
Querying and
Storing XML

Week 2
XPath & XQuery

January 22-25, 2013

January 22-25, 2013QSX

XPath
• A language of “path expressions”

• Loosely related to “file paths”

• root (/)

• sequential composition (p/q)

• wildcards (*)

• axis steps (child, parent, descendant, etc.)

• also: filters, text nodes, label tests

• plus positional & string functions

• Used for navigation

• component of XSLT, XQuery, etc.

January 22-25, 2013QSX

Context node
(starting point)

January 22-25, 2013QSX

Child

January 22-25, 2013QSX

Descendant

January 22-25, 2013QSX

Descendant-or-self

January 22-25, 2013QSX

Parent

January 22-25, 2013QSX

Ancestor

January 22-25, 2013QSX

Ancestor-or-self

January 22-25, 2013QSX

Following-sibling

January 22-25, 2013QSX

Preceding-sibling

January 22-25, 2013QSX

Self

January 22-25, 2013QSX

Following

January 22-25, 2013QSX

Preceding

January 22-25, 2013QSX

Partition

self

ancestor

followingpreceding

descendant

January 22-25, 2013QSX

Syntax
• axis ::=

• test ::= * | text() | node() | a | b | @a | ...

• p ::= ax::tst[q] | p/p’

• q ::= p | q and q’ | q or q’ | not(q) | ...

• ap ::= /p

child | descendant | descendant-or-self
| parent | ancestor | ancestor-or-self
| preceding-sibling | following-sibling
| self | preceding | following

January 22-25, 2013QSX

Abbreviations
• /a = child::a

• //a = descendant-or-self::*/child::a

• . = self::*

• .. = parent::*

• Starting path with “/” means “start from
document root”

• this is a special node above the root element

January 22-25, 2013QSX

Sequential composition

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

/child::*/child::*

doc

January 22-25, 2013QSX

Node label tests

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

/r/a//b

doc

January 22-25, 2013QSX

Node label tests

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

/r/a//*

doc

January 22-25, 2013QSX

Sequential composition

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a/following-sibling::c

doc

January 22-25, 2013QSX

Sequential composition

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a/following-sibling::b//*

doc

January 22-25, 2013QSX

Filters

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a[b]

doc

January 22-25, 2013QSX

Filters

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a[b]/c

doc

January 22-25, 2013QSX

Filters

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a[following-sibling::c]

doc

January 22-25, 2013QSX

Positional tests

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//*[position()=2] (or just //a[2])

doc

January 22-25, 2013QSX

Positional tests

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a/*[first()]

doc

January 22-25, 2013QSX

Positional tests

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

//a/*[last()]

doc

January 22-25, 2013QSX

Quiz

r

b

a

b

a

a

b

b

c

c

d

e

d d d

e

a

b a

b

a

b b

c

doc

1. Write XPath to select
red nodes.
2. Without using child.
3. Or filters.

January 22-25, 2013QSX

Attributes & Text
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a/@att

“1234”

January 22-25, 2013QSX

Attributes & Text
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a/b/text()

“1234”

January 22-25, 2013QSX

Equality
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]//*/text()

“1234”

January 22-25, 2013QSX

Equality
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]

“1234”

January 22-25, 2013QSX

Equality
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]//*

Child,
Descendant do not
select attributes!

“1234”

January 22-25, 2013QSX

Equality
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

//a[@att=”bar”]//text()

“1234”

January 22-25, 2013QSX

Equality quiz
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

/r[a/b/text() = a/b/c/text()]

“1234”

January 22-25, 2013QSX

Equality quiz
r

a

b b

c

att = “foo”

a

b b

c

att = “bar”

“abcd”

“efgh”

“1234”

/r[a/b/text() = a/b/c/text()]

“1234”

r is selected!
Equality of sequences evaluates

to true if there is any
common value in the two

sequences

January 22-25, 2013QSX

Tree patterns
• A graphical notation for (downward)

XPath queries/filters

a

b c

d

a[b]//c/d ≅

January 22-25, 2013QSX

Tree patterns
• A graphical notation for (downward)

XPath queries/filters

a

b c

d

Descendant

a[b]//c/d ≅

January 22-25, 2013QSX

Tree patterns
• A graphical notation for (downward)

XPath queries/filters

a

b c

d

Selected
node

a[b]//c/d ≅

January 22-25, 2013QSX

Tree pattern
matching

a

b c

d

a

a b

c

d

e

d d

d

e

• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths

January 22-25, 2013QSX

Tree pattern
matching

a

b c

d

a

a b

c

d

e

d d

d

e

• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths

January 22-25, 2013QSX

Tree pattern
matching

a

b c

d

a

a b

c

d

e

d d

d

e

• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths

January 22-25, 2013QSX

Tree pattern
matching

a

b c

d

a

a b

c

d

e

d d

d

e

• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths

January 22-25, 2013QSX

Tree pattern
matching

a

b c

d

a

a b

c

d

e

d d

d

e

• A function h: P -> T such that:

• Child edges map to edges

• Descendant edges map to paths

January 22-25, 2013QSX

Semantics of XPath
• Represent tree as T = (V,E,λ,<)

• Σ is set of possible node labels

• E ⊆ V × V is parent/child edge relation

• λ : V → Σ gives node labels

• < ⊆ V × V linearly orders children of each node

• For simplicity, will ignore text nodes,
attributes

• but in general these need to be modeled too!

January 22-25, 2013QSX

Semantics of XPath:
steps

• Ax[self](T) = {(x,x) | x ∈ V}

• Ax[child](T) = E

• Ax[descendant](T) = E+

• Ax[descendant-or-self](T) = E*

• Ax[parent](T) = {(y,x) | (x,y) in E}

• ...

• Ax[following-sibling](T) = {(x,y) | x < y}

January 22-25, 2013QSX

Semantics of XPath:
tests, paths & filters
• Test[*](T) = {x | x ∈ V}

• Test[a](T) = {x | x ∈ V, λ(x) = a}

• Path[ax::test](T) = {(x,y) ∈ Ax[ax](T) | y ∈ Test[test](T)}

• Path[p/p’](T) = {(x,z) | (x,y) ∈ Path[p](T), (y,z) ∈ Path[p’](T)}

• Path[p[q]](T) = {(x,y) | (x,y) ∈ Path[p](T), y ∈ Filt[q](T)}

• Filt[p](T) = {x | ∃y. (x,y) ∈ Path[p](T)}

• Filt[q and q’](T) = Filt[q](T) ∩ Filt[q’](T)

• Filt[q and q’](T) = Filt[q](T) ∪ Filt[q’](T)

• Filt(not(q))(T) = {x ∈ V | x ∉ Filt[q](T) }

January 22-25, 2013QSX

Next time
• XQuery

• Putting XPath to work

• Iteration, binding, sequences, and XML
construction expressions

• Recursive functions

January 22-25, 2013QSX

XQuery

January 22-25, 2013QSX

What can XPath not
do (well)?

• Construct new XML documents

• Combine information from different
parts of document

• Joins

• Abstraction over parts of query

• Function definitions/recursion

January 22-25, 2013QSX

XQuery - a query
language for XML

• Goals:

• “SQL-like” query language for XML

• Support query optimization

• Support data types/XML Schema (will cover next week)

• Design:

• Purely functional (more or less)

• Every expression evaluates to a value (= sequence of
XML trees or primitive values)

• Extends XPath 2.0 with comprehensions, functions

January 22-25, 2013QSX

A first example

January 22-25, 2013QSX

A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

 <title>{$x/title/text()}</title>

 <year>{$x/year/text()}</year></result>

January 22-25, 2013QSX

A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

 <title>{$x/title/text()}</title>

 <year>{$x/year/text()}</year></result>
document() loads data

from file/by name

January 22-25, 2013QSX

A first example
for $x in document(“books.xml”)/books/book

where $x/author=”Abiteboul”

return <result>

 <title>{$x/title/text()}</title>

 <year>{$x/year/text()}</year></result>

...

<result><title>Data on the Web</title>

 <year>2000</year></result>

<result><title>Web Data Management</title>

 <year>2011</year></result>

January 22-25, 2013QSX

Atomic values
• Integers 1,2,3

• Strings 'abcd', "abcd"

• Dates / times

• Other basic types from XML Schema
(will cover these later)

January 22-25, 2013QSX

Values
• Atomic constants (last slide)

• XML trees

• <elt att1=v1 ... attn=vn>...value seq...</elt>

• Value sequences are sequences of atomic/tree values

• (), (v1,v2, ..., vn)

• cannot be nested, i.e., ((v1,v2), v3) = (v1,v2,v3)

• however, v1 could be an element with another sequence as content

• Formally:

v ::= c | <elt att=v ... att=v>{vs}</elt>

vs ::= () | (v1,...,vn)

January 22-25, 2013QSX

Variables
• In XQuery, variables always start with $

• $x, $y, $z, $i

• This is common in other W3C standards
with human-readable syntax

• A variable denotes a value sequence
(more or less)

January 22-25, 2013QSX

XML constructors
• XML values can be embedded in XQuery directly

<element att1=”v1” ...>...</element>

• Can “antiquote” to embed XQuery expressions
in elements

<element>{$x/a/b}</element>

• Can explicitly construct elements (with arbitrary
names, attributes

element $foo { attribute {$bar} {$baz},

 text {$some_text}}

January 22-25, 2013QSX

Building sequences
• Empty sequence: ()

• like empty list in other languages

• Sequence concatenation: (e1,e2)

• evaluates e1, e2 to value sequences vs1,vs2

• concatenates vs1 and vs2

• Examples: (expression equivalence)

• (1,2,()) ≡ (1,2) ≡ ((),1,2) ≡ (1,(),2)

• (1,(2,3)) ≡ (1,2,3) ≡ ((1,2),3)

• ((1,2), (3,4)) ≡ (1,2,3,4)

January 22-25, 2013QSX

Reminder:
Next review

assignment due:
Monday (Jan 28) 4pm

Electronic handin only!

January 22-25, 2013QSX

Anatomy of a query:
FLWOR

for $x in ...xpath...

let $y := ...expression...

where ...condition...

order by ...ordering...

return ...expression...

iterates over items in
sequence

binds variable to
expression

filters results based on
boolean test

orders results by key
value

constructs return values

January 22-25, 2013QSX

Anatomy of a query:
FLWOR

for $x in ...xpath...

let $y := ...expression...

where ...condition...

order by ...ordering...

return ...expression...

iterates over items in
sequence

binds variable to
expression

filters results based on
boolean test

orders results by key
value

constructs return values

Essentially list
comprehensions (see also

Haskell, Python, ...)

January 22-25, 2013QSX

For / comprehension
for $x in ...xpath...

• Evaluates xpath to a sequence

• actually can be any expression

• Generates one binding of $x for each element

• Evaluate rest of query once for each $x-binding

• Concatenate results in order

January 22-25, 2013QSX

Let binding
let $y := ...expression...

• Evaluates expression to value

• Binds $x to the value

• Evaluates rest of query with new binding

January 22-25, 2013QSX

Where clause
where ...condition...

• Evaluates condition expression to
(Boolean) value

• If true, continue evaluating query

• If false, rest of query evaluates to ()

• i.e., filters out results that don’t satisfy
condition

January 22-25, 2013QSX

Order by
order by ...ordering...

• Orders results of rest of query by key

• Key specification is defined in terms of
values available so far

• can specify increasing or decreasing

• many other options

January 22-25, 2013QSX

Return
return ...expression...

• Ends current iteration of query and
generates result for it

• unless filtered out by where-clause earlier

• Evaluates expression under current
bindings

January 22-25, 2013QSX

Let vs. for
• Both bind variables

let $x := (1,2,3)

let $y := ("a","b")

return ($x,$y)

...

(1,2,3,"a","b")

January 22-25, 2013QSX

Let vs. for
• Both bind variables

for $x in (1,2,3)

let $y := ("a","b")

return ($x,$y)

...

(1,"a","b",2,"a","b",3,"a","b")

January 22-25, 2013QSX

Let vs. for
• Both bind variables

let $x := (1,2,3)

for $y in ("a","b")

return ($x,$y)

...

(1,2,3,"a",1,2,3,"b")

January 22-25, 2013QSX

Let vs. for
• Both bind variables

for $x in (1,2,3)

for $y in ("a","b")

return ($x,$y)

...

(1,"a",1,"b",2,"a",2,"b",3,"a",3,"b")

January 22-25, 2013QSX

Putting it all together
• A join: pairs of books having author in common,

ordered by year of first one

let $books := document(“books.xml”)/books

for $x in $books/book, $y in $books/book

let $year := $x/year/text()

where $x/author/text() = $y/author/text()

order by $year

return <result>{$x},{$y}</result>

January 22-25, 2013QSX

Evaluating a join
naively

• Iterates over all pairs of $x,$y

• Evaluates test

• Generates result for each pair satisfying test

• Problem: Quadratic.

• Can do better using hash or sort join algorithms

• Especially for large data

• XML databases can do this

•Unordered mode helps

January 22-25, 2013QSX

Conditionals
if ...test... then ... else ...

if ...test... then ...

• Evaluate test

• if true, evaluate then-branch

• if false, evaluate else-branch

• or () if no else-branch specified

January 22-25, 2013QSX

Built-in functions
• Includes all XPath primitive functions

• first(), last(), position(), not(), etc.

• equality: has same (strange) semantics
as in XPath

• i.e., (1,2) = (2,3) evaluates to true

• Also document(<xmlfile>)

• loads in an XML file and binds it to a value

January 22-25, 2013QSX

Set operations
• These are also allowed in XPath 2.0

• Union e1 union e2:

• Path[p union p’](T) = Path[p](T) ∪ Path[p’](T)

• Intersection e1 intersect e2:

• Path[p intersect p’](T) = Path[p](T) ∩ Path[p’](T)

• Difference e1 except e2:

• Path[p except p’](T) = Path[p](T) ∖ Path[p’](T)

January 22-25, 2013QSX

Aggregation and
emptiness tests
sum(), average(), min(), max(),

count()

• calculate corresponding functions on
numerical sequences (like in SQL)

• (can also use in XPath)

empty(), exists()

• test whether a sequence is empty or
nonempty

January 22-25, 2013QSX

Quantifiers
some $x in ...exp1... satisfies ...exp2...

• true iff exp2 evaluates to true for some
bindings of $x to element of exp1

• exists(for $x in p where q return <z/>)

every $x in ...exp1... satisfies ...exp2...

• true iff exp2 evaluates to true for all bindings of
$x to element of exp1

• empty(for $x in p where not(q) return <z/>)

January 22-25, 2013QSX

Ordering &
duplicates

• XQuery values are ordered sequences

• Can turn ordering off: unordered {...}

• which enables more optimizations

• Or require it: ordered {...}

• Can also eliminate duplicates

• fn:remove-duplicates()

• This happens automatically with some operations

• such as union

January 22-25, 2013QSX

Quiz
• Starting with XML that lists cities, states and optional nicknames:

<cities><city><name>New York City</name>

 <state>NY</state>

 <nickname>The Big Apple</nickname>

 </city> ...

</cities>

1. Write query that ignores state and lists city by nickname if any;
otherwise uses the name

2. Write query that produces a list of states, each containing a list of
city names in that state.

3. ... And gives a count of the number of cities in each state.

January 22-25, 2013QSX

User-definable
functions

• Can define functions to abbreviate parts
of queries

define function f($x,$y) {

 for $z in $x/a, $w in $y/b

 where $z/text() = $y/text()

 return <result>{$z}{$w}</result>

}

January 22-25, 2013QSX

Functions can be
recursive!

• example: recursive parts query

define function totalcost($x) {

 for $y in $x/part

 return $x/price + totalcost($y)

}

January 22-25, 2013QSX

Turing-completeness
• Due to recursive functions, XQuery is a fully

Turing-complete language

• even without arithmetic

• can simulate tape, arithmetic using trees

• Big contrast to SQL, which lacks general recursion

• Can write whole Web applications using
XQuery + web server interface library

• In practice, XQuery engines focus
optimization effort on FLWOR queries

January 22-25, 2013QSX

Types
• XQuery has a native regular expression-

based type system

• Basic idea: if $x : element {(a,(b,a)*,c)}

• then for $y in $x return $y : (a|b|c)*

• We will cover types and regular expression
typing in more detail later

• including XML Document Type Definitions, XML
Schemas

• and more precise systems for path/query typing

January 22-25, 2013QSX

Semantics
• XQuery Formal Semantics

• uses operational rules to explain meaning of
XQuery expressions

• Also formalizes typing rules

• Will also look at this in more detail later

• needed for proving correctness of type
systems, optimizations

January 22-25, 2013QSX

Next time
• XSLT

• Type systems, XML DTDs

• Review assignment (due Monday 4pm):

• XSLT overview

• Read about XML Schemas

• Read "Keys for XML"

