

• If true, continue evaluating query

• If false, rest of query evaluates to ()

• i.e., filters out results that don’t satisfy 
condition
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Order by
order by ...ordering...

• Orders results of rest of query by key 

• Key specification is defined in terms of 
values available so far

• can specify increasing or decreasing

• many other options
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Return
return ...expression...

• Ends current iteration of query and 
generates result for it 

• unless filtered out by where-clause earlier

• Evaluates expression under current 
bindings
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Let vs. for
• Both bind variables

let $x := (1,2,3)

let $y := ("a","b")

return ($x,$y)

...

(1,2,3,"a","b")
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Let vs. for
• Both bind variables

for $x in (1,2,3)

let $y := ("a","b")

return ($x,$y)

...

(1,"a","b",2,"a","b",3,"a","b")
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Let vs. for
• Both bind variables

let $x := (1,2,3)

for $y in ("a","b")

return ($x,$y)

...

(1,2,3,"a",1,2,3,"b")
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Let vs. for
• Both bind variables

for $x in (1,2,3)

for $y in ("a","b")

return ($x,$y)

...

(1,"a",1,"b",2,"a",2,"b",3,"a",3,"b")
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Putting it all together
• A join: pairs of books having author in common, 

ordered by year of first one

let $books := document(“books.xml”)/books

for $x in $books/book, $y in $books/book

let $year := $x/year/text()

where $x/author/text() = $y/author/text()

order by $year

return <result>{$x},{$y}</result>
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Evaluating a join 
naively

• Iterates over all pairs of $x,$y 

• Evaluates test

• Generates result for each pair satisfying test

• Problem: Quadratic.  

• Can do better using hash or sort join algorithms

• Especially for large data

• XML databases can do this

•Unordered mode helps
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Conditionals
if ...test... then ... else ... 

if ...test... then ...

• Evaluate test

• if true, evaluate then-branch

• if false, evaluate else-branch

• or () if no else-branch specified
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Built-in functions
• Includes all XPath primitive functions

• first(), last(), position(), not(), etc.

• equality: has same (strange) semantics 
as in XPath

• i.e., (1,2) = (2,3) evaluates to true

• Also document(<xmlfile>)

• loads in an XML file and binds it to a value
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Set operations
• These are also allowed in XPath 2.0

• Union e1 union e2: 

• Path[p union p’](T) = Path[p](T) ∪ Path[p’](T)

• Intersection e1 intersect e2: 

• Path[p intersect p’](T) = Path[p](T) ∩ Path[p’](T)

• Difference e1 except e2: 

• Path[p except p’](T)  = Path[p](T) ∖ Path[p’](T)
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Aggregation and 
emptiness tests
sum(), average(), min(), max(), 

count()

• calculate corresponding functions on 
numerical sequences (like in SQL)

• (can also use in XPath)

empty(), exists()

• test whether a sequence is empty or 
nonempty
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Quantifiers
some $x in ...exp1... satisfies ...exp2...

• true iff exp2 evaluates to true for some 
bindings of $x to element of exp1

• exists(for $x in p where q return <z/>)

every $x in ...exp1... satisfies ...exp2...

• true iff exp2 evaluates to true for all bindings of 
$x to element of exp1

• empty(for $x in p where not(q) return <z/>)
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Ordering & 
duplicates

• XQuery values are ordered sequences

• Can turn ordering off: unordered {...}

• which enables more optimizations

• Or require it: ordered {...}

• Can also eliminate duplicates

• fn:remove-duplicates()

• This happens automatically with some operations 

• such as union
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Quiz
• Starting with XML that lists cities, states and optional nicknames:

<cities><city><name>New York City</name>

              <state>NY</state>

              <nickname>The Big Apple</nickname>

        </city> ...

</cities>

1. Write query that ignores state and lists city by nickname if any; 
otherwise uses the name

2. Write query that produces a list of states, each containing a list of 
city names in that state.

3. ... And gives a count of the number of cities in each state.
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User-definable 
functions

• Can define functions to abbreviate parts 
of queries

define function f($x,$y) {

  for $z in $x/a, $w in $y/b

  where $z/text() = $y/text()

  return <result>{$z}{$w}</result>

}
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Functions can be 
recursive!

• example: recursive parts query

define function totalcost($x) {

    for $y in $x/part

    return $x/price + totalcost($y)

}
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Turing-completeness
• Due to recursive functions, XQuery is a fully 

Turing-complete language

• even without arithmetic

• can simulate tape, arithmetic using trees

• Big contrast to SQL, which lacks general recursion

• Can write whole Web applications using 
XQuery + web server interface library 

• In practice, XQuery engines focus 
optimization effort on FLWOR queries
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Types
• XQuery has a native regular expression-

based type system

• Basic idea: if $x : element {(a,(b,a)*,c)}

• then for $y in $x return $y : (a|b|c)*

• We will cover types and regular expression 
typing in more detail later

• including XML Document Type Definitions, XML 
Schemas

• and more precise systems for path/query typing
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Semantics
• XQuery Formal Semantics

• uses operational rules to explain meaning of 
XQuery expressions

• Also formalizes typing rules

• Will also look at this in more detail later

• needed for proving correctness of type 
systems, optimizations
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Next time
• XSLT

• Type systems, XML DTDs

• Review assignment (due Monday 4pm):

• XSLT overview

• Read about XML Schemas

• Read "Keys for XML"


