SAT-Solving: From Davis-
Putnam to Zchaff and Beyond

Day 3: Recent Developments

Lintao Zhang
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Requirements for SAT solvers
in the Real World

e Fast & Robust

e Given a problem instance, we want to solve it quickly
e Reliable

o Can we depend on the SAT solver? i.e. is the solver bug free?
e Feature Rich

e Incremental SAT Solving

e Unsatisfiable Core Extraction

e What are the other desirable features?
e Beyond SAT

e Pseudo Boolean Constraint

e Multi-Value SAT solving

e Quantified Boolean Formula (QBF)
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Resolution

e Resolution of a pair of clauses with exactly ONE incompatible
variable

Two clauses are said to have distance 1

a+tb+@ Hf g+h+@Hf

at+tb+g+h Hf
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Conflict Analysis as

Resolution
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Key Observations

e DLL with learning is nothing but a resolution process

Has the same limitation as resolution

Certain class of instances require exponential sized resolution
proof. Therefore, it will take exponential time for DLL SAT solver

e \We can use this for
Certification / Correctness Checking
Unsatisfiable Core Extraction
Incremental SAT solving
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Motivation for SAT Solver
Validation

e Certify automatic reasoning tools:
Required for mission critical applications
Train Station Safety Check
Available for some theorem provers and model checkers
e Do we really need the validation?

Modern SAT solvers are intricate pieces of software (e.g. zchaff
contains about 10,000 lines of code)

Bugs are abundant in SAT solvers
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Certify a SAT Solver

e The correctness of a SAT solver:
If it claims the instance is satisfiable, it is easy to check the claim.
How about unsatisfiable claims?
Traditional method: run another SAT Solver
Time consuming, and cannot guarantee correctness
e Needs a formal check for the proof, similar to the check for
the validity of a proof in math.
Must be automatic.
Must be able to work with current state-of-the-art SAT solvers
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DLL with Learning :

whil e(1l) {
| f (decide_next _branch()) { //Branching
whi | e(deduce() ==conflict) { //Deducing
bl evel = anal yze conflicts(); //Learning
I f (blevel < 0)
return UNSAT,;
el se back _track(blevel); //Backtracking
}
el se //no branch neans all vari abl es got assi gned.
return SATI SFI ABLE;

}
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Correct in Unsatisfiable Case

(X4) /()
(X4 +X5') " (Xy+Xy) |
(X1) 1 \? (X4 )
(Xy X3 HX5+X7) __, (X4 +X5+Xs) /

§X4,+X3+X5,) \(X1’+X4,+X3)
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Final Conflicting
Clause
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Resolution Graph

Lintao Zhang

Empty
Clause

O Original Clauses
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An Independent Checker

Strategy:

e SAT solver dump out a trace during the solving process
representing the resolution graph

e Using a third party checker to construct the empty clause by
resolution using the hint provided by the trace

e Trace only contain resolve sources of each learned clauses.
Need to reconstruct the clause literals by resolution from
original clauses
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Practical Implementation:
Depth First

e Start from the empty clause, recursively reconstruct all
needed clause.

e Fast, because it only needs to reconstruct clauses that are
needed for the proof.

e But may fail because of memory overflow on hard instances.
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Depth First Approach ti
O Empty
O\ \‘/.. Clause

Q\ O Original Clauses
O

Q/ . Learned Clauses
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Practical Implementation:
Breadth First

e Start from the original clauses and construct clauses in the
same order as they appear

e Slower, because all the clauses need to be reconstructed

e No memory overflow problem if we delete clauses when they
are not needed anymore.
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Breadth First Approach

Q\ O Original Clauses
O

Q/ . Learned Clauses
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Calculate Fan-outs in Breadth | :3::
First Approach o
Q 0 0 | Empty

Clause
\/0

Q Original Clauses

Q/ ‘ Learned Clauses
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Calculate Fan-outs in Breadth | i
First Approach oe
Empty
Clause

Q Original Clauses

‘ Learned Clauses
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Experimental Results

Num. Orig. Num. Trace

Instance Name Variables Clauses Runtime | Overhead
2dIx_cc_mc_ex_bp_f 4583 41704 3.3 11.89%
bw_large.d 5886 122412 5.9 9.12%
c5315 5399 15024 22.0 10.45%
too_largefs3w8v262 2946 50216 40.6 7.68%
c7552 7652 20423 64.4 8.76%
S5pipe_5 ooo 10113 240892 118.8 4.51%
barrel9 8903 36606 238.2 4.51%
longmult12 5974 18645 296.7 6.17%
9vliw_bp_mc 20093 179492 376.0 4.26%
6pipe_6_ooo 17064 545612 1252.4 3.39%
6pipe 15800 394739 4106.7 2.77%
Tpipe 23910 751118 | 13673.0 1.68%

* Experiments are carried out on a PIlIl 1.13Ghz Machine with 1G Mem
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Experimental Results :
Instance Depth-First Breadth-First
Name Time(s) Mem(k) Time(s) Mem(k)

2dIx 0.84 7860 1.30 4652
bw_large.d 1.48 8720 244 9920
c5315 2.8 18108 5.19 3732
too_large 3.79 26752 5.47 6164
c7552 6.16 41420 11.44 5976
Spipe_5 ooo 6.6 50044 13.29 17936
barrel9 4.85 31456 10.46 6752
longmult12 25.9 154288 41.22 7488
9vliw_bp_mc 12.8 126752 33.81 17724
6pipe 6 ooo 38.5 249468 102.67 40136
6pipe * * 301.98 40248
Tpipe * * 645.33 62620
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Unsatisfiable Core Extraction:
Problem Definition

Given an unsatisfiable Boolean Formula in CNF
Find a formula
Such that G is unsatisfiable, C;’ [{C, | i=1...n} with m = n

Example:
(@) (@ +b’)(b+a))(c+a +d)c +d)(d +a)

. i 118
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Unsatisfiable Core Extraction:
Problem Definition

Given an unsatisfiable Boolean Formula in CNF
Find a formula
Such that G is unsatisfiable, C;’ [{C, | i=1...n} with m = n

Example:
(a)(@ +b)b+a)c+a +d)c’+d)(d +a)
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Unsatisfiable Core Extraction:
Problem Definition

Given an unsatisfiable Boolean Formula in CNF
Find a formula
Such that G is unsatisfiable, C;’ [{C, | i=1...n} with m = n

Example:
(a)(@ +b)b+a)c+a +d)c’ +d)(d +a)
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Motivation

e Debugging and redesign: SAT instances are often generated from real
world applications with certain expected results:

If the expected results is unsatisfiable, but we found the instance to be
satisfiable, then the solution is a “counter example” or “input vector” for
debugging

Train station safety checking

Combinational Equivalence Checking
What if the expected results is satisfiable?

SAT Planning

FPGA Routing

e Relaxing constraints:

If several constraints make a safety property holds, are there any redundant
constraints in the system that can be removed without violate the safety
property?
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Proposed Approach :

Q Empty
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Proposed Approach :
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Proposed Approach :

Q Empty
Clause

‘ Involved Clauses

. O Original Clauses
Q/ . Learned Clauses
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Implementation Issues

e No need to check the integrity of the graph

e Graph too large, have to traverse on disk
The nodes of the graph is already topologically ordered
But we need to reverse it

e Can iteratively run the procedure to obtain smaller cores

e Cannot guarantee the core to be minimal or minimum. Depends on
the SAT solver for the quality of the core extracted

. ' ft
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Experimental Results :
Instance Before After Clause | Run
Name Num Cls Num.Vars Num. Cls Num. Vars Ratio | Time (s)

2dix 41704 4524 11169 3145 26.8% 0.85
bw_large.d 122412 5886 8151 3107 6.7% 1.54
C5315 15024 5399 14336 5399 95.4% 2.64
too_large 50216 2946 10060 2946 20.0% 2.65
C7552 20423 7651 19912 7651 97.5% 5.37
5pipe_5_ooo 240892 10113 57515 7494 23.9% 6.62
Barrel9 36606 8903 23870 8604 65.2% 4.66
longmult12 18645 5974 10727 4532 57.5% 21.31
9vliw_bp_mc 179492 19148 66458 16737 37.0% 10.68
6pipe_6_ooo0 545612 17064 180559 12975 33.1% 37.14
6pipe 394739 15469 126469 13156 32.1% 99.96
Tpipe 753118 23910 221070 20188 29.3% | 152.71
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Core Extracted After Several

Iterations
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The Quality of the Core
Extracted

e Start from the smallest core that can be extracted by the proposed
method (i.e. run till fixed point), delete clauses one by one till no
clause can be deleted without change the satisfiability of the
formula.

e The resulting core is a minimal core for the formula.
e Finding minimal core is time consuming.

Benchmark Original | Extracted | Iterations | Minimal | Clause
Instance #Cls # Cls #Cls Ratio
2dIx_cc_ mc _ex bp f 41704 8036 26 7882 1.020
Bw_large.d 122412 1352 35 1225 1.104
Too_largefs3w8v262 50416 4464 32 3765 1.186

Lintao Zhang
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Incremental SAT Solving

e In real world, multiple SAT instances are generated to solve one
problem

Combinational Equivalence Checking: equivalence multiple outputs are
checked one by one

Bounded Model Checking: properties are checked at 1, 2, 3 ... n cycles.

e These multiple SAT instances are often very similar, or have large
common part

e Traditionally we solve them one by one independently
e Can we do better?
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Incremental SAT Solving

e Previous efforts are recorded in the learned clauses
Try to keep the learned clauses

e To solve a series of SAT instances that differ only a little bit, we
need to be able to
Add constraints to the clause database
If the original instance is UNSAT, the new instance is still UNSAT

If the original instance is SAT, while added constraint clauses are not
conflicting under the satisfying assignment, then the new instance is still

SAT
Otherwise, resolve the conflict and continue solve

Delete constraints from the database
Some of the learned clauses are invalidated
Ofer Strichman, CAV2000
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Find the Learned Clauses that | ss:¢
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Find the Learned Clauses that | ss:¢

are Invalidated :
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Engineering Questions

e How to do this efficiently?

It's too expensive for each learned clause to carry with it all it’s
resolve sources

Solution

Arrange the clauses into groups. Clauses are added and deleted
a group at a time

Using bit vector for carrying the group information for each

clause: 32 bit machine can have 32 groups of clauses, enough for
most applications

. ' ft
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Using SAT Techniques for
Other types of Constraints

e SAT Limitations
e Variables are in Boolean Domain
e Constrains are expressed as clauses
E.g. at least one of the literals in each clause must be true
e SAT Advantages
o DLL algorithm is highly polished, many well studied heuristics
e Very fast BCP
e Learning and non-chronological backtracking
e Can we remove some of the limitations while still retain the powerful
SAT solving techniques?
e Pseudo Boolean Constraint, Fadi Alou etc. PBS
e Multi Value SAT, Cong Liu etc. CAMA
e Quantified Boolean Solver
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Pseudo Boolean (PB)
Constraints Solver

e PB Constraints Definition

crxpte-te,x, ~ g

e Examples:
3X;+X, +5X%X53=2
Lintao Zhang




Pseudo Boolean (PB)
Constraints Solver T

e (Clauses can be generalized as a PB constraint:
(xdy) — (x+y=21)

e Convert arbitrary PB constraints to normal form:
cpxpt-te,x, =g

€.g. _3)C1 +2)C2 > -1
— (=3 +2x7) £ (1)

3)61 _2)62 <]
3)(?1 —2(1—)72) <]
3)61 +2)72 <3

. i 118
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PB-SAT Algorithms :

e Struct PBConstraint:

1 ! value of LHS based on

value of RHS current variable assignment

e For efficiency:
e Sort the list of cixi in order of increasing ci

. icrosoft
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PB-SAT Algorithms

e Assigning vito 1:
For each literal x; of vi

o If positive xi, LHS += ¢

12

IN

LHS =0

e Unassigning vi from 1:
For each literal x; of v DX+ <12

o If positive xi, LHS -= ¢ LHS = 5

e PB constraint state

UNS: LHS > goal
° 904 5x1+6X2+3x3 < 12

LHS =8
LHS < goal
SATISFIABLE
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PB-SAT Algorithms

e Identifying implications <12
o ifci>goal-LHS, xi=0 LHS = 0
o Implied by literals in PB goal - LHS = 12

assigned to 1

5X1 3x3<12

LHS =8
goal - LHS =4
Imply x2=0
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PB-SAT Algorithms

e |dentifying conflicts
o if LHS > goal

e Conflicting assignment:
consists of the subset of true
literals whose sum of
coefficients exceeds the goal.

Lintao Zhang

5X1

LHS =0

6X2+3X3 < 7

LHS = 14
LHS > goal
conflicting
assignment =

{Xll XZ}
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SAT Solving on Multi-Value eecs

Domain e

Let x; denote a multi-valued variable with domain P,
={0,1,...,|P;|-1}.

X;is assigned to a non-empty value set v,, if X, can
take any value from v, U P, but no value from P;\ v,

o if|v;| =1, completely assigned, e.g. x:={2}
o otherwise incompletely assigned, e.g. x:={0,2}
A multi-valued literal x;" is the Boolean function

defined by
;' =20 =)t (X =0

where ). Us/l P; s;is the literal value set
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Multi-Value SAT

e A multi-valued clause is a logical disjunction of one or more
MYV literals.

e A formula in multi-valued conjunctive normal form (MV-CNF)
is the logical conjunction of a set of multi-valued clauses.
e A MV SAT problem given in MV-CNF is

o Satisfiable if there exists a set of complete assignments to all
variables such that the formula evaluates to true.

e Itis unsatisfiable if no such assignment exists.
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0000
i
Resolution .
e Recall: Binary clause resolution:
QL+x) (QL'+X) (X, '+ ;)
(le‘-'-zli') (x, +x,'+x,)
» variable x is eliminated (x,+x, +x,)

e MV resolution provides generalized case

10,2} 12,31
(x, +x,77)

S; s 1Sy s'
(in +x7) (le. +x7) (6,7 + 5,07 +x,07)

S; g s’ ’ 12 0,2,3
(in +inj+x ) (o, + ,02)
o take intersection of literal value sets of the resolving
variable x

. i ft
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Decision

e Binary case: either 0 or 1 is assigned
e MV Case: (2PI-2) possible assignments initially
E.g. P={0,1,2}: {0}, {1}, {2}, {0,1}, {0,2}, {1,2}
e “Large decision” scheme:
Pick one value from value set of selected variable
Max depth of decision stack = # variables n
Learning by contra-positive only forbids one value
e “Small decision” scheme:
Exclude one value

Lintao Zhang N%ard‘



Boolean Constraint
Propagation e
@ = (x]+x,") R=P =P =P ={0,1,23)
@, = (x4 )
= (5" +x™ )

Implication Graph (IG) ‘
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Conflict Analysis by Cut

e Cut at x3 and x4 as first UIP

ooy ——
4

x, ={0} Ux,= {3} = Conflict

e By contra-positive we learn

— . {123} {0,1,2}
a)cut — (x4 +x3 )

. icrosoft
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Conflict Analysis by
Resolution

o

@ = (x +x0y

— (12} {2,3} {3}
Wy = @ =(x," +x77 +x,7)

— (113} {0} {1}
W, =(x, 7 +x +Hx)

— (13 4 (0 4
- (xiz} ){623 3} XI{3}) W'y = (57 + 2,7 2
W, = () +x" x0T @ = (x +x1)

— —_ {1,3} {0,1}
@eam _ ajakk _ (x4 +x3 )
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MV-Conflict Analysis

e The learned clause is strictly “stronger” than the cut
— 1,2,3 0,1,2
clause g =(x!"2Y 4+ xI%12)

(&

—_ {1,3} {0,1}
a%earn - (x4 +x3 )

Never visited

e Cut clause forbids: [ -

x, =105 U= {3

o Learned clause forbids: CC>>
x, ={0} Ox,= {3}, x, ={0} Ox;= {27
x, ={2} Ox;= {2}, x,={2} Ox= {3}

o As if decisions were:
sS_>- Ssearch space
%, =10,2)@d1; x, ={2,3}@d>2 P
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Pseudo Boolean Constraints
and Multi-Value Constraints

They REALLY look like Boolean
Satisfiability Solvers!!!
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QBF: Quantified Boolean se:
Formula T
e Quantified Boolean Formula
Q Xq...... Q X, ¢
e Example:
XDy (x+y)(x'+y)

[(dellxyz(Bbc f(a,b,c,dex,y,z)
e QBF Problem:
Is F satisfiable?
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Why Bother

e P-Space Complete, theoretically harder than NP-Complete
problems such as SAT.

e Has practical Applications:
Al Planning
Sequential Circuit Verification

e Similarities with SAT
Leverage SAT techniques
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Basic DLL Flow for QBF

Ky x +y)(x* +y’) O
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Basic DLL Flow for QBF

Ky x +y)(x* +y’) /
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Basic DLL Flow for QBF

Ky x +y)(x* +y’) /Q
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Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /@
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Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /@

Backtrack
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Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /Q\@
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Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /@
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Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /@

Lintao Zhang %m



Basic DLL Flow for QBF :

KOy (x + y)0C +3°) /@
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Basic DLL Flow for QBF :

KOy (x + )X +y) /'\False
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Basic DLL Flow for QBF

Ox 0y (x + y)(x +y") O
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Basic DLL Flow for QBF

Ox0y (x + Y)(x +7) /Q
O
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Basic DLL Flow for QBF

Ox0y (x + Y)(x +7) /Q
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Basic DLL Flow for QBF :

Ox0y (x + Y)(x +7) /@
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Basic DLL Flow for QBF :

Ox0y (x + Y)(x +7) /@
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Basic DLL Flow for QBF :

Ox0y (x + Y)(x +7) /@
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Basic DLL Flow for QBF

Uxly (x +y)(xX* +y)
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QBF: Conclusions

e QBF solving is much more difficult than SAT
No existing QBF solver is of much practical use

e |t's possible to incorporate learning and non-chronological
backtracking into a DLL based QBF solver

e Unlike SAT, where DLL seems to be the predominant solution, it's
still unclear what is the most efficient approach to QBF

e Attracted a lot of interest recently, much more research effort is
needed to make QBF solving practical

Chicken egg problem
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