XPath
Querying and o Alanguoge of path expresions

@ Loosely related to “file paths”

Storing XML 0

® sequential composition (p/q)

Week 2 e wildcards (*)
XPath & XQuery ® axis steps (child, parent, descendant, etc.)
January 22-25, 2013 e also: filters, text nodes, label tests

® plus positional & string functions
@ Used for navigation

® component of XSLT, XQuery, etc.

QSX January 22-25,2013

Context node .
(starting point) Child

QSX January 22-25,2013 QSX January 22-25,2013

Descendant Descendant-or-self

i

Januar y 22-25,2013 Januar y 22-25,2013

Parent Ancestor

Ay A

Januar y 22-25,2013 Januar y 22-25,2013

Ancestor-or-self Following-sibling

R L

Januar y 22-25,2013 Januar y 22-25,2013

Preceding-sibling Self

Ay A

Januar y 22-25,2013 Januar y 22-25,2013

Following

QSX January 22-25,2013

Partition

ancestor

following

O/preceding

QSX January 22-25,2013

Preceding

QsSX January 22-25,2013
@ axis ::= child | descendant | descendant-or-self
| parent | ancestor | ancestor-or-self
| preceding-sibling | following-sibling
| self | preceding | following
® test::=*|text() | node() |a|b| @a] ...
® p .= ax::tst[q] | p/p’
®@ g::=p|lgandqg’'|qorqg’| not(q) | ...
® ap ::=/p
QSX January 22-25,2013

Abbreviations

® /a = child::a

® //a = descendant-or-self::*/child::a
® . = self::*

® .. = parent::*

@ Starting path with “/” means "“start from
document root”

@ this is a special node above the root element

QSX January 22-25,2013

Node label tests

QSX January 22-25,2013

Sequential composition

/child::*/child::*

QSX January 22-25,2013

Node label tests

/r/al//*

QSX January 22-25,2013

Sequential composition Sequential composition

//a/following-sibling::c //a/following-sibling::b//*

QsSX January 22-25,2013 QsSX January 22-25,2013

Filters Filters

//a[b]/c

QsSX January 22-25,2013 QsSX January 22-25,2013

Filters Positional tests

//a[following-sibling::c] //*[position()=2] (orjust //a[2])

QsSX January 22-25,2013 QsSX January 22-25,2013

Positional tests Positional tests

//a/*[first ()] //a/*[last()]

QsSX January 22-25,2013 QsSX January 22-25,2013

Quiz Attributes & Text

|.Write XPath to select
red nodes.

2. Without using child. Cdoc >
3. Or filters.

//a/Ratt

January 22-25,2013

January 22-25,2013 QSX

QSX

Attributes & Text Equality

//a[@att="bar"”]//*/text()

//a/b/text()
January 22-25,2013 QSX January 22-25,2013

QSX

Equality Equali
Descendant do not
select attributes!

//a[@att="bar"] //a[Qatt="bar"]//*

QsSX January 22-25,2013 QsSX January 22-25,2013

Equality Equality quiz

//a[@att="bar"”]//text () /rla/b/text() = a/b/c/text()]

QsSX January 22-25,2013 QsSX January 22-25,2013

Equality quiz
o

r is selected!
Equality of sequences evaluates
to true if there is any
common value in the two
sequences

/r[a/b/text() = a/b/c/text()]

QSX January 22-25,2013

Tree patterns

® A graphical notation for (downward)
XPath queries/filters

oy pescentan >

()

QSX January 22-25,2013

Tree patterns

@ A graphical notation for (downward)
XPath queries/filters

(33

QSX January 22-25,2013

Tree patterns

® A graphical notation for (downward)
XPath queries/filters

o\
a[b]//c/d = ° o
node
()

QSX January 22-25,2013

Tree pattern
matching

® A function h: P -> T such that:
® Child edges map to edges

® Descendant edges map to paths

@
S\e & ®
& @ @

QSX January 22-25,2013

Tree pattern
matching

® A function h: P -> T such that:
® Child edges map to edges

® Descendant edges map to paths

QSX January 22-25,2013

Tree pattern
matching

® A function h: P -> T such that:
® Child edges map to edges

® Descendant edges map to paths

QSX January 22-25,2013

Tree pattern
matching

® A function h: P -> T such that:
® Child edges map to edges

® Descendant edges map to paths

QSX January 22-25,2013

Tree pattern _
matching Semantics of XPath

® A function h: P -> T such that: ® Represent tree as T = (V,E,A, <)

Child ed to ed . .
° fid edges map to edges ® 2 is set of possible node labels

® Descendant edges map to paths
® E c V x Vis parent/child edge relation
® A :V — 3 gives node labels

® < ¢V x V linearly orders children of each node

® For simplicity, will ignore text nodes,
attributes

® but in general these need to be modeled too!

QsSX January 22-25,2013 QsSX January 22-25,2013

Semantics of XPath: Semantics of XPath:
steps tests paths & filters

@ Ax[self](T) = {(x,x) | x e V} Test[*1(T) = {x | x e V}

A h|d T @ Test[a](T) ={x|xeV,AX) =a}
¢ X[C !]() B ® Path[ax::test](T) = {(x,y) € Ax[ax](T) | y € Test[test](T)}

® Ax[descendant](T) = E* o Path[p/p'I(T) = {(x,2) | (x,y) e Path[pl(T), (v,2) < Path[p)(T)}
) Ax[descendant_or_self] (T) — E* o Path[p[q]I(T) = {(x,y) | (x,y) € Path[pl(T), y e Filt[q](T)}
. e Filt[p](T) = {x | 3y. (x,y) € Path[p](T)}
® Ax[parent](T) = {(y,x) | (x,y) in E} _ _ .
® Filt[g and q'](T) = Filt[q](T) n Filt[q"](T)
. e ® Filt[g and q'](T) = Filt[q](T) U Filt[q"](T)
® Ax[following-sibling](T) = {(x,y) | X <y} e Filt(not(a))(T) = {x < V | x ¢ Filtfq](T) }

QSX January 22-25,2013 QSX January 22-25,2013

Next time

® XQuery
@ Putting XPath to work

@ Iteration, binding, sequences, and XML
construction expressions

® Recursive functions

QSX January 22-25,2013

What can XPath not
do (well)?

® Construct new XML documents

® Combine information from different
parts of document

® Joins

® Abstraction over parts of query

® Function definitions/recursion

QSX January 22-25,2013

XQuery

QSX January 22-25,2013

XQuery - a query
language for XML

@ Goals:

® "SQL-like” query language for XML

® Support query optimization

® Support data types/XML Schema (will cover next week)
® Design:

® Purely functional (more or less)

® Every expression evaluates to a value (= sequence of
XML trees or primitive values)

® Extends XPath 2.0 with comprehensions, functions

QSX January 22-25,2013

A first example

QSX January 22-25,2013

A first example

for $x in document (“books.xml”)/books/book

where $x/author="ADS
return <result>

<title>{$x/ti
document() loads data

<year>{$x/ysd
from file/by name

QSX January 22-25,2013

A first example

for $x in document (“books.xml”)/books/book

where $x/author="Abiteboul”

return <result>
<title>{$x/title/text()}</title>

<year>{$x/year/text()}</year></result>

QSX January 22-25,2013

A first example

for $x in document (“books.xml”)/books/book

where $x/author="Abiteboul”

return <result>
<title>{$x/title/text()}</title>

<year>{$x/year/text()}</year></result>

<result><title>Data on the Web</title>
<year>2000</year></result>
<result><title>Web Data Management</title>

<year>2011</year></result>

QSX January 22-25,2013

Atomic values Values

® Integers 1,2,3 ® Atomic constants (last slide)
® XML trees
® Strings 'ade" "ade" ® <eltattl=v1 ... atth=vn>...value seq...</elt>
@ Dates / times ® Value sequences are sequences of atomic/tree values
® (), (vi,v2, ..., Vn)
® Other basic types from XML Schema e cannot be nested, i.e., ((viva), v3) = (Vi,v2,v3)
(WI” cover these late r) ® however, vi could be an element with another sequence as content

e Formally:

v i:=c | <elt att=v ... att=v>{vs}</elt>
vs ::= () | (Vi,...,Vn)
QsSX January 22-25,2013 QsSX January 22-25,2013

Variables XML constructors

® In XQuery, variables always start with $ ® XML values can be embedded in XQuery directly

° $X $y $Z $i <element attl="vl” ...>...</element>
4 I I

@ Can “antiquote” to embed XQuery expressions

® This is common in other W3C standards in elements

with human-readable syntax

<element>{$x/a/b}</element>

® A variable denotes a value sequence ® Can explicitly construct elements (with arbitrary
(more or less) names, attributes

element $foo { attribute {$bar} {S$Sbaz},

text {$some_text}}

QSX January 22-25,2013 QSX January 22-25,2013

Building sequences

® Empty sequence: ()
® like empty list in other languages

® Sequence concatenation: (e1,e2)
® evaluates e1, ez to value sequences vsi,vs>
@ concatenates vs: and vs:

® Examples: (expression equivalence)
e (1,2,()) =(1,2) = (0,1,2) = (1,0.2)
e (1,(2,3))=(1,2,3) =((1,2),3)
e ((1,2),(3,4) =(1,2,3,4)

QSX January 22-25,2013

Anatomy of a query:

FLWOR ¢

for $x in ...xpath... iterates over items in
sequence

let Sy := ...expression... binds variable to
expression

where ...condition... filters results based on
boolean test

order by ...ordering... orders results by key
value

return ...expression... constructs return values

QSX January 22-25,2013

Reminder:
Next review
assignment due:

Monday (Jan 28) 4pm
Electronic handin only!

QSX January 22-25,2013

Anatomy of a query:
FLWOR w_¢7-

for $x in ...xpath... iterates over items in

sequence

let Sy := ...exp
Essentially list
where ...conditi, cOMprehensions (see also L4 on
Haskell, Python, ...)
order by ...ordering... esults by key
value
return ...expression... constructs return values
QSX January 22-25,2013

For / comprehension

for $x in ...xpath...

® Evaluates xpath to a sequence

® actually can be any expression
® Generates one binding of $x for each element
® Evaluate rest of query once for each $x-binding

® Concatenate results in order

QSX January 22-25,2013

Where clause

where ...condition...

® Evaluates condition expression to
(Boolean) value

@ If true, continue evaluating query

e If false, rest of query evaluates to ()

® i.e., filters out results that don't satisfy
condition

QSX January 22-25,2013

Let binding

let Sy := ...expression...

® Evaluates expression to value
® Binds $x to the value

® Evaluates rest of query with new binding

QSX January 22-25,2013

Order by

order by ...ordering...

® Orders results of rest of query by key

® Key specification is defined in terms of
values available so far

® can specify increasing or decreasing

® many other options

QSX January 22-25,2013

Return

return ...expression...

® Ends current iteration of query and
generates result for it

® unless filtered out by where-clause earlier

® Evaluates expression under current
bindings

QSX January 22-25,2013

Let vs. for

® Both bind variables
for $x in (1,2,3)
let Sy := ("a","b”)

return ($x,Sy)

(1, Ila II, Hb ",2, Ila II, Hb ",3, Ila II, Hb ")

QSX January 22-25,2013

Let vs. for

@ Both bind variables
let $x := (1,2,3)
let $y := ("a","b")
return ($x,Sy)

(1,2,3, IIaII, Ilb!l)

QSX January 22-25,2013

Let vs. for

® Both bind variables
let $x := (1,2,3)
for Sy in ("a","b")
return ($x,Sy)

(1,2,3,"a",1,2,3,"b")

QSX January 22-25,2013

Let vs. for

® Both bind variables
for $x in (1,2,3)
for $Y in (llall,"bll)

return ($x,85y)

(1, "a ”,1, "b",2, "a ”,2, Ilb",3, "a ",3, ”b")

QSX January 22-25,2013

Evaluating a join
naively

® Iterates over all pairs of $x,$y
® Evaluates test
® Generates result for each pair satisfying test

® Problem: Quadratic.
® Can do better using hash or sort join algorithms

® Especially for large data
® XML databases can do this

@® Unordered mode helps

QSX January 22-25,2013

Putting it all together

® A join: pairs of books having author in common,
ordered by year of first one

let $books := document (“books.xml”)/books
for $x in $books/book, Sy in $books/book
let $Syear := $x/year/text()

where $x/author/text() = $y/author/text()
order by Syear

return <result>{$x}, {Sy}</result>

QSX January 22-25,2013

Conditionals

if ...test... then ... else ...
if ...test... then ...
® Evaluate test
@ if true, evaluate then-branch

@ if false, evaluate else-branch

@ or () if no else-branch specified

QSX January 22-25,2013

Built-in functions

® Includes all XPath primitive functions

® first(), last(), position(), not(), etc.

® equality: has same (strange) semantics
as in XPath

@ i.e, (1,2) = (2,3) evaluates to true

® Also document (<xmlfile>)

® loads in an XML file and binds it to a value

QSX January 22-25,2013

Aggregation and
emptiness tests

sum(), average(), min(), max(),
count ()

@ calculate corresponding functions on
numerical sequences (like in SQL)

® (can also use in XPath)

empty (), exists()

@ test whether a sequence is empty or
nonempty

QSX January 22-25,2013

Set operations

® These are also allowed in XPath 2.0
® Union e: union e:3:
® Path[p union p’](T) = Path[p](T) u Path[p’](T)
® Intersection e; intersect ej:
® Path[p intersect p'](T) = Path[p](T) n Path[p'](T)

@ Difference e; except ey:
@ Path[p except p’](T) = Path[p](T) \ Path[p’](T)

QSX January 22-25,2013

Quantifiers

some $x in ...exp:... satisfies ...expz...

@ true iff exp, evaluates to true for some
bindings of $x to element of exp;

® exists(for $x in p where g return <z/>)

every $x in ...exp:i... satisfies ...expz...

@ true iff exp, evaluates to true for all bindings of
$x to element of exp:

® empty(for $x in p where not(q) return <z/>)

QSX January 22-25,2013

Ordering &
duplicates

® XQuery values are ordered sequences

® Can turn ordering off: unordered {...}
® which enables more optimizations

® Orrequire it: ordered {...}

® Can also eliminate duplicates
® fn:remove-duplicates()

® This happens automatically with some operations

® such as union

QSX January 22-25,2013

User-definable
functions

® Can define functions to abbreviate parts
of queries

define function f($x,Sy) {
for $z in $x/a, $Sw in $y/b
where $z/text() = Sy/text()

return <result>{S$z}{$Sw}</result>

QSX January 22-25,2013

Quiz

® Starting with XML that lists cities, states and optional nicknames:
<cities><city><name>New York City</name>
<state>NY</state>
<nickname>The Big Apple</nickname>
</city> ...
</cities>

1. Write query that ignores state and lists city by nickname if any;
otherwise uses the name

2. Write query that produces a list of states, each containing a list of
city names in that state.

3. ... And gives a count of the number of cities in each state.

QSX January 22-25,2013

Functions can be
recursive!

® example: recursive parts query
define function totalcost($x) {
for Sy in $x/part

return $x/price + totalcost(Sy)

QSX January 22-25,2013

Turing-completeness

® Due to recursive functions, XQuery is a fully
Turing-complete language

® even without arithmetic
® can simulate tape, arithmetic using trees

@ Big contrast to SQL, which lacks general recursion

® Can write whole Web applications using
XQuery + web server interface library

® In practice, XQuery engines focus
optimization effort on FLWOR queries

QSX January 22-25,2013

Semantics

® XQuery Formal Semantics

® uses operational rules to explain meaning of
XQuery expressions

® Also formalizes typing rules
® Will also look at this in more detail later

® needed for proving correctness of type
systems, optimizations

QSX January 22-25,2013

Types

® XQuery has a native regular expression-
based type system

® Basicidea: if $x : element {(a,(b,a)*,c)}
® then for $y in $x return Sy : (alblc)*

® We will cover types and regular expression
typing in more detail later

@ including XML Document Type Definitions, XML
Schemas

® and more precise systems for path/query typing

QSX January 22-25,2013

Next time

® XSLT

® Type systems, XML DTDs

® Review assignment (due Monday 4pm):
® XSLT overview

® Read about XML Schemas
® Read "Keys for XML"

QSX January 22-25,2013

