
Querying and
Storing XML

Week 1
Introduction & course overview, XML basics

January 15-18, 2013

January 15-18, 2013QSX

Key information
• Instructor: James Cheney, jcheney@inf.ed.ac.uk

• Lectures: 11:10-12:00, Tuesday/Friday

• LT4, 7 Bristo Square

• Office Hours: (IF 5.29)

• TA: Clare Llewellyn, s1053147@sms.ed.ac.uk

• Webpage:

• http://www.inf.ed.ac.uk/teaching/courses/qsx/

• Weekly readings, project ideas/suggested readings

January 15-18, 2013QSX

What is XML?
• eXtensible Markup Language [W3C 1998]

• Ask five different people, get five different
answers...

• a self-describing data format?

• a generalization of HTML?

• the future/past?

• best thing since sliced bread/clunky and evil?

• a metalanguage?

• http://en.wikipedia.org/wiki/List_of_XML_markup_languages

January 15-18, 2013QSX

In a nutshell:
• A (meta)language for semi-structured

data (trees)

book

title year

2000

authorauthor

Data on
the Web

Abiteboul

author

Buneman

Suciu

books

book ...

title ...

...

January 15-18, 2013QSX

In a nutshell:
• A (meta)language for semi-structured

data (trees)

book

title year

2000

authorauthor

Data on
the Web

Abiteboul

author

Buneman

Suciu

books

book ...

title ...

...

<?xml version="1.0"?>
<books>
 <book>
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <year>2000</year>
 </book>
 <book>
 <title>...</title>
 ...
 </book>
 ...
</books>

January 15-18, 2013QSX

XML for markup/
documents

• SGML

• HTML - hypertext markup language

• TEI - Text markup, language technology

• DocBook - documents -> html, pdf, ...

• SMIL - Multimedia

• SVG - Vector graphics

• MathML - Mathematical formulas

January 15-18, 2013QSX

XML for
(semi-)structured data
• MusicXML

• NewsML

• iTunes

• DBLP http://dblp.uni-trier.de

• CIA World Factbook

• IMDB http://www.imdb.com/

• XBEL - bookmark files (in your browser)

• KML - geographical annotation (Google Maps)

• XACML - XML Access Control Markup Language

January 15-18, 2013QSX

XML as an abstract
syntax

• Many systems now use XML as a general-purpose syntax for
other programming languages or configuration files...

• Java servlet config (web.xml)

• Apache Tomcat, Google App Engine, ...

• Web Services - WSDL, SOAP, XML-RPC

• XUL - XML User Interface Language (Mozilla/Firefox)

• BPEL - Business process execution language

• Other Web standards:

• XSLT, XML Schema, XQueryX

• RDF/XML

• OWL - Web Ontology Language

• MMI - Multimodal interaction (phone + car + PC)

January 15-18, 2013QSX

XML tools
• Standalone:

• xsltproc, mxquery, calabash (XProc)

• Most PLs have XML parsers; many have XSLT engines/
libraries also

• SAX (streaming), DOM (in-memory) interfaces

• libxml2, expat, libxslt (C)

• Xerces, Xalan (Java)

• XPath (path expressions) used in many languages

• JavaScript/JQuery

• XSLT, XQuery

January 15-18, 2013QSX

Native XML
databases

• Offer native support for XML data & query
languages (not building on existing RDBMS)

• Galax

• MarkLogic

• eXist

• BaseX

• among others...

• Suitable for new or lightweight applications

• but some lack features like transactions, views, updates

January 15-18, 2013QSX

XML support in
industry

• Most commercial RDBMSs now provide some XML
support

• Oracle 11g - XML DB

• IBM DB2 pureXML

• Microsoft SQL Server - XML support since 2005

• Language Integrated Query (LINQ) targets SQL & XML
in .NET programs

• Data publishing, exchange, integration problems are
very important

• big 3 have products for all of these

• SQL/XML standard for defining XML views of relational data

January 15-18, 2013QSX

The wonderful thing
about standards...
• There are so many to choose from!

• XPath 1.0, 2.0, XSLT 1.0, 2.0, XQuery, XProc

• RDF, RDFS, OWL 1.0, 2.0, SPARQL 1.0, 1.1, ...

• W3C process moves quickly

• and is hit-or-miss

• often driven by nontechnical/industrial issues

• Standards reflect compromises between needs of
different communities

• XML standards often compromise between “data” and “document”
views of world

• and it shows!

January 15-18, 2013QSX

Beyond the hype
(Google “I hate XML”)
• XML “wave” (1999-200?): may have crested

• XML can be and has been (justifiably) criticized

• bloat, ad hoc features, too many standards

• wheel reinvention: why not LISP S-Expressions [McCarthy 1960]

• New semistructured formats/syntaxes now in vogue

• RDF, JSON, YAML, Google Protocol Buffers

• many XML vendors re-branding as “NoSQL”

• Nevertheless, the basic issues are pretty much the same

• and XML is definitely not going away

• Our goal: rise above fray, understand essential issues in CS
terms

January 15-18, 2013QSX

Where is XML used?

January 15-18, 2013QSX

Static Web site

Browser Server

foo.xhtml

get

site.css
site.css

foo.xhtml

(X)HTML + CSS
(+ SVG + MathML)

January 15-18, 2013QSX

Static Web site (XML
+ XSLT)

Browser Server

foo.xml

get

site.xslt
site.xslt

foo.xml

allows better factoring
into data + presentation

January 15-18, 2013QSX

Dynamic Web site

Browser Server
get

Middleware

Database

QSQL?
XQuery?

Database maintains state
January 15-18, 2013QSX

Web 2.0: Asynchronous
Java and XML

Browser

+
JavaScript

Server
get

...
XMLHttpRequest

XMLHttpRequest

January 15-18, 2013QSX

Data exchange
• Massive demand

• across platforms/DBs

• across enterprises

• XML has become the prime standard for
data interchange on the Web

RDB OODB

January 15-18, 2013QSX

Data integration
(warehousing)

Database
Schema S1

Database
Schema S2

Database
Schema S3

January 15-18, 2013QSX

Data integration
(warehousing)

Database
Schema S1

V1

Database
Schema S2

V2

Database
Schema S3

V3

Warehouse
Schema T

January 15-18, 2013QSX

Data integration
(warehousing)

Database
Schema S1

V1

Database
Schema S2

V2

Database
Schema S3

V3

Warehouse
Schema T

Q

January 15-18, 2013QSX

Data integration
(warehousing)

Database
Schema S1

V1

Database
Schema S2

V2

Database
Schema S3

V3

Warehouse
Schema T

Q

January 15-18, 2013QSX

Data integration
(mediation)

Database
Schema S1

Database
Schema S2

Database
Schema S3

Mediator
Schema T

January 15-18, 2013QSX

Data integration
(mediation)

Database
Schema S1

Database
Schema S2

Database
Schema S3

Mediator
Schema T

Q

January 15-18, 2013QSX

Data integration
(mediation)

Database
Schema S1

Q1

Database
Schema S2

Q2

Database
Schema S3

Q3

Mediator
Schema T

Q

January 15-18, 2013QSX

Data integration
(mediation)

Database
Schema S1

Q1

Database
Schema S2

Q2

Database
Schema S3

Q3

Mediator
Schema T

Q

January 15-18, 2013QSX

Data integration
(mediation)

Database
Schema S1

Q1

Database
Schema S2

Q2

Database
Schema S3

Q3

Mediator
Schema T

Q

January 15-18, 2013QSX

Course overview

January 15-18, 2013QSX

What you need for
this course

• Prerequisites:

• Language Semantics & Implementation (PL)

• or Computers & Intractability (Algorithms/complexity)

• or permission

• Database Systems or ADBS wouldn’t hurt

• good if you have at least heard of SQL

• Data Integration & Exchange, Extreme
Computing or Natural Language Technologies
may complement

January 15-18, 2013QSX

Evaluation
• 35%: Reviews (7 assignments)

• Due each Monday at 4pm until week 8

• Week 2-3: read/review all 3 tutorials

• Week 4-8: read/review 2 out of 3 papers

• 50%: Course project report

• due Monday, March 25, 4pm

• 15%: Project presentation

• during week 10-11 (after report due!)

January 15-18, 2013QSX

Reviews
• Hand in reviews on Monday at 4pm before of the

week in which the papers are to be discussed.

• Online handin, details TBA soon

• Each review should be about half a page

• summary, key ideas, questions you have, flaws you have
found, and suggestions for improvement.

• Marked on “+/✓/-” scale.

• + = 2 pts (outstanding)

• ✓ = 1 pt (pass)

• - = 0 pts (incomplete)

January 15-18, 2013QSX

Projects
• The project is the main assessed component of the

course.

• Projects can take two forms:

• Design and development projects

• (2-3 students) implement or improve upon an algorithm or
system.

• Survey/benchmarking projects

• (1 student) surveying 5-10 research papers on a particular
topic, or using several systems for the same task and
comparing them

• Project report: 15-30 pages (typically longer for group
projects)

January 15-18, 2013QSX

Suggested timetable
• Week 3: select project, form groups

• project ideas: http://www.inf.ed.ac.uk/teaching/courses/qsx/
project.html

• contact me or use qsx-students@inf.ed.ac.uk list

• Week 5: literature review/identify related work

• Week 7: Draft report/preliminary results

• Week 10-11: Final report & presentation

• It is up to you to ensure that your project
stays on track!

January 15-18, 2013QSX

Presentations
• Each group member must participate in

presentation

• ~5 min per group member (e.g. 3-
person group gets 15 minutes)

• Summarize background

• Present research question

• Summarize progress and next steps

January 15-18, 2013QSX

Introductions
• Who you are

• What you want to get out of the course

• ...Start thinking about project groups
early

• Use mailing list qsx-students@inf.ed.ac.uk

January 15-18, 2013QSX

What you should get
from this course

• Skills/knowledge in demand in industry ($$)

• NOT: Specific language/tool/system/protocol/API

• you should be able to pick it up on your own.

• Research / team / project experience

• Background useful for working with other
XML or Web standards/tools

• Chance to put diverse CS concepts into
practice

January 15-18, 2013QSX

Syllabus/topics
• Weeks 1-3: Foundations

• Weeks 4-5: Storage & publishing

• Weeks 6-8: Additional topics (updates,
static analysis, provenance)

• Week 9: Break

• Week 10-11: Project presentations

January 15-18, 2013QSX

Next time
• XML background

January 15-18, 2013QSX

Foundations of XML
• XML itself

• Query and transformation languages

• XPath: a path-based language for navigating / selecting
parts of XML trees

• XQuery: a “SQL for XML” query language

• XSLT: a pattern-matching, recursive transformation
language

• Schemas (DTDs, XML Schema)

• validation, automata

• Constraints (keys)

January 15-18, 2013QSX

XML and databases
• XML “shredding”: Storing/querying XML in

relational databases

• Shredding XML trees into relations (with or without
schema)

• Translating XML queries/updates to SQL over
shredded representation

• XML “publishing”: Providing XML views of
legacy relational data

• Translating XML queries over views to SQL

• Schema-directed publishing

January 15-18, 2013QSX

XML updates
• Beyond DOM: Updating XML stored as

relations

• XQuery Update Facility

• extending XQuery to support updates

• Updating XML views of relations

• how to translate updates to XML views to SQL

January 15-18, 2013QSX

Typechecking and
static analysis

• Typed programming with XML

• regular expression types and inference

• Predicting structure of result of queries

• application: finding “path errors” in queries

• Using this to improve performance

• e.g. detecting when a query and update do (or
don’t) “overlap”

• can save time recomputing views

January 15-18, 2013QSX

Provenance for semi-
structured data

• Provenance: Understanding where data
came from, how it has been produced

• Increasingly important for scientific data

• Why and where provenance

• Annotation and XML query languages

• Provenance for curated (evolving) data

January 15-18, 2013QSX

Reading
• Web Data Management (Abiteboul et al. 2011)

• ch. 1-5 provide excellent overview of XML, Schemas, XPath, XQuery
and shredding

• also good coverage of RDF/OWL/SPARQL and cloud computing/
MapReduce

• webdam.inria.fr/Jorge/

• Introduction to XML and Web Technologies (Moller,
Schwartzach 2006)

• now a bit dated but good coverage of XML and Java-based Web
programming

• slides, ch. 4 online

• Research papers - listed week-by-week on course web page

January 15-18, 2013QSX

XML background

January 15-18, 2013QSX

Some history
• SGML - (Charles Goldfarb, ISO 8879, 1986)

• widely used for document management

• but complex & hard to implement

• HTML - (Tim Berners-Lee, 1991)

• most successful application of SGML

• XML - (W3C, 1998)

• simplify SGML, for Web data/content

• still pretty complicated, though

January 15-18, 2013QSX

HTML: limitations
• HTML was intended as a declarative markup

language

• emphasizing structure over presentation

• But with success of Web, intense pressure for
more presentation features

• CSS helps separate content from structure, a little

• nevertheless, while great for human consumption,
HTML is not suitable for representing general data

• fixed set of tags

• describe display format, not structure of data

January 15-18, 2013QSX

Good things about
XML

• Tags can be defined for specific applications other than
HTML

• The structure of the data can be defined more
precisely

• DTDs, XML Schemas

• Structures can be arbitrarily nested

• even including recursion

• XML standard does not define how data should be
displayed

• Style sheets (XSLT) can transform XML to HTML or other forms

January 15-18, 2013QSX

Scraping data from
HTML

<h2>Some data</h2>

<table border="2">

 <tr><th>A</th><th>B</th>

 <tr><td>1<td>2</td>

 <tr><td>3</td><td>4

</table>

January 15-18, 2013QSX

Scraping data from
HTML

<h2>Some data</h2>

<table border="2">

 <tr><th>A</th><th>B</th>

 <tr><td>1<td>2</td>

 <tr><td>3</td><td>4

</table>

Optional
closing tags - hard

to parse

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

Header

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

Attribute

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

Element

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

Text

January 15-18, 2013QSX

Data as XML
<?xml version="1.0"?>

<root title="Some data">

 <table>

 <row><A>12</row>

 <row><A>34</row>

 </table>

</row>

NOTE: Tag names
have NO pre-

defined meaning!

January 15-18, 2013QSX

XML Data as trees
root

row row

A B A B

1 2 3 4

"Some data"

title

January 15-18, 2013QSX

XML Data as trees
root

row row

A B A B

1 2 3 4

"Some data"

title Child order matters!

January 15-18, 2013QSX

Basics
• An XML document consists of

• elements - <a>...

• tags come in pairs

• tags must be properly nested (can't skip closing tag!)

• attributes -

• key-value pairs associated with elements

• text values - <a>foo123

• unquoted text inside elements

January 15-18, 2013QSX

Elements
• Element: the segment between an start and its corresponding

end tag

• Unique root element

• subelement: the relation between an element and its
component elements.

 <person>

! ! <name> James Cheney </name>

! ! <tel> 0131 651 5658 </tel>

! ! <email> jcheney@inf.ed.ac.uk </email>

! ! <email> cheneyj@acm.org </email>

! </person>

January 15-18, 2013QSX

Nested structure
• nested tags can be used to express various structures, e.g., “records”:

 <person>

! ! <name> James Cheney </name>

! ! <tel> 0131 651 5658 </tel>

! ! <email> jcheney@inf.ed.ac.uk </email>

! ! <email> cheneyj@acm.org </email>

! </person>

• a list: represented by using the same tags repeatedly:

 <person> … </person>

! <person> … </person>

! ...

January 15-18, 2013QSX

Ordering
• XML elements are ordered!

• How to represent sets in XML?

• How to represent an unordered pair (a, b) in XML?

• Can one directly represent the following in a relational database?

<person> … </person>

<person> … </person> …

! <person>

! ! <name> James Cheney </name>

! ! <tel> 0131 651 5658 </tel>

! ! <email> jcheney@inf.ed.ac.uk </email>

! ! <email> cheneyj@acm.org </email>

! </person>

January 15-18, 2013QSX

Attributes
• A start tag may contain attributes describing certain “properties” of the element (e.g.,

dimension or type)

! <picture>

! ! <height dim=“cm”> 2400</height>

! ! <width dim=“in”> 96 </width>

! ! <data encoding=“gif”> M05-+C$ … </data>

! </picture>

• References (meaningful only when a DTD is present):

! <person id = “011” pal=“012”>

! ! <name> George Bush</name>

! </person>

! <person id = “012” pal=“011”>

! ! <name> Saddam Hussein </name>

! </person>

January 15-18, 2013QSX

Attribute structure
• XML attributes cannot be nested -- flat

• the names of XML attributes of an element must be unique.

• one can’t write <person pal=“Blair” pal=“Saddam”> ...

• XML attributes are not ordered:

! <person id = “011” pal=“012”>

! ! <name> George Bush</name>

! </person>

is the same as

 <person pal=“012” id = “011”>

! ! <name> George Bush</name>

! </person>

• Attributes vs. subelements: unordered vs. ordered, and

• attributes cannot be nested (flat structure)

• subelements cannot represent references

January 15-18, 2013QSX

Extras
• entity references: & " >

• textual substitution; allows escaping special characters

• you can define your own if you want

• processing instructions: <? foo : bar ?>

• can be used to pass information to processors

• comments: <!-- foo -->

• CDATA sections: - <!CDATA[[I <3 XML]]>

• allows including raw text (<, >, &, etc. uninterpreted)

• Luckily, these are mostly irrelevant to use of XML for data

• but you need to know about them when writing reading/writing XML
as text

January 15-18, 2013QSX

Quiz
• Groups of 2-3: Find as many errors in this XML document as you can

<?xml version=”1.0”>

<books>

 <book id=”1’>

 <title>Data on the Web</title>

 <authors>

 <author id=”a1”>Abiteboul

 <author id=a2>Buneman & </author>

 <author id=’a3’>Suciu</authors>

 </author>

 <year>2000/year>

 <publisher>Addison-Wesley</publisher>

</books>

<foo>bar</foo>

January 15-18, 2013QSX

Quiz
• Groups of 2-3: Find as many errors in this XML document as you can

<?xml version=”1.0”?>

<books>

 <book id=”1”>

 <title>Data on the Web</title>

 <authors>

 <author id=”a1”>Abiteboul</author>

 <author id=”a2”>Buneman & </author>

 <author id=’a3’>Suciu</authors>

 </author>

 <year>2000</year>

 <publisher>Addison-Wesley</publisher>

</books>

<foo>bar</foo>

January 15-18, 2013QSX

Processing XML
• Most programming languages have XML

libraries

• parsers (SAX, DOM)

• in-memory manipulation (DOM)

• validation (schemas)

• Thus, usually don’t need to worry about
all the fiddly details of character sets

• XML supports UNICODE, many other encodings

January 15-18, 2013QSX

SAX: Basic idea
• SAX: Streaming API for XML (de facto

standard)

• reads XML document incrementally

• generates calls to event handlers

• you write code that handles these events

January 15-18, 2013QSX

SAX: Example
root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)
 beginElt(“A”)root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)
 beginElt(“A”)
 text(“1”)

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)
 beginElt(“A”)
 text(“1”)
 endElt(“A”)

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)
 beginElt(“A”)
 text(“1”)
 endElt(“A”)
 beginElt(“B”)
 text(“2”)
 endElt(“B”)
 endElt(“row”)

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Example
beginElt(“root”,[title=”foo”])
 beginElt(“row”)
 beginElt(“A”)
 text(“1”)
 endElt(“A”)
 beginElt(“B”)
 text(“2”)
 endElt(“B”)
 endElt(“row”)
 beginElt(“row”)
 beginElt(“A”)
 text(“1”)
 endElt(“A”)
 beginElt(“B”)
 text(“2”)
 endElt(“B”)
 endElt(“row”)
endElt(“root”)

root

row row

A B A B

1 2 3 4

"foo"

title

January 15-18, 2013QSX

SAX: Advantages
• Very widely supported

• Can be very efficient

• for operations that are streaming-friendly

• only realistic option for documents too large for
memory

• Can easily ignore parts of the document

• comments, etc.

• these are still processed, however (SAX reads in
whole XML file whether or not it is all needed)

January 15-18, 2013QSX

SAX: Disadvantages
• Non-starter if random access needed

• Not suitable for transformations to
persistent or large data

• e.g. in-browser or database updates

• Can be tricky to program

• due to need to handle atomic events

• need to figure out how to incrementalize
processing & maintain state

January 15-18, 2013QSX

DOM: Basic idea
• DOM: Document Object Model (W3C)

• reads XML document all at once

• allocates tree structure in memory

• provides standard methods for traversing,
modifying doc

• widely used in JavaScript to dynamically
update HTML page

• parses/loads document into memory

January 15-18, 2013QSX

DOM: Example
root

row row

A B A B

1 2 3 4

"foo"

title
root = document.body

c1 = root.getFirstChild()

c2 = root.getLastChild()

January 15-18, 2013QSX

DOM: Example
root

row

A B

1 2

"foo"

title
root = document.body

c1 = root.getFirstChild()

c2 = root.getLastChild()

root.deleteChild(c2)

January 15-18, 2013QSX

DOM: Example
root

row

A B

1 2

"foo"

title
root = document.body

c1 = root.getFirstChild()

c2 = root.getLastChild()

root.deleteChild(c2)

c1.appendChild(c2)

row

A B

3 4

January 15-18, 2013QSX

DOM: Advantages
• Much easier to program

• Offers random access & dynamic updates

• Best if scalability to large data not a
concern

• Library support for path queries can be
very convenient (e.g. JQuery)

• though naive implementations of queries can
be very slow

January 15-18, 2013QSX

DOM: Disadvantages
• Memory footprint can be several times that

of XML text

• which is already bloated!

• Thus, cannot be used for data > size of
memory (gigabytes)

• At a programming level, side-effecting
updates can be tricky to get right

• but no realistic alternatives yet to JavaScript for
browser interactivity

January 15-18, 2013QSX

Next week
• XPath: Navigating through XML trees

• XQuery: SQL-like queries for
constructing new XML trees from
existing data

