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Requirements for SAT solvers 
in the Real World

Fast & Robust
Given a problem instance, we want to solve it quickly

Reliable
Can we depend on the SAT solver? i.e. is the solver bug free? 

Feature Rich
Incremental SAT Solving
Unsatisfiable Core Extraction
What are the other desirable features? 

Beyond SAT
Pseudo Boolean Constraint
Multi-Value SAT solving
Quantified Boolean Formula (QBF)
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Resolution
Resolution of a pair of clauses with exactly ONE incompatible 
variable

Two clauses are said to have distance 1

a + b + g + h’ + fa + b + g + h’

a + b + c’ + f g + h’ + c + f
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Conflict Analysis as 
Resolution

(V2 + V3’ + V5’+V6)

(V3’+V6+V4)
(V6+V5’+V1’)
(V2+V4’+V6+ V1)
(V2+V4’+V6+V5’)
(V2 + V3’ + V5’+V6)

V4(5)

V3(2)

-V6(5)

V1(5)

-V2(1)

V5(3)

-V1(5)
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Key Observations
DLL with learning is nothing but a resolution process

Has the same limitation as resolution
Certain class of instances require exponential sized resolution 
proof. Therefore, it will take exponential time for DLL SAT solver

We can use this for 
Certification / Correctness Checking
Unsatisfiable Core Extraction
Incremental SAT solving
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Motivation for SAT Solver 
Validation

Certify automatic reasoning tools:
Required for mission critical applications

Train Station Safety Check
Available for some theorem provers and model checkers

Do we really need the validation?
Modern SAT solvers are intricate pieces of software (e.g. zchaff
contains about 10,000 lines of code)
Bugs are abundant in SAT solvers
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Certify a SAT Solver
The correctness of a SAT solver:

If it claims the instance is satisfiable, it is easy to check the claim.
How about unsatisfiable claims?

Traditional method: run another SAT Solver
Time consuming, and cannot guarantee correctness

Needs a formal check for the proof, similar to the check for 
the validity of a proof in math.

Must be automatic.
Must be able to work with current state-of-the-art SAT solvers
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DLL with Learning

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}
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Correct in Unsatisfiable Case

(x4)
(x4’+x3’)
(x1)
(x1’+x3+x5+x7)
(x4’+x3+x5’)
(x7’+x5)

Final Conflicting 
Clause

(x1’+x3+x5)

(x1’+x4’+x3)

(x1’+x4’) (x4’)

()
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Resolution Graph

Original Clauses

Learned Clauses

Empty 
Clause
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An Independent Checker
Strategy:

SAT solver dump out a trace during the solving process 
representing the resolution graph
Using a third party checker to construct the empty clause by 
resolution using the hint provided by the trace
Trace only contain resolve sources of each learned clauses. 
Need to reconstruct the clause literals by resolution from 
original clauses
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Practical Implementation: 
Depth First

Start from the empty clause, recursively reconstruct all 
needed clause.
Fast, because it only needs to reconstruct clauses that are 
needed for the proof.
But may fail because of memory overflow on hard instances.
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Depth First Approach

Original Clauses

Learned Clauses

Empty 
Clause
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Practical Implementation: 
Breadth First

Start from the original clauses and construct clauses in the 
same order as they appear
Slower, because all the clauses need to be reconstructed
No memory overflow problem if we delete clauses when they 
are not needed anymore. 
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Breadth First Approach

Original Clauses

Learned Clauses

Empty 
Clause
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Calculate Fan-outs in Breadth 
First Approach

Original Clauses

Learned Clauses

Empty 
Clause
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Calculate Fan-outs in Breadth 
First Approach

Original Clauses

Learned Clauses

Empty 
Clause
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Experimental Results

1.68%13673.0751118239107pipe
2.77%4106.7394739158006pipe
3.39%1252.4545612170646pipe_6_ooo
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9.12%5.91224125886bw_large.d

11.89%3.34170445832dlx_cc_mc_ex_bp_f

Trace 
OverheadRuntime 

Orig. Num. 
Clauses

Num. 
VariablesInstance Name

* Experiments are carried out on a PIII 1.13Ghz Machine with 1G Mem
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Experimental Results

62620645.33**7pipe
40248301.98**6pipe
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Mem(k)Time(s)Mem(k)Time(s)
Breadth-FirstDepth-FirstInstance
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Unsatisfiable Core Extraction: 
Problem Definition
Given an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn

Find a formula 
G=C1’C2’......Cm’

Such that G is unsatisfiable, Ci’ ∈ {Ci | i=1...n} with m ≤ n

Example:  
(a) (a’ + b’)(b + a’)(c + a’ + d)(c’ + d) (d’ + a’)
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Unsatisfiable Core Extraction: 
Problem Definition
Given an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn

Find a formula 
G=C1’C2’......Cm’

Such that G is unsatisfiable, Ci’ ∈ {Ci | i=1...n} with m ≤ n

Example:  
(a) (a’ + b’)(b + a’)(c + a’ + d)(c’ + d) (d’ + a’)
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Motivation
Debugging and redesign: SAT instances are often generated from real 
world applications with certain expected results:

If the expected results is unsatisfiable, but we found the instance to be 
satisfiable, then the solution is a “counter example” or “input vector” for 
debugging

Train station safety checking
Combinational Equivalence Checking

What if the expected results is satisfiable?
SAT Planning 
FPGA Routing

Relaxing constraints:
If several constraints make a safety property holds, are there any redundant 
constraints in the system that can be removed without violate the safety 
property? 
Abstraction for model checking: Ken McMillan & Nina Alma, TACAS03; A. 
Gupta et al, ICCAD 2003
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Proposed Approach

Original Clauses

Learned Clauses

Empty 
Clause
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Proposed Approach

Original Clauses

Learned Clauses

Empty 
Clause

Involved  Clauses
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Implementation Issues
No need to check the integrity of the graph
Graph too large, have to traverse on disk 

The nodes of the graph is already topologically ordered
But we need to reverse it

Can iteratively run the procedure to obtain smaller cores
Cannot guarantee the core to be minimal or minimum. Depends on 
the SAT solver for the quality of the core extracted
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Experimental Results
Run

Time (s)

152.71
99.96
37.14
10.68
21.31

4.66
6.62
5.37
2.65
2.64
1.54
0.85
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Ratio

AfterBeforeInstance
Name
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Core Extracted After Several 
Iterations
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The Quality of the Core 
Extracted

Start from the smallest core that can be extracted by the proposed 
method (i.e. run till fixed point), delete clauses one by one till no 
clause can be deleted without change the satisfiability of the 
formula.
The resulting core is a minimal core for the formula.
Finding minimal core is time consuming. 

1.186376532446450416Too_largefs3w8v262

1.1041225351352122412Bw_large.d

1.0207882268036417042dlx_cc_mc_ex_bp_f

Clause
Ratio

Minimal
#Cls

IterationsExtracted
# Cls

Original
#Cls

Benchmark
Instance
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Incremental SAT Solving
In real world, multiple SAT instances are generated to solve one
problem

Combinational Equivalence Checking: equivalence multiple outputs are 
checked one by one
Bounded Model Checking: properties are checked at 1, 2, 3 … n cycles. 

These multiple SAT instances are often very similar, or have large 
common part
Traditionally we solve them one by one independently
Can we do better?
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Incremental SAT Solving
Previous efforts are recorded in the learned clauses

Try to keep the learned clauses

To solve a series of SAT instances that differ only a little bit, we 
need to be able to 

Add constraints to the clause database (easy)
If the original instance is UNSAT, the new instance is still UNSAT
If the original instance is SAT, while added constraint clauses are not 
conflicting under the satisfying assignment, then the new instance is still 
SAT
Otherwise, resolve the conflict and continue solve

Delete constraints from the database (tricky)
Some of the learned clauses are invalidated
Ofer Strichman, CAV2000
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Find the Learned Clauses that 
are Invalidated

Original Clauses

Learned Clauses
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Engineering Questions
How to do this efficiently?

It’s too expensive for each learned clause to carry with it all it’s 
resolve sources
Solution

Arrange the clauses into groups. Clauses are added and deleted 
a group at a time
Using bit vector for carrying the group information for each 
clause: 32 bit machine can have 32 groups of clauses, enough for
most applications
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Using SAT Techniques for 
Other types of Constraints

SAT Limitations
Variables are in Boolean Domain
Constrains are expressed as clauses

E.g. at least one of the literals in each clause must be true
SAT Advantages

DLL algorithm is highly polished, many well studied heuristics
Very fast BCP
Learning and non-chronological backtracking

Can we remove some of the limitations while still retain the powerful 
SAT solving techniques? 

Pseudo Boolean Constraint, Fadi Alou etc. PBS
Multi Value SAT, Cong Liu etc. CAMA
Quantified Boolean Solver
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Pseudo Boolean (PB) 
Constraints Solver

PB Constraints Definition

Zgci ∈, },,{~ ≥≤=∈ Literalsxi ∈

gxcxc nn ~11 ++L

Examples:
3 x1 + x2 + 5 x3 = 2
4 x1 - 5 x3’ >= 3
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Pseudo Boolean (PB) 
Constraints Solver

)( yx ∨ )1( ≥+ yx
Clauses can be generalized as a PB constraint:  

123 21 −≥+− xx

323 21 ≤+ xx

)1()23( 21 −−≤+−− xx
123 21 ≤− xx

1)1(23 21 ≤−− xx

gxcxc nn ≤++L11

Convert arbitrary PB constraints to normal form:

e.g. • Positive coefficients
• Constraint type: ≤
⇒ Faster manipulation
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PB-SAT Algorithms

Struct PBConstraint:

List of ci and xi’s Goal n

value of RHS

LHS

value of LHS based on 
current variable assignment

For efficiency:
Sort the list of cixi in order of increasing ci
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PB-SAT Algorithms
Assigning vi to 1:
For each literal xi of vi

If positive xi, LHS += ci

Unassigning vi from 1:
For each literal xi of vi

If positive xi, LHS -= ci

PB constraint state 
UNS: LHS > goal

5x1+6x2+3x3 ≤ 12

LHS = 0

LHS = 5
5x1+6x2+3x3 ≤ 12

LHS = 8
LHS < goal
SATISFIABLE

5x1+6x2+3x3 ≤ 12
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PB-SAT Algorithms

Identifying implications
if ci > goal – LHS, xi = 0
Implied by literals in PB 
assigned to 1

5x1+6x2+3x3 ≤ 12

LHS = 0
goal - LHS = 12

5x1+6x2+3x3 ≤ 12

LHS = 8
goal - LHS = 4
Imply x2=0
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PB-SAT Algorithms

Identifying conflicts
if LHS > goal
Conflicting assignment:
consists of the subset of true 
literals whose sum of 
coefficients exceeds the goal.

5x1+6x2+3x3 ≤ 7

LHS = 0

5x1+6x2+3x3 ≤ 7

LHS = 14
LHS > goal
conflicting 
assignment =
{x1, x2}
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SAT Solving on Multi-Value 
Domain

Let xi denote a multi-valued variable with domain Pi 
={0,1,…,|Pi|-1}.
xi is assigned to a non-empty value set vi, if xi can 
take any value from vi  ⊆ Pi but no value from Pi \ vi 

if | vi | = 1, completely assigned, e.g. x := {2}
otherwise incompletely assigned, e.g. x := {0,2}

A multi-valued literal is the Boolean function 
defined by

where                   ;     is the literal value set
1( ) ( )is

i i i kx x xγ γ≡ = + + =L

is
ix

i i is Pγ ∈ ⊆ is
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Multi-Value SAT
A multi-valued clause is a logical disjunction of one or more 
MV literals.
A formula in multi-valued conjunctive normal form (MV-CNF) 
is the logical conjunction of a set of multi-valued clauses.
A MV SAT problem given in MV-CNF is 

Satisfiable if there exists a set of complete assignments to all 
variables such that the formula evaluates to true. 
It is unsatisfiable if no such assignment exists.



Lintao Zhang

Resolution
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Decision
Binary case: either 0 or 1 is assigned
MV Case: (2|P|-2) possible assignments initially

E.g. P={0,1,2}: {0}, {1}, {2}, {0,1}, {0,2}, {1,2}
“Large decision” scheme:

Pick one value from value set of selected variable
Max depth of decision stack =  # variables n
Learning  by contra-positive only forbids one value

“Small decision” scheme:
Exclude one value
Max depth of decision stack = 

1

n

i
i
P

=
∑
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Boolean Constraint 
Propagation

{1} {0,1}
1 3 2

{1,3} {0} {1}
2 4 3 1
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3 2 1 4
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4 {0}@ 1x d=
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1 2 3 4 {0,1,2,3}P P P P= = = =



Lintao Zhang

Conflict Analysis by Cut
Cut at x3 and x4 as first UIP

By contra-positive we learn

4 3{0} {3}x x Conflict= ∧ = ⇒

{1,2,3} {0,1,2}
4 3( )cut x xω = +

4 {0 @ 1}x d=

3 {3 @ 2}x d=

1

2

{1}@ 2x d
ω

=

2

1

{0,1}@ 2x d
ω

=
3

Conflict
ω
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Conflict Analysis by 
Resolution
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MV-Conflict Analysis
The learned clause is strictly “stronger” than the cut 
clause

Cut clause forbids: 

Learned clause forbids: 

As if decisions were:

{1,3}
4

{0,1}
3( )learn x xω = +

{1,2,3} {0,1,
4 3

2}( )cut x xω = +

Never visited 
before

4 3{0} {3}x x= ∧ =

4 3{0} {3},x x= ∧ =

4 3{2} {3}x x= ∧ =
4 3{0} {2},x x= ∧ =

4 3{2} {2},x x= ∧ =

4 2{0, }@ 1;x d= 3 { , 22 3}@x d=

Bigger 
search space
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Pseudo Boolean Constraints 
and Multi-Value Constraints

They REALLY look like Boolean 
Satisfiability Solvers!!!
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QBF: Quantified Boolean 
Formula

Quantified Boolean Formula
Q1x1……Qnxn ϕ

Example: 
∀ x∃ y(x+y’)(x’+y)

∃ de∀ xyz∃ abc f(a,b,c,d,e,x,y,z)
QBF Problem:
Is F satisfiable?
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Why Bother
P-Space Complete, theoretically harder than NP-Complete 
problems such as SAT.
Has practical Applications:

AI Planning
Sequential Circuit Verification

Similarities with SAT
Leverage SAT techniques
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Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)
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Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)
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False(0)

Backtrack
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Basic DLL Flow for QBF
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Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

y = 1 y = 0

False

Unknown

True (1)

False(0)



Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)



Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1



Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1



Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0



Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0



Lintao Zhang

Basic DLL Flow for QBF
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Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0

x = 0

y = 1

True
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QBF: Conclusions
QBF solving is much more difficult than SAT

No existing QBF solver is of much practical use
It’s possible to incorporate learning and non-chronological 
backtracking into a DLL based QBF solver
Unlike SAT, where DLL seems to be the predominant solution, it’s 
still unclear what is the most efficient approach to QBF
Attracted a lot of interest recently, much more research effort is 
needed to make QBF solving practical

Chicken egg problem


