
BDD(3) BDD(3)

NAME
bdd − a binary decision diagram (BDD) package

SYNOPSIS
#include <bdduser.h>

DESCRIPTION
The libbdd library provides a set of routines for manipulating binary decision diagrams (BDDs). Some
support is also provided for multi-terminal BDDs (MTBDDs). Programs designed to be used with the
library should use the-lbdd -lmem options tocc when linking.

LIST OF FUNCTIONS
Name Function
bdd_init Initialize the library
bdd_version Get BDD version string
bdd_quit Finish using the library
bdd_new_var_first Create a variable first in the order
bdd_new_var_last Create a variable last in the order
bdd_new_var_before Create a variable before an existing one
bdd_new_var_after Create a variable after an existing one
bdd_var_with_index Obtain an existing variable
bdd_var_with_id Obtain an existing variable
bdd_one Constant TRUE
bdd_zero Constant FALSE
bdd_and Logical AND
bdd_nand Logical NAND
bdd_or Logical OR
bdd_nor Logical NOR
bdd_xor Logical XOR
bdd_xnor Logical XNOR
bdd_identity Logical identity
bdd_not Logical NOT
bdd_ite Logical IF-THEN-ELSE
bdd_if Get the variable of the top node in a BDD
bdd_then Get the THEN branch of the top node in a BDD
bdd_else Get the ELSE branch of the top node in a BDD
bdd_if_index Get the index of the top variable in a BDD
bdd_if_id Get a unique ID number for the top variable
bdd_intersects Check intersection
bdd_implies Check boolean implication
bdd_new_assoc Make a new variable association
bdd_free_assoc Free a variable association
bdd_temp_assoc Set the temporary variable association
bdd_augment_temp_assoc Set the temporary variable association
bdd_assoc Set the current variable association
bdd_exists Existential quantification
bdd_forall Universal quantification
bdd_rel_prod Relational product
bdd_compose Substitute for a variable
bdd_substitute Substitute for a set of variables
bdd_reduce Simplify given a constraint
bdd_cofactor Generalized cofactor
bdd_depends_on Determine if a BDD depends on a variable
bdd_support Find the support of a BDD
bdd_satisfy Find a satisfying assignment
bdd_satisfy_support Find a satisfying assignment

11 June 1993 1

BDD(3) BDD(3)

bdd_satisfying_fraction Fraction of valuations satisfying a BDD
bdd_swap_vars Swap two variables in a BDD
bdd_apply2 Generic apply routine
bdd_apply1 Generic apply routine
bdd_size Number of nodes in a BDD
bdd_size_multiple Number of nodes in multiple BDDs
bdd_profile Node profile of a BDD
bdd_profile_multiple Node profile of multiple BDDs
bdd_function_profile Function profile of a BDD
bdd_function_profile_multiple Function profile of multiple BDDs
bdd_print_bdd Print a BDD in human-readable form
bdd_print_profile Print a node profile of a BDD
bdd_print_profile_multiple Print a profile of multiple BDDs
bdd_print_function_profile Print a function profile of a BDD
bdd_dump_bdd Write a BDD to a file
bdd_undump_bdd Load a BDD from a file
bdd_type Classify a BDD
bdd_free Decrease the reference count of a BDD
bdd_unfree Increase the reference count of a BDD
bdd_clear_refs Set all BDD reference counts to zero
bdd_gc Garbage collect unused BDD nodes
bdd_total_size Total number of BDD nodes in use
bdd_vars Total number of variables in existence
bdd_cache_ratio Get/set operation result cache size
bdd_node_limit Get/set the number of BDD nodes allowed
bdd_overflow Get/clear overflow flag
bdd_overflow_closure Set a closure to invoke on overflow
bdd_abort_closure Used to abort operations in progress
bdd_stats Print statistics
bdd_dynamic_reordering Specify dynamic reordering technique
bdd_reorder Invoke dynamic reordering
bdd_new_var_block Create variable block
bdd_var_block_reorderable Set block reorderability
mtbdd_free_terminal_closure Called when freeing an MTBDD terminal
mtbdd_get_terminal Get an MTBDD terminal node
mtbdd_terminal_value Get the value of an MTBDD terminal node
mtbdd_ite IF-THEN-ELSE operation for MTBDDs
mtbdd_equal Equality operation for MTBDDs
mtbdd_transform Applies the current transform to an MTBDD
mtbdd_transform_closure Called to set the MTBDD transform
mtbdd_one_data Sets the MTBDD data value for TRUE

BASIC CONCEPTS
For a general overview of BDDs, see the original article by Bryant [1].

Almost all of the BDD library routines require a BDD manager as one of their arguments. A BDD manager
is a structure which holds various variables used by the BDD routines. The typebdd_manager is a pointer
to this structure. BDDs themselves are also represented internally as structures. The typebdd is a pointer
to one of these structures.

There is a global ordering on the boolean variables which may appear in a BDD. The variable at the root of
a BDD is earlier in the ordering than all other variables in the BDD. Each variable has an index which rep-
resents its position in the ordering;v1 appears beforev2 in the ordering if and only if the index forv1 is less
than the ordering forv2. Each variable is also assigned a unique ID number that is invariant. Since vari-
ables can be created at any position within the order, this is not true for the index. Also, the library

11 June 1993 2

BDD(3) BDD(3)

supports dynamic variable reordering. With dynamic variable reordering, variables may be shuffled around
in the middle of an operation in order to reduce the number of BDD nodes in use.

Some routines such asbdd_substitute require a mapping from variables to BDDs to operate. This map-
ping is supplied in the form of a variable association which is a set of pairs. The first element of each pair
is the variable, and the second element is the BDD that the variable is associated with. Multiple associa-
tions may exist at any one time. Other routines such asbdd_exists require sets of variables. Sets of vari-
ables are represented by variable associations where only the fact that a variable is associated with some
BDD is significant. There is one association, called the temporary variable association, which is special in
two ways. First, this association always exists. Second, results are not cached across calls when this asso-
ciation is used. The temporary association is intended for when an association will not be reused. The
advantage of using it is that setting the temporary association does not require scanning the result cache to
flush out-of-date results.

The results returned by the library represent canonical forms and may be checked for equivalence using the
standard C comparison operators. For example:

{
bdd_manager bddm;
bdd f;
...
if (f == bdd_one(bddm)) /* Tautology check */
...

}

For checking for relations such as boolean implication, usebdd_intersects andbdd_implies.

Multi-terminal BDDs are like BDDs, except an MTBDD may have more than just the constants TRUE and
FALSE at the leaves. Passing an MTBDD to a routine expecting a BDD will give undefined results, except
where noted below. MTBDDs are built up usingmtbdd_get_terminal andmtbdd_ite.

STORAGE MANAGEMENT
Each BDD node has an associated reference count which records the number of references to the BDD
(internal and external). Whenever a BDD is returned from a function, the reference count for its top node is
incremented. (If the BDD did not exist before, the reference count will be 1.) Each time a garbage collec-
tion occurs, either internally or because of a call tobdd_gc, all nodes which are not referenced are
reclaimed. The reference count of a BDD may be decremented by callingbdd_free. This should be done
whenever possible for maximum space efficiency. You may also specify a limit for the total number of
BDD nodes usingbdd_node_limit. If it is not possible to complete an operation without exceeding this
limit, the operation is aborted and (by default) a null pointer is returned. Whenever this happens, the refer-
ence counts of all nodes are restored to what they were before the operation. If a null pointer is passed to a
routine, the routine simply returns null. Thus, it is not necessary to check for overflows after each opera-
tion. There is also an internal flag that indicates whether any operation has caused an overflow. It may be
read and reset bybdd_overflow. Optionally, a user-defined closure may be invoked when an overflow
occurs; seebdd_overflow_closure. Also seebdd_free, bdd_unfree, bdd_clear_refs, bdd_node_limit
andbdd_gc. The library also includes high-performance replacements formalloc and free. See the dis-
cussion at the end of the section on adding new routines.

DETAILED DESCRIPTION
bdd_manager
bdd_init()

Creates and initializes a new BDD manager. Multiple BDD managers may exist at any time.

char *
bdd_version()

Returns a string identifying the version number of the BDD library.

11 June 1993 3

BDD(3) BDD(3)

void
bdd_quit(bddm)
bdd_manager bddm;

Deallocates the BDD manager given bybddm and all the storage associated with it.

bdd
bdd_new_var_first(bddm)
bdd_manager bddm;

Creates a new variable at the start of the BDD variable ordering and returns the BDD for it.

bdd
bdd_new_var_last(bddm)
bdd_manager bddm;

Creates a new variable at the end of the BDD variable ordering and returns the BDD for it.

bdd
bdd_new_var_before(bddm, var)
bdd_manager bddm;
bdd var;

Creates a new variable which is beforevar in the BDD variable ordering and returns the BDD for
the new variable.

bdd
bdd_new_var_after(bddm, var)
bdd_manager bddm;
bdd var;

Creates a new variable which is aftervar in the BDD variable ordering and returns the BDD for
the new variable.

bdd
bdd_var_with_index(bddm, i)
bdd_manager bddm;
long i;

If a variable with indexi has been created, returns the BDD for the variable. If no such variable
exists, returns null. See alsobdd_if_index.

bdd
bdd_var_with_id(bddm, i)
bdd_manager bddm;
long i;

If a variable with IDi has been created, returns the BDD for the variable. If no such variable has
been created, returns null. See alsobdd_if_id.

bdd
bdd_one(bddm)
bdd_manager bddm;

Returns the BDD for the constant TRUE.

bdd
bdd_zero(bddm)
bdd_manager bddm;

Returns the BDD for the constant FALSE.

bdd
bdd_and(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical AND off andg.

bdd

11 June 1993 4

BDD(3) BDD(3)

bdd_nand(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical NAND off andg.

bdd
bdd_or(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical OR off andg.

bdd
bdd_nor(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical NOR off andg.

bdd
bdd_xor(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical XOR off andg.

bdd
bdd_xnor(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical XNOR off andg.

bdd
bdd_identity(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD forf. The only real effect of this function is to increase the reference count off.
Also works with MTBDDs.

bdd
bdd_not(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD for the logical NOT off.

bdd
bdd_ite(bddm, f, g, h)
bdd_manager bddm;
bdd f, g, h;

Returns the BDD for the logical operation IFf THEN g ELSEh.

bdd
bdd_if(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD for the variable which labels the root of the BDD given byf. Also works with
MTBDDs. The result is undefined iff is one of the constants TRUE or FALSE or an MTBDD
terminal node.

bdd
bdd_then(bddm, f)
bdd_manager bddm;
bdd f;

11 June 1993 5

BDD(3) BDD(3)

Returns the BDD for the THEN branch of the root of the BDD given byf. Also works with
MTBDDs. The result is undefined iff is one of the constants TRUE or FALSE or an MTBDD
terminal node.

bdd
bdd_else(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD for the ELSE branch of the root of the BDD given byf. Also works with MTB-
DDs. The result is undefined iff is one of the constants TRUE or FALSE or an MTBDD terminal
node.

long
bdd_if_index(bddm, f)
bdd_manager bddm;
bdd f;

Returns the index of the variable which labels the root of the BDD given byf. Also works with
MTBDDs. The result is undefined iff is one of the constants TRUE or FALSE or an MTBDD
terminal node. The variable at the start of variable ordering has index 0, the next has index 1, etc.
Note that creating new variables may change the index of existing variables. Dynamic reordering
may also change the index of variables.

long
bdd_if_id(bddm, f)
bdd_manager bddm;
bdd f;

Returns a unique ID number for the variable which labels the root of the BDD given byf. Also
works with MTBDDs. The result is undefined iff is one of the constants TRUE or FALSE or an
MTBDD terminal node. The ID for a variable is fixed at the time the variable is created and
never changes after that.

bdd
bdd_intersects(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Computes a BDD that implies the conjunction off andg. If the conjunction is not FALSE, then
the BDD returned will not be FALSE. Also, the function tries to construct as few new nodes as
possible. This routine is intended for cases where you need to test for a FALSE conjunction, and,
when it the conjunction is not FALSE, to obtain just one valuation satisfying bothf and g. A
non-FALSE result frombdd_intersects can be passed directly to a routine likebdd_satisfy_sup-
port.

bdd
bdd_implies(bddm, f, g)
bdd_manager bddm;
bdd f, g;

This is equivalent to callingbdd_intersects with f and NOTg.

int
bdd_new_assoc(bddm, assoc, pairs)
bdd_manager bddm;
bdd *assoc;
int pairs;

Creates or finds a variable association. The association is specified byassoc and should be a null-
terminated array of BDDs. Ifpairs is 0, the array is assumed to be an array of variables. In this
case, each variable is paired with the BDD for TRUE. Such an association may essentially be
viewed as specifying a set of variables for use with routines such asbdd_exists. If pairs is
nonzero, then the even numbered array elements should be variables and the odd numbered

11 June 1993 6

BDD(3) BDD(3)

elements should be the BDDs which they are mapped to. In both cases, the return value is an
integer identifier for this association. Note: if the given association is equivalent to one which
already exists, the same identifier is used for both, and the reference count of the association is
increased by one.

void
bdd_free_assoc(bddm, id)
bdd_manager bddm;
int id;

Decrements the reference count of the variable association with identifierid, and frees it if the
reference count becomes zero.

void
bdd_temp_assoc(bddm, assoc, pairs)
bdd_manager bddm;
bdd *assoc;
int pairs;

Sets the temporary variable association. The argumentsassoc and pairs are as in
bdd_new_assoc.

void
bdd_augment_temp_assoc(bddm, assoc, pairs)
bdd_manager bddm;
bdd *assoc;
int pairs;

Add to the temporary variable association. The argumentsassoc and pairs are as in
bdd_new_assoc. Any existing associations are overwritten. This is mainly used when doing
things like substituting for all variables in a BDD. It isn’t necessary to clear out the temporary
association in such cases, so you can save a little time by using this routine.

int
bdd_assoc(bddm, id)
bdd_manager bddm;
int id;

Sets the current variable association to the one identified byid. The identifier for the old current
association is returned. The temporary variable association has identifier -1.

bdd
bdd_exists(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD forf with all the variables that are paired with something in the current variable
association existentially quantified out.

bdd
bdd_forall(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD forf with all the variables that are paired with something in the current variable
association universally quantified out.

bdd
bdd_rel_prod(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns the BDD for the logical AND off andg with all the variables that are paired with some-
thing in the current variable association existentially quantified out. Iff and g are viewed as
boolean relations, this operation corresponds to relational product. This routine is generally
much more efficient than doing the operations separately.

11 June 1993 7

BDD(3) BDD(3)

bdd
bdd_compose(bddm, f, g, h)
bdd_manager bddm;
bdd f, g, h;

Returns the BDD for the substitution ofh for the variableg in f. Whenh does not depend ong,
the operation may be viewed as composition of boolean functions. Ifh does depend ong, it cor-
responds to instantaneous substitution in a boolean formula.

bdd
bdd_substitute(bddm, f)
bdd_manager bddm;
bdd f;

Returns the BDD forf under a substitution defined by the current variable association. Each vari-
able is replaced by its associated BDD. The substitution is effectively simultaneous.

bdd
bdd_reduce(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns a BDD which agrees withf for all valuations which satisfyg. The result is usually
smaller in terms of number of BDD nodes thanf. This operation is typically used in state space
searches to simplify the representation for the set of states which will be expanded at each step.

bdd
bdd_cofactor(bddm, f, g)
bdd_manager bddm;
bdd f, g;

Returns a BDD for the generalized cofactor off by g. The BDD indicated byg should not be the
constant FALSE. For some properties of this operation, see Touatiet al. [2].

int
bdd_depends_on(bddm, f, g)
bdd_manager bddm;
bdd f;
bdd g;

Returns 1 if the BDD or MTBDDf depends on the variable given by the BDDg, and returns 0
otherwise.

void
bdd_support(bddm, f, support)
bdd_manager bddm;
bdd f;
bdd *support;

Stores the support off as a null-terminated sequence of variables insupport. Works for MTB-
DDs also.

bdd
bdd_satisfy(bddm, f)
bdd_manager bddm;
bdd f;

Returns a BDD which is not false, impliesf, and has at most one BDD node at each level. The
BDD indicated byf should not be the constant FALSE.

bdd
bdd_satisfy_support(bddm, f)
bdd_manager bddm;
bdd f;

Returns a BDD which is not false, impliesf, has at most one BDD node at each level, and has a
node labeled with each variable which is paired with something in the current variable

11 June 1993 8

BDD(3) BDD(3)

association. Iff is the constant FALSE, the result is undefined.

double
bdd_satisfying_fraction(bddm, f)
bdd_manager bddm;
bdd f;

Returns the fraction of valuations which satisfyf. If f is a function ofn variables, then 2 to the
powern times this fraction is the number of valuations which satisfyf.

bdd
bdd_swap_vars(bddm, f, g, h)
bdd_manager bddm;
bdd f;
bdd g;
bdd h;

Returns the BDD forf with g substituted forh andh substituted forg. The substitution is effec-
tively simultaneous.

bdd
bdd_apply2(bddm, terminal_fn, f, g, env)
bdd_manager bddm;
bdd (*terminal_fn)();
bdd f;
bdd g;
pointer env;

This is a generic two-argument operation. The behavior of the operation on terminal values is
given by terminal_fn. It should take as arguments: the BDD manager, pointers to two BDDs
(the arguments for the call), and the pointer given byenv. If the value of the call can be deter-
mined immediately from the arguments, it should return that value. Otherwise, it should return a
null pointer. In this case, it may also use the BDD pointers that it received to alter the arguments
to the call. A typical use for this ability is to put the arguments in a canonical order for commuta-
tive operations. The function should not alter the reference counts of either the arguments or the
returned value. Also, the returned value (if non-null) has its temporary reference count incre-
mented once automatically. If your function always returns one of the arguments or TRUE or
FALSE, this is the right thing and you don’t hav e to worry about it. If you want to call other rou-
tines to determine the return value, you should read the section on adding new routines below.
Works with MTBDDs.

bdd
bdd_apply1(bddm, terminal_fn, f, env)
bdd_manager bddm;
bdd (*terminal_fn)();
bdd f;
pointer env;

This is a generic one-argument operation. It is basically likebdd_apply2, except thattermi-
nal_fn takes a single BDD pointer argument instead of the pair of pointers in the two-argument
case. Works with MTBDDs.

long
bdd_size(bddm, f, negout)
bdd_manager bddm;
bdd f;
int negout;

Returns the number of nodes inf. The parameternegout is a flag indicating whether negative
output pointers should be considered. The library uses this type of pointer flag internally, so if
the flag is nonzero, the actual number of nodes used is returned. If the flag is zero, the return
value is the number of nodes which would be needed to representf using a basic BDD. Works

11 June 1993 9

BDD(3) BDD(3)

for MTBDDs too.

long
bdd_size_multiple(bddm, fs, negout)
bdd_manager bddm;
bdd *fs;
int negout;

Returns the number of nodes in the set of BDDs or MTBDDs given byfs, which should be a null-
terminated array. Nodes which are shared among the BDDs are only counted once. The parame-
ter negout is as inbdd_size.

void
bdd_profile(bddm, f, lev el_counts, negout)
bdd_manager bddm;
bdd f;
long *level_counts;
int negout;

Returns the ‘‘node profile’’ off, i.e., the number of nodes at each level inf. The parameter
level_counts should be an array of longs of size one plus the number of variables in existence
(seebdd_vars). On return, this array holds the profile; theith entry is the number of nodes
labeled with the variable of indexi. The last entry corresponds to the nodes for TRUE and
FALSE. The parameternegout is as inbdd_size. Works for MTBDDs too; in this case, the last
entry corresponds to the MTBDD terminal nodes.

void
bdd_profile_multiple(bddm, fs, level_counts, negout)
bdd_manager bddm;
bdd* fs;
long *level_counts;
int negout;

Returns the ‘‘node profile’’ of the set of BDDs or MTBDDs given byfs, which should be a null-
terminated array. The parameterslevel_counts andnegout are as inbdd_profile.

void
bdd_function_profile(bddm, f, func_counts)
bdd_manager bddm;
bdd f;
long *func_counts;

Returns the ‘‘function profile’’ off, i.e., the number of functions at or below each level inf. The
parameterfunc_counts should be an array of longs of size one plus the number of variables in
existence (seebdd_vars). On return, this array holds the profile. Theith entry corresponds to
the number of functions which can be obtained by restricting those variables of index less thani,
provided thatf has at least one node labeled with the variable of indexi. If f has no nodes labeled
with the variable of indexi, then theith entry of the profile is 0. Works for MTBDDs also.

void
bdd_function_profile_multiple(bddm, fs, func_counts)
bdd_manager bddm;
bdd *fs;
long *func_counts;

Returns the ‘‘function profile’’ of the set of BDDs or MTBDDs given byfs, which should be a
null-terminated array. The parameterfunc_counts is as inbdd_function_profile.

void
bdd_print_bdd(bddm, f, naming_fn, terminal_id_fn, env, fp)
bdd_manager bddm;
bdd f;
char *(*naming_fn)();

11 June 1993 10

BDD(3) BDD(3)

char *(*terminal_id_fn)();
pointer env;
FILE *fp;

Prints a human-readable representation of the BDD or MTBDDf to the file given byfp. The
naming_fn should be a pointer to a function taking abdd_manager, abdd and the pointer given
by env. This function should return either a null pointer or a string that is the name of the sup-
plied variable. If it returns a null pointer, a default name is generated based on the index of the
variable. It is also legal fornaming_fn to be null; in this case, default names are generated for all
variables. The macrobdd_naming_fn_none is a null pointer of suitable type.terminal_id_fn
should be a pointer to a function taking abdd_manager and two longs, plus the pointer given by
env. It should return either a null pointer or a string representing the MTBDD terminal repre-
sented by the given value. If it returns a null pointer, or ifterminal_id_fn is null, then default
names are generated for the terminals. The macrobdd_terminal_id_fn_none is a null pointer of
suitable type.

void
bdd_print_profile(bddm, f, naming_fn, env, width, fp)
bdd_manager bddm;
bdd f;
char *(*naming_fn)();
pointer env;
int width;
FILE *fp;

Prints a node profile of a BDD in histogram form. The argumentnaming_fn should be as
described inbdd_print_bdd. The width of the output stream is specified bywidth. This is used
to determine how to scale the histogram.

void
bdd_print_profile_multiple(bddm, fs, naming_fn, env, width, fp)
bdd_manager bddm;
bdd *fs;
char *(*naming_fn)();
pointer env;
int width;
FILE *fp;

Prints a node profile of a set of BDDs, which should be given as a null-terminated array. The
other arguments are as inbdd_print_profile.

void
bdd_print_function_profile(bddm, f, naming_fn, env, width, fp)
bdd_manager bddm;
bdd f;
char *(*naming_fn)();
pointer env;
int width;
FILE *fp;

Prints a function profile of a BDD in histogram form. The arguments are the same as those to
bdd_print_profile.

int
bdd_dump_bdd(bddm, f, vars, fp)
bdd_manager bddm;
bdd f;
bdd *vars;
FILE *fp;

Writes an encoded description of the BDD or MTBDDf to the file given byfp. The argument
vars should be a null-terminated array of variables that include the support off. These variables

11 June 1993 11

BDD(3) BDD(3)

need not be in order of increasing index. The function returns a nonzero value iff was written to
the file successfully.

bdd
bdd_undump_bdd(bddm, vars, fp, error)
bdd_manager bddm;
bdd *vars;
FILE *fp;
int *error;

Loads an encoded description of a BDD or MTBDD from the file given byfp. The argument
vars should be a null-terminated array of variables that will become the support of the BDD. As
in bdd_dump_bdd, these need not be in order of increasing index. If the same array of variables
is used in dumping and undumping, the BDD returned will be equal to the one that was dumped.
More generally, if the arrayv1 is used when dumping, and the arrayv2 is used when undumping,
the BDD returned will be equal to the original BDD with theith variable inv2 substituted for the
ith variable inv1 for all i. Null is returned if the operation fails for some reason (node limit
reached, I/O error, inv alid file format, etc.). In this case, an error code is stored inerror. The
code will be one of the following.
Value Meaning
BDD_UNDUMP_FORMAT Inv alid file format
BDD_UNDUMP_OVERFLOW Node limit exceeded
BDD_UNDUMP_IOERROR File I/O error
BDD_UNDUMP_EOF Unexpected EOF

int
bdd_type(bddm, f)
bdd_manager bddm;
bdd f;

Returns an integer classifying the BDD or MTBDDf. The possible return values and their mean-
ings are as follows.
Value Meaning
BDD_TYPE_OVERFLOW f is a null pointer
BDD_TYPE_ZERO f is the constant FALSE
BDD_TYPE_ONE f is the constant TRUE
BDD_TYPE_CONSTANT f is an MTBDD constant
BDD_TYPE_POSVAR f is a variable
BDD_TYPE_NEGVAR f is the negation of a variable
BDD_TYPE_NONTERMINAL f is not one of the above

void
bdd_free(bddm, f)
bdd_manager bddm;
bdd f;

Decreases the reference count off by one. When the reference count of a BDD or MTBDD node
reaches 0, the node and any of its children that are not otherwise referenced may eventually be
garbage collected and reused. Intermediate results and unused BDDs and MTBDDs should be
freed whenever possible. For example:

bdd
f_or_g_and_h(bddm, f, g, h)

bdd_manager bddm;
bdd f, g, h;

{
bdd temp, result;
temp=bdd_and(bddm, g, h);
result=bdd_or(bddm, f, temp);

11 June 1993 12

BDD(3) BDD(3)

bdd_free(bddm, temp); /* Free intermediate */
return (result);

}

void
bdd_unfree(bddm, f)
bdd_manager bddm;
bdd f;

Increases the reference count off by one. This is usually used in conjunction with
bdd_clear_refs. Works with MTBDDs.

void
bdd_clear_refs(bddm)
bdd_manager bddm;

Sets the reference counts of all BDD and MTBDD nodes (except for the node for TRUE/FALSE)
to 0. Calling this routine and then immediately callingbdd_unfree on a set of BDDs has the
effect of disposing of all BDDs except those in the set.

void
bdd_gc(bddm)
bdd_manager bddm;

Forces a BDD garbage collection; all nodes not reachable from a node with a nonzero reference
count are disposed of. (Garbage collections also occur internally at various times.)

long
bdd_total_size(bddm)
bdd_manager bddm;

Returns the number of BDD and MTBDD nodes in existence (including those which are eligible
for garbage collection).

long
bdd_vars(bddm)
bdd_manager bddm;

Returns the number of variables in existence.

int
bdd_cache_ratio(bddm, ratio)
bdd_manager bddm;
int ratio;

Sets the BDD operation cache size ratio toratio and returns the old cache size ratio. The number
of cache entries is constrained to be (roughly) less than the cache size ratio divided by 16 times
the number of BDD nodes in existence. The default size ratio is 4, which gives about 1 cache
entry per 4 BDD nodes. The amount of memory required per node will be about
17+(ratio/16)*20 bytes on a machine with 32-bit words.

void
bdd_node_limit(bddm, limit)
bdd_manager bddm;
long limit;

Sets the number of allowed BDD nodes tolimit and returns the old limit. A value of 0 specifies
no limit. If in the course of an operation, the number of nodes reaches the limit, an internal
garbage collection takes place. If this does not free enough nodes to continue, the operation is
aborted and a null value is returned. When dynamic reordering is used to shift around large vari-
able block, this limit may be exceeded during reordering.

int
bdd_overflow(bddm)
bdd_manager bddm;

Returns 1 if any operation has caused an overflow in the number of nodes, and 0 otherwise.

11 June 1993 13

BDD(3) BDD(3)

Calling this routine clears the internal overflow flag, so subsequent calls will return 0 until the
next overflow occurs.

void
bdd_overflow_closure(bddm, overflow_fn, overflow_env)
bdd_manager bddm;
void (*overflow_fn)();
pointer overflow_env;

Sets the closure to invoke when an overflow occurs. The function given byoverflow_fn will be
invoked as the last stage in the cleanup after the overflow. The function is passed the BDD man-
ager and the pointer given byoverflow_env. Typically, the function will jump to a user-provided
error recovery routine.

void
bdd_abort_closure(bddm, abort_fn, abort_env)
bdd_manager bddm;
void (*abort_fn)();
pointer abort_env;

Sets a closure to invoke when the next node creation is attempted. All temporary results will be
cleaned up just before the function given byabort_fn is called. The function is passed the BDD
manager and the pointer given byabort_env. Typically, the function will jump to a user-pro-
vided error recovery routine. This functionality is intended to be used to cleanly interrupt BDD
operations. Typically,bdd_abort_closure will be called within a signal handler.

void
bdd_stats(bddm, fp)
bdd_manager bddm;
FILE *fp;

Prints some statistics to the file given byfp.

void
bdd_dynamic_reordering(bddm, reorder_fn)
bdd_manager bddm;
void (*reorder_fn)();

Selects the method for dynamic reordering. When dynamic reordering is being used, the library
may attempt to rearrange the BDD variable ordering in the midst of an operation so as to reduce
the number of nodes in use. There are currently two available reordering methods. The first,
bdd_reorder_stable_window3, permutes the variables within windows of three adjacent vari-
ables so as to minimize the overall BDD size. This process is repeated until no more reduction in
size occurs. The second method,bdd_reorder_sift, moves each variable throughout the order to
find an optimal position for that variable (assuming all other variables are fixed). This generally
achieves greater size reductions than the window-based method, but is slower. Thereorder_fn
may also bebdd_reorder_none (an appropriately cast null pointer), in which case dynamic
reordering is turned off. Also see the discussion on variable blocks inbdd_new_var_block.

void
bdd_reorder(bddm)
bdd_manager bddm;

Invoke the current dynamic reordering method.

block
bdd_new_var_block(bddm, v, n)
bdd_manager bddm;
bdd v;
long n;

Groups the variablev and then-1 variables after it in the ordering into a single block for purposes
of dynamic reordering. The purpose of blocks is to provide control over the possible orders that
dynamic reordering will consider. In general, the variable blocks form a hierarchy. For example,

11 June 1993 14

BDD(3) BDD(3)

a block consisting of the variables with indexes 0 through 3 might be made up of two sub-blocks,
one for the variables with index 0 and 1, and one for the variables with index 2 and 3. When
dynamic reordering is invoked, it is actually applied to each block within the hierarchy. Reorder-
ing a block involves shuffling around the sub-blocks within it. Thus, dynamic reordering actually
moves groups of variables rather than single variables. If you know that a group of variables
should be together in the ordering, you should collect them together into a block. As an example,
in BDD-based sequential verification algorithms, the variables representing the current state and
next state of a state-holding element should generally be adjacent in a good ordering. By group-
ing these variables into a block, we can ensure that only orderings with this property are consid-
ered. After a block has been reordered, each sub-block within it is recursively reordered as well.
You can also specify that certain blocks should not be reordered (seebdd_var_block_reorder-
able below).

void
bdd_var_block_reorderable(bddm, b, reorderable)
bdd_manager bddm;
block b;
int reorderable;

If reorderable is non-zero, turns on reordering for the given block, otherwise turns it off. By
default, blocks are not reorderable. As an example, suppose we are building the BDDs represent-
ing a circuit with distinct control and data path. In such a case, we typically want to have the
control variables at the top of the ordering. For the data path, we probably want to have the vari-
ables for each bit slice grouped together, and we want the bit slices to be ordered from most-sig-
nificant to least-significant. However, we want to allow reordering within the control part and
within each slice. To do this, we create the variables in the following order: control variables
first, down to LSB slice variables. Then we create separate variable blocks for the control part
and for each slice. We then turn on reordering for these blocks. Next, we create a block contain-
ing all of the variables, and we leave reordering off for this block. When dynamic reordering is
invoked, it will rearrange the control variables and the variables within each slice, but will not
move the control variables or the slices in relation to each other.

void
bdd_free_terminal_closure(bddm, free_terminal_fn, free_terminal_env)
bdd_manager bddm;
void (*free_terminal_fn)();
pointer free_terminal_env;

Sets a closure to invoke when freeing an MTBDD terminal node. The function receives the BDD
manager, two longs representing the value of the terminal, and the pointer given byfree_termi-
nal_env. If you using the terminal value to hold pointers to other data structures, you can set up
this routine to free those structures.

bdd
mtbdd_get_terminal(bddm, value1, value2)
bdd_manager bddm;
long value1;
long value2;

Creates an MTBDD terminal node corresponding to the value given byvalue1 andvalue2. If a
terminal node with the value already exists, its reference count is increased. See also
bdd_free_terminal_closure.

void
mtbdd_terminal_value(bddm, f, value1, value2)
bdd_manager bddm;
bdd f;
long *value1;
long *value2;

f should be an MTBDD terminal node. The value of the node is stored invalue1 andvalue2.

11 June 1993 15

BDD(3) BDD(3)

bdd
mtbdd_ite(bddm, f, g, h)
bdd_manager bddm;
bdd f;
bdd g;
bdd h;

f should be a BDD andg andh should be MTBDDs. Returns the MTBDD for the operation IFf
THEN g ELSEh.

bdd
mtbdd_substitute(bddm, f)
bdd_manager bddm;
bdd f;

Does the analog ofbdd_substitute for the MTBDD f. The elements in the variable association
must be BDDs.

bdd
mtbdd_equal(bddm, f, g)
bdd_manager bddm;
bdd f;
bdd g;

Returns the BDD which is true for those valuations on which the MTBDDsf and g are equal.
That is, this is the analog of a logical XNOR for MTBDDs.

bdd
mtbdd_transform(bddm, f)
bdd_manager bddm;
bdd f;

Conceptually applies the user-defined transform to all terminals of the specified MTBDD. (This
is actually done by just flipping the pointer flag, so this routine is really a macro forbdd_not.)
Seemtbdd_transform_closure.

void
mtbdd_transform_closure(bddm, canonical_fn, transform_fn, env)
bdd_manager bddm;
int (*canonical_fn)();
void (*transform_fn)();
pointer env;

Sets the MTBDD terminal transformation closure. Currently in the library, the pointer represent-
ing a boolean function and the pointer representing the negation of that function are identical
except for the low-order bit. Complementing a function is done by simply toggling that bit. The
MTBDD terminal transformation allows this mechanism to be extended to MTBDDs. Whenever
a terminal is created,canonical_fn will be called. It is passed the BDD manager, two longs rep-
resenting the terminal being created, and the pointer given byenv. The function should return
zero if the value is already canonical, and a non-zero result if it needs to be transformed. If the
value needs to be transformed, thentransform_fn will be called, with the BDD manager, two
longs representing the value to be transformed, pointers to two longs to hold the result, and the
pointer given byenv. The actual terminal node that is created will contain the transformed value.
The original terminal requested will be represented by a pointer to this node, with the low-order
bit of the pointer set. Also seemtbdd_one_data. If you are going to call this function, you
should do it before creating any MTBDD terminals.

void
mtbdd_one_data(bddm, value1, value2)
bdd_manager bddm;
long value1;
long value2;

11 June 1993 16

BDD(3) BDD(3)

If you are planning to use MTBDDs that contain TRUE and FALSE as well as other values, you
may need to use this function to set the MTBDD value for the node representing TRUE. In this
case, also keep in mind that the when the transformation function is applied to this value, it
should yield the value that you want for FALSE. Also, the value for TRUE should be regarding
as canonical, i.e., TRUE must be represented by a pointer with the low-order bit cleared. As an
example, suppose that we are planning to use MTBDDs to represent spectral transforms of
boolean functions [4]. In this case, the MTBDD terminal values will conceptually be integers.
Further, it is convenient for TRUE to be represented by the value -1, and FALSE to be repre-
sented by +1. We will represent terminal values using two longs, with the first long representing
the most-significant part of the integer. We will also assume a 2’s complement representation, so
TRUE should be represented by the data values -1 and -1. Since the value for FALSE is the
negation of that for TRUE, we will have our transform function represent integer negation. Also,
since we want the value for TRUE to be canonical, we will regard nonnegative values as canoni-
cal. Thus, we define

int
canonical_fn(bddm, value1, value2, env)

bdd_manager bddm;
long value1;
long value2;
pointer env;

{
return (value1 > 0 || (!value1 && value2 > 0));

}

void
transform_fn(bddm, value1, value2, result1, result2, env)

bdd_manager bddm;
long value1;
long value2;
long *result1;
long *result2;
pointer env;

{
if (!value2)
/* Will be a carry when taking 2’s complement of value2. Thus, */
/* take 2’s complement of high part. */
value1= -value1;

else
{
value2= -value2;
value1= ˜value1;

}
*result1=value1;
*result2=value2;

}

We then callmtbdd_transform_closure to register these functions, and use

bdd_one_data(bddm, -1l, -1l);

to set the value for TRUE to -1. (The default canonical checking and transformation functions
and the default MTBDD values for TRUE and FALSE are actually as given in this example.) If
you are going to callbdd_one_data, you should do it before creating any MTBDD terminals.

11 June 1993 17

BDD(3) BDD(3)

ADDING NEW ROUTINES
If you want to add new routines to the library, you would be well-advised to look at some of the existing
ones to get a feel for how they operate. Good ones includebdd_ite (the basic logical operation) and
bdd_exists (a routine using variable associations). Some basic points are explained below. To get the dec-
larations of the internal library data structures and routines, you should#include <bddint.h> instead of
usingbdduser.h. You will probably want to study this file to become familiar with the data structures.

Pointers to BDD nodes and cache entries are tagged using the low three bits of the pointer. Because of this,
all structures must be aligned on eight byte boundaries. The storage allocation routines guarantee this
alignment. The tag field of a tagged pointer is extracted with theTA G macro. ThePOINTER macro
masks off the tag to get the actual pointer. If the pointer is a pointer to a BDD node, you can use
BDD_POINTER instead; this just casts the result to abdd after masking off the tag. The tag can be set
usingSET_TAG, and individual tag bits can be manipulated withTA G0, FLIP_TAG0 andSET_TAG0 for
tag bit 0, and the analogous macros for tag bits 1 and 2. More commonly, slightly higher level macros are
used for manipulating tags. For BDD nodes, there is only one tag bit that is actually used. When it is set, it
indicates the pointer should be interpreted as representing the complement of the node that it points to. (Or
for MTBDDs, that it should be interpreted as transformed using the user-definable transformation function).
There are macros for testing, clearing, and flipping the negation flag.

Before using the macros below on a pointerf, you need to useBDD_SETUP(f). This actually declares a
new variable to hold the masked pointerBDD_POINTER(f). Hence, it needs to be placed at some point
where a variable declaration could legally go. If you changef, you can reset this internal variable using
BDD_RESET.

BDD pointers are generally manipulated using the following macros. Below, ‘‘node’’ refers to the node ref-
erenced by the pointer.

BDD_IS_CONST
Tests if the node represents the constant TRUE or FALSE or an MTBDD terminal node.

BDD_INDEX
Returns the index of the node, orBDD_MAX_INDEX if given a constant node.

BDD_INDEXINDEX
Returns the index index of a node. This field is the value returned bybdd_if_id and is invariant;
when you create a new variable, the index of old nodes may change, but the index index stays the
same. When you callbdd_find, you pass the desired index index of the new node, not the index.

BDD_NOT
Flips the negation flag on a pointer.

BDD_THEN, BDD_ELSE
Return the THEN and ELSE pointers of a node, taking proper account of pointer flags. These are
used for doing Shannon expansions on a node.

BDD_TOP_VAR2 Takes abdd_manager, a variable that can hold an index index, and twobdds. Sets the
index index variable to the index index of the variable with the lowest index among the variables at the
roots of the BDDs. This index index can then be used with...

BDD_COFACTOR Takes an index index, a BDD, and two variables of typebdd, and sets the two vari-
ables either to the original BDD or to the cofactors of the original BDD with respect to its top variable,
depending on whether the index index of the first BDD matches that specified. You can do a Shannon
expansion on the top variable of two BDDs by usingBDD_TOP_VAR2 to get the index index of the high-
est variable and then usingBDD_COFACTOR to take the appropriate cofactors.

BDD_MARK
Accesses the mark field of a node. This expands to a l-value, so you can set the mark with this as
well. (But see BDD_TEMP_REFS below.)

BDD_ONE, BDD_ZERO

11 June 1993 18

BDD(3) BDD(3)

Take a BDD manager and give back the BDDs for TRUE and FALSE.

BDD_REFS
Accesses the reference count field of a node.

BDD_INCREFS, BDD_DECREFS
Increment and decrement the reference count.

BDD_TEMP_REFS
Accesses the temporary reference count field of a node. The temporary reference count and the
mark actually share storage, so you can’t use both at once! That is, unless you are very clever,
you can’t write a routine that builds temporary nodes and uses the marks.

BDD_TEMP_INCREFS, BDD_TEMP_DECREFS
Increment and decrement the temporary reference count.

New BDD nodes are created usingbdd_find. This routine takes a BDD manager, an index index, and two
subBDDs as arguments. New MTBDD terminals can be created withbdd_find_terminal. The result
cache is manipulated using thebdd_lookup_in_cache andbdd_insert_in_cache routines. There are dif-
ferent versions of these routines depending on exactly what is being cached. The basic ones are
bdd_lookup_in_cache31 and bdd_insert_in_cache31. The first of these takes a cache entry type
(CACHE_TYPE_ITE, CACHE_TYPE_TWO, etc.), three arguments of unspecified type (passed as longs),
and a pointer to an unspecified type of result (a pointer to a long). It returns a nonzero result if the lookup
succeeds. The corresponding insert routine is similar except that the result is passed in as a long, and noth-
ing is returned. There are similar functions that are for routines that take two arguments and return two
results (or a single double-word result), or for routines that take one argument and return three results.
There are also macros such asbdd_lookup_in_cache2 that are wrappers for things like two-argument
functions, etc. In general, some action must be taken when results are returned from the cache, when
entries are purged from the cache, when entries are garbage collected, and when a variable association ID is
reclaimed. For the built-in cache entry types, these actions are done automatically. For example, when a
BDD is returned from an entry with CACHE_TYPE_TWO, the temporary reference count of the BDD is
incremented. Some of the entry types are available for customization. The actions to take for these entry
types are specified by callingbdd_cache_functions. This function takes a BDD manager, an integer
between 1 and 3 specifying the number of arguments you want to cache on, and four function pointers.
When returning a result, purging an entry, garbage collecting, or reclaiming an association ID, these func-
tions are called. The first three functions are passed the BDD manager and the entry. (The tag bits will
have already been masked off the entry pointer.) The last receives these plus the association ID being freed
(cast to a pointer). The garbage collection function should return a nonzero result if the entry should be
garbage collected. If the entry contains some BDD nodes, they should be tested withBDD_IS_USED.
The function called when an association ID is reclaimed should return a nonzero result if the entry should
be flushed from the cache. This function and the purge function and return functions may be null, specify-
ing that no action need be taken.bdd_cache_functions returns an integer that represents a tag to use with
the cache insertion and lookup routines, or -1 if there are no more free tags available. The routine
bdd_free_cache_tag makes a tag available again.

Routines that build new BDD nodes must take into account the possibility of running into the node limit.
The package is set up to make this easy if you use the following strategy. Org anize your routine as a top-
level (user-callable) procedure and an internal procedure for performing the actual computation. The top-
level procedure should check its arguments before calling the internal routine. Thebdd_check_arguments
function can be used to test for null arguments (indicating a prior overflow) or arguments with a zero refer-
ence count (indicating a bug). It should also use theFIREWALL macro to set up an overflow trap. The
internal routine should use temporary reference counts to keep track of the nodes it is using. When a node
is returned from the internal routine, increment its temporary reference count once. (You don’t hav e to do
this for the constants or for variables, since they can’t be garbage collected.) When you pass a node to
bdd_find, its temporary reference count is decremented once automatically, and its reference count is
incremented. Also, the result ofbdd_find has its temporary reference count incremented once

11 June 1993 19

BDD(3) BDD(3)

automatically. Hence, if you your routine has the standard organization (Shannon’s expansion followed by
bdd_find on the subresults), you usually don’t hav e to worry about incrementing or decrementing the refer-
ence counts yourself. If you don’t use a subresult, or if you want a subresult to stick around after calling
bdd_find, you’ll have to do the appropriate twiddling. When the internal routine finally returns, you
should have a BDD with a single temporary reference count. UseRETURN_BDD to convert this tempo-
rary reference count to an external one and return the result to the user. If you follow this strategy, you
won’t hav e to deal with overflow; when the node limit is reached,bdd_find will try garbage collecting, and
if that doesn’t work, will call the overflow trap set up byFIREWALL. The overflow trap handler will
automatically zero all temporary reference counts and return a null pointer to the user. Note: if you want to
call other routines, such as the IF-THEN-ELSE routine, within your internal procedure, you should call the
internal procedure for the routine. That way, the overflow handler will give control back to the user if the
routine you are calling causes an overflow.

A typical routine looks like:

bdd
foo_step(bddm, f, g)

bdd_manager bddm;
bdd f, g;

{
bdd_indexindex_type top_indexindex;
bdd f1, f2;
bdd g1, g2;
bdd temp1, temp2;
bdd result;

BDD_SETUP(f);
BDD_SETUP(g);
if (<terminal case>)
{
BDD_TEMP_INCREFS(f);
return (f);

}
if (bdd_lookup_in_cache2(bddm, <op>, f, g, &result))
return (result);

BDD_TOP_VAR2(top_indexindex, bddm, f, g);
BDD_COFACTOR(top_indexindex, f, f1, f2);
BDD_COFACTOR(top_indexindex, g, g1, g2);
temp1=foo_step(bddm, f1, g1);
temp2=foo_step(bddm, f2, g2);
result=bdd_find(bddm, top_indexindex, temp1, temp2);
bdd_insert_in_cache2(bddm, <op>, f, g, result);
return (result);

}

bdd
foo(bddm, f, g)

bdd_manager bddm;
bdd f, g;

{
if (bdd_check_arguments(2, f, g))
{
FIREWALL(bddm);
RETURN_BDD(foo_step(bddm, f, g));

11 June 1993 20

BDD(3) BDD(3)

}
return ((bdd)0);

}

In the case of dynamic variable reordering, the same abort mechanism is used. After reordering, all refer-
ence counts are reset to their original values and the operation is retried. This is handled automatically by
the FIREWALL macro. (The operation is aborted since after reordering, the implicit ordering represented
in the C subroutine call stack may be different from the new variable order. Reordering occurs before free-
ing the temporaries, since we want to minimize the aggregate size of the operands plus the result that is
being constructed.)

Storage can be allocated through a number of mechanisms. The routinesmem_get_block,
mem_free_block, andmem_resize_block are generally used for large single items. For smaller uniformly
sized items, you probably should use a record manager.mem_new_rec_mgr will return a record manager
that handles blocks of a given size. Usemem_new_rec andmem_free_rec to obtain and free individual
records. Finally,mem_free_rec_mgr will dispose of the record manager and all of its associated records.
These routines are documented in more detail in the storage management library man page. If your struc-
tures are at most 64 bytes in size, you can use the macrosBDD_NEW_REC and BDD_FREE_REC.
These obtain records from the internal BDD record managers.

PORTABILITY NOTES
Since pointer tagging is heavily used, you’ll have major problems if you can’t cast back and forth between
pointers and longs without losing something. The low-level storage management routines are fairly UNIX
specific; they callsbrk directly. If you don’t hav e something similar, you may have to rewrite them. The
storage management routines also need to be able to move and clear blocks of memory whose size is given
by a long. You may have to fiddle with these, especially if you have a machine where int and long are dif-
ferent. If you encounter portability problems, let me know; maybe the next release will be able to accom-
modate your machine.

SEE ALSO
mem(3)

BUGS
Surely you’re joking.

REFERENCES
[1] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation.IEEE Transactions on
Computers, C-35(8):677-691, August 1986.

[2] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit State Enumera-
tion of Finite State Machines using BDD’s. InProceedings of the 1990 IEEE International Conference on
Computer-Aided Design, November, 1990.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package. InProceed-
ings of the 27th ACM/IEEE Design Automation Conference, June, 1990.

[4] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. Yang. Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. InProceedings of the 30th ACM/IEEE
Design Automation Conference, June, 1993.

AUTHOR
David E. Long
long@research.att.com

11 June 1993 21

