
SAT-Solving: From Davis-
Putnam to Zchaff and Beyond

Day 3: Recent Developments

Lintao Zhang

Lintao Zhang

Requirements for SAT solvers
in the Real World

Fast & Robust
Given a problem instance, we want to solve it quickly

Reliable
Can we depend on the SAT solver? i.e. is the solver bug free?

Feature Rich
Incremental SAT Solving
Unsatisfiable Core Extraction
What are the other desirable features?

Beyond SAT
Pseudo Boolean Constraint
Multi-Value SAT solving
Quantified Boolean Formula (QBF)

Lintao Zhang

Resolution
Resolution of a pair of clauses with exactly ONE incompatible
variable

Two clauses are said to have distance 1

a + b + g + h’ + fa + b + g + h’

a + b + c’ + f g + h’ + c + f

Lintao Zhang

Conflict Analysis as
Resolution

(V2 + V3’ + V5’+V6)

(V3’+V6+V4)
(V6+V5’+V1’)
(V2+V4’+V6+ V1)
(V2+V4’+V6+V5’)
(V2 + V3’ + V5’+V6)

V4(5)

V3(2)

-V6(5)

V1(5)

-V2(1)

V5(3)

-V1(5)

Lintao Zhang

Key Observations
DLL with learning is nothing but a resolution process

Has the same limitation as resolution
Certain class of instances require exponential sized resolution
proof. Therefore, it will take exponential time for DLL SAT solver

We can use this for
Certification / Correctness Checking
Unsatisfiable Core Extraction
Incremental SAT solving

Lintao Zhang

Motivation for SAT Solver
Validation

Certify automatic reasoning tools:
Required for mission critical applications

Train Station Safety Check
Available for some theorem provers and model checkers

Do we really need the validation?
Modern SAT solvers are intricate pieces of software (e.g. zchaff
contains about 10,000 lines of code)
Bugs are abundant in SAT solvers

Lintao Zhang

Certify a SAT Solver
The correctness of a SAT solver:

If it claims the instance is satisfiable, it is easy to check the claim.
How about unsatisfiable claims?

Traditional method: run another SAT Solver
Time consuming, and cannot guarantee correctness

Needs a formal check for the proof, similar to the check for
the validity of a proof in math.

Must be automatic.
Must be able to work with current state-of-the-art SAT solvers

Lintao Zhang

DLL with Learning

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

Correct in Unsatisfiable Case

(x4)
(x4’+x3’)
(x1)
(x1’+x3+x5+x7)
(x4’+x3+x5’)
(x7’+x5)

Final Conflicting
Clause

(x1’+x3+x5)

(x1’+x4’+x3)

(x1’+x4’) (x4’)

()

Lintao Zhang

Resolution Graph

Original Clauses

Learned Clauses

Empty
Clause

Lintao Zhang

An Independent Checker
Strategy:

SAT solver dump out a trace during the solving process
representing the resolution graph
Using a third party checker to construct the empty clause by
resolution using the hint provided by the trace
Trace only contain resolve sources of each learned clauses.
Need to reconstruct the clause literals by resolution from
original clauses

Lintao Zhang

Practical Implementation:
Depth First

Start from the empty clause, recursively reconstruct all
needed clause.
Fast, because it only needs to reconstruct clauses that are
needed for the proof.
But may fail because of memory overflow on hard instances.

Lintao Zhang

Depth First Approach

Original Clauses

Learned Clauses

Empty
Clause

Lintao Zhang

Practical Implementation:
Breadth First

Start from the original clauses and construct clauses in the
same order as they appear
Slower, because all the clauses need to be reconstructed
No memory overflow problem if we delete clauses when they
are not needed anymore.

Lintao Zhang

Breadth First Approach

Original Clauses

Learned Clauses

Empty
Clause

Lintao Zhang

Calculate Fan-outs in Breadth
First Approach

Original Clauses

Learned Clauses

Empty
Clause

3

3

0

0

0

3

1

2

2

1

1

1

0

0

2

2

1

Lintao Zhang

Calculate Fan-outs in Breadth
First Approach

Original Clauses

Learned Clauses

Empty
Clause

3

3

0

0

0

3

1

2

2

1

1

1

0

0

2

2

1

Lintao Zhang

Experimental Results

1.68%13673.0751118239107pipe
2.77%4106.7394739158006pipe
3.39%1252.4545612170646pipe_6_ooo
4.26%376.0179492200939vliw_bp_mc
6.17%296.7186455974longmult12
4.51%238.2366068903barrel9
4.51%118.8240892101135pipe_5_ooo
8.76%64.4204237652c7552
7.68%40.6502162946too_largefs3w8v262

10.45%22.0150245399c5315
9.12%5.91224125886bw_large.d

11.89%3.34170445832dlx_cc_mc_ex_bp_f

Trace
OverheadRuntime

Orig. Num.
Clauses

Num.
VariablesInstance Name

* Experiments are carried out on a PIII 1.13Ghz Machine with 1G Mem

Lintao Zhang

Experimental Results

62620645.33**7pipe
40248301.98**6pipe
40136102.6724946838.56pipe_6_ooo
1772433.8112675212.89vliw_bp_mc

748841.2215428825.9longmult12
675210.46314564.85barrel9

1793613.29500446.65pipe_5_ooo
597611.44414206.16c7552
61645.47267523.79too_large
37325.19181082.8c5315
99202.4487201.48bw_large.d
46521.3078600.842dlx

Mem(k)Time(s)Mem(k)Time(s)
Breadth-FirstDepth-FirstInstance

Name

Lintao Zhang

Unsatisfiable Core Extraction:
Problem Definition
Given an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn

Find a formula
G=C1’C2’......Cm’

Such that G is unsatisfiable, Ci’ ∈ {Ci | i=1...n} with m ≤ n

Example:
(a) (a’ + b’)(b + a’)(c + a’ + d)(c’ + d) (d’ + a’)

Lintao Zhang

Unsatisfiable Core Extraction:
Problem Definition
Given an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn

Find a formula
G=C1’C2’......Cm’

Such that G is unsatisfiable, Ci’ ∈ {Ci | i=1...n} with m ≤ n

Example:
(a) (a’ + b’)(b + a’)(c + a’ + d)(c’ + d) (d’ + a’)

Lintao Zhang

Unsatisfiable Core Extraction:
Problem Definition
Given an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn

Find a formula
G=C1’C2’......Cm’

Such that G is unsatisfiable, Ci’ ∈ {Ci | i=1...n} with m ≤ n

Example:
(a) (a’ + b’)(b + a’)(c + a’ + d)(c’ + d) (d’ + a’)

Lintao Zhang

Motivation
Debugging and redesign: SAT instances are often generated from real
world applications with certain expected results:

If the expected results is unsatisfiable, but we found the instance to be
satisfiable, then the solution is a “counter example” or “input vector” for
debugging

Train station safety checking
Combinational Equivalence Checking

What if the expected results is satisfiable?
SAT Planning
FPGA Routing

Relaxing constraints:
If several constraints make a safety property holds, are there any redundant
constraints in the system that can be removed without violate the safety
property?
Abstraction for model checking: Ken McMillan & Nina Alma, TACAS03; A.
Gupta et al, ICCAD 2003

Lintao Zhang

Proposed Approach

Original Clauses

Learned Clauses

Empty
Clause

Lintao Zhang

Proposed Approach

Original Clauses

Learned Clauses

Empty
Clause

Lintao Zhang

Proposed Approach

Original Clauses

Learned Clauses

Empty
Clause

Involved Clauses

Lintao Zhang

Implementation Issues
No need to check the integrity of the graph
Graph too large, have to traverse on disk

The nodes of the graph is already topologically ordered
But we need to reverse it

Can iteratively run the procedure to obtain smaller cores
Cannot guarantee the core to be minimal or minimum. Depends on
the SAT solver for the quality of the core extracted

Lintao Zhang

Experimental Results
Run

Time (s)

152.71
99.96
37.14
10.68
21.31

4.66
6.62
5.37
2.65
2.64
1.54
0.85

33.1%12975180559170645456126pipe_6_ooo

29.3%20188221070239107531187pipe
32.1%13156126469154693947396pipe

37.0%1673766458191481794929vliw_bp_mc

57.5%453210727597418645longmult12
65.2%860423870890336606Barrel9
23.9%749457515101132408925pipe_5_ooo

97.5%765119912765120423C7552
20.0%294610060294650216too_large
95.4%539914336539915024C5315

6.7%310781515886122412bw_large.d
26.8%3145111694524417042dlx

Num. VarsNum. ClsNum.VarsNum Cls
Clause
Ratio

AfterBeforeInstance
Name

Lintao Zhang

Core Extracted After Several
Iterations

5pipe_5_ooo

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

barrel9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

bw_large.d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

too_largefs3w8v262

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

Lintao Zhang

The Quality of the Core
Extracted

Start from the smallest core that can be extracted by the proposed
method (i.e. run till fixed point), delete clauses one by one till no
clause can be deleted without change the satisfiability of the
formula.
The resulting core is a minimal core for the formula.
Finding minimal core is time consuming.

1.186376532446450416Too_largefs3w8v262

1.1041225351352122412Bw_large.d

1.0207882268036417042dlx_cc_mc_ex_bp_f

Clause
Ratio

Minimal
#Cls

IterationsExtracted
Cls

Original
#Cls

Benchmark
Instance

Lintao Zhang

Incremental SAT Solving
In real world, multiple SAT instances are generated to solve one
problem

Combinational Equivalence Checking: equivalence multiple outputs are
checked one by one
Bounded Model Checking: properties are checked at 1, 2, 3 … n cycles.

These multiple SAT instances are often very similar, or have large
common part
Traditionally we solve them one by one independently
Can we do better?

Lintao Zhang

Incremental SAT Solving
Previous efforts are recorded in the learned clauses

Try to keep the learned clauses

To solve a series of SAT instances that differ only a little bit, we
need to be able to

Add constraints to the clause database (easy)
If the original instance is UNSAT, the new instance is still UNSAT
If the original instance is SAT, while added constraint clauses are not
conflicting under the satisfying assignment, then the new instance is still
SAT
Otherwise, resolve the conflict and continue solve

Delete constraints from the database (tricky)
Some of the learned clauses are invalidated
Ofer Strichman, CAV2000

Lintao Zhang

Find the Learned Clauses that
are Invalidated

Original Clauses

Learned Clauses

2

3

4

6

7

5

8

1

23

34

47

78

234

347

3478

2347

23578

57

Lintao Zhang

Find the Learned Clauses that
are Invalidated

Original Clauses

Learned Clauses

2

3

4

6

7

5

8

1

23

34

47

78

234

347

3478

2347

23578

57

Lintao Zhang

Find the Learned Clauses that
are Invalidated

Original Clauses

Learned Clauses

2

3

4

6

7

5

8

1

23

34

47

78

234

347

3478

2347

23578

57

Lintao Zhang

Engineering Questions
How to do this efficiently?

It’s too expensive for each learned clause to carry with it all it’s
resolve sources
Solution

Arrange the clauses into groups. Clauses are added and deleted
a group at a time
Using bit vector for carrying the group information for each
clause: 32 bit machine can have 32 groups of clauses, enough for
most applications

Lintao Zhang

Using SAT Techniques for
Other types of Constraints

SAT Limitations
Variables are in Boolean Domain
Constrains are expressed as clauses

E.g. at least one of the literals in each clause must be true
SAT Advantages

DLL algorithm is highly polished, many well studied heuristics
Very fast BCP
Learning and non-chronological backtracking

Can we remove some of the limitations while still retain the powerful
SAT solving techniques?

Pseudo Boolean Constraint, Fadi Alou etc. PBS
Multi Value SAT, Cong Liu etc. CAMA
Quantified Boolean Solver

Lintao Zhang

Pseudo Boolean (PB)
Constraints Solver

PB Constraints Definition

Zgci ∈, },,{~ ≥≤=∈ Literalsxi ∈

gxcxc nn ~11 ++L

Examples:
3 x1 + x2 + 5 x3 = 2
4 x1 - 5 x3’ >= 3

Lintao Zhang

Pseudo Boolean (PB)
Constraints Solver

)(yx ∨)1(≥+ yx
Clauses can be generalized as a PB constraint:

123 21 −≥+− xx

323 21 ≤+ xx

)1()23(21 −−≤+−− xx
123 21 ≤− xx

1)1(23 21 ≤−− xx

gxcxc nn ≤++L11

Convert arbitrary PB constraints to normal form:

e.g. • Positive coefficients
• Constraint type: ≤
⇒ Faster manipulation

Lintao Zhang

PB-SAT Algorithms

Struct PBConstraint:

List of ci and xi’s Goal n

value of RHS

LHS

value of LHS based on
current variable assignment

For efficiency:
Sort the list of cixi in order of increasing ci

Lintao Zhang

PB-SAT Algorithms
Assigning vi to 1:
For each literal xi of vi

If positive xi, LHS += ci

Unassigning vi from 1:
For each literal xi of vi

If positive xi, LHS -= ci

PB constraint state
UNS: LHS > goal

5x1+6x2+3x3 ≤ 12

LHS = 0

LHS = 5
5x1+6x2+3x3 ≤ 12

LHS = 8
LHS < goal
SATISFIABLE

5x1+6x2+3x3 ≤ 12

Lintao Zhang

PB-SAT Algorithms

Identifying implications
if ci > goal – LHS, xi = 0
Implied by literals in PB
assigned to 1

5x1+6x2+3x3 ≤ 12

LHS = 0
goal - LHS = 12

5x1+6x2+3x3 ≤ 12

LHS = 8
goal - LHS = 4
Imply x2=0

Lintao Zhang

PB-SAT Algorithms

Identifying conflicts
if LHS > goal
Conflicting assignment:
consists of the subset of true
literals whose sum of
coefficients exceeds the goal.

5x1+6x2+3x3 ≤ 7

LHS = 0

5x1+6x2+3x3 ≤ 7

LHS = 14
LHS > goal
conflicting
assignment =
{x1, x2}

Lintao Zhang

SAT Solving on Multi-Value
Domain

Let xi denote a multi-valued variable with domain Pi
={0,1,…,|Pi|-1}.
xi is assigned to a non-empty value set vi, if xi can
take any value from vi ⊆ Pi but no value from Pi \ vi

if | vi | = 1, completely assigned, e.g. x := {2}
otherwise incompletely assigned, e.g. x := {0,2}

A multi-valued literal is the Boolean function
defined by

where ; is the literal value set
1() ()is

i i i kx x xγ γ≡ = + + =L

is
ix

i i is Pγ ∈ ⊆ is

Lintao Zhang

Multi-Value SAT
A multi-valued clause is a logical disjunction of one or more
MV literals.
A formula in multi-valued conjunctive normal form (MV-CNF)
is the logical conjunction of a set of multi-valued clauses.
A MV SAT problem given in MV-CNF is

Satisfiable if there exists a set of complete assignments to all
variables such that the formula evaluates to true.
It is unsatisfiable if no such assignment exists.

Lintao Zhang

Resolution

{0,2}
1

{3} {1,2}
1 2
{0,2,3} {1,2}

{2 3}
3

{0,2}

2
{ }

31

3
2

()
()
()

,x
x
x

x
x x
x x

+
+ +

+ +

{2 3}
3

{1,2} {0

{0,2}

,2}
2 3

{1,2} {0

1
{3}

1
,2,3}

2 3

()
()

()

,x
x x

x x

x
x

+
+ +

+

Recall: Binary clause resolution:

variable x is eliminated

MV resolution provides generalized case

take intersection of literal value sets of the resolving
variable x

() (')
(')
i i

i i

l x l x
l l

+ +
+

∑ ∑
∑ ∑

' '

''

() (' ')
(' ')

ji

ji

ss s s
i i

ss
i i

s s

x x x x
x xx ∩

+ +
+ +

∑ ∑
∑ ∑

3

3

1

2 4

1 2 4

'
(')
()
(')

x
x x
x

x

x
x
x

+
+ +
+ +

Lintao Zhang

Decision
Binary case: either 0 or 1 is assigned
MV Case: (2|P|-2) possible assignments initially

E.g. P={0,1,2}: {0}, {1}, {2}, {0,1}, {0,2}, {1,2}
“Large decision” scheme:

Pick one value from value set of selected variable
Max depth of decision stack = # variables n
Learning by contra-positive only forbids one value

“Small decision” scheme:
Exclude one value
Max depth of decision stack =

1

n

i
i
P

=
∑

Lintao Zhang

Boolean Constraint
Propagation

{1} {0,1}
1 3 2

{1,3} {0} {1}
2 4 3 1

{2} {2,3} {3}
3 2 1 4

()

()

()

x x
x x x
x x x

ω
ω
ω

= +

= + +

= + +

Implication Graph (IG)

4 {0}@ 1x d=

3 {3}@ 2x d=

1

2

{1}@ 2x d
ω

=

2

1

{0,1}@ 2x d
ω

=
3

Conflict
ω

1 2 3 4 {0,1,2,3}P P P P= = = =

Lintao Zhang

Conflict Analysis by Cut
Cut at x3 and x4 as first UIP

By contra-positive we learn

4 3{0} {3}x x Conflict= ∧ = ⇒

{1,2,3} {0,1,2}
4 3()cut x xω = +

4 {0 @ 1}x d=

3 {3 @ 2}x d=

1

2

{1}@ 2x d
ω

=

2

1

{0,1}@ 2x d
ω

=
3

Conflict
ω

Lintao Zhang

Conflict Analysis by
Resolution

4 {0}@ 1x d=

3 {3}@ 2x d=

1

2

{1}@ 2x d
ω

=

2

1

{0,1}@ 2x d
ω

=
3

Conflict
ω

{2} {3}
3 2 4

{2,3}
1()akk xx xω ω= = + +

{1,3 {1}0
2 1

} { }
4 3()x x xω = + +
{2} {1,3} {0}
2 4 3' ()akk x x xω = + +

{1} {0,1}
1 3 2

{1,3} {0} {1}
2 4 3 1

{2} {2,3} {3}
3 2 1 4

()

()

()

x x
x x x
x x x

ω
ω
ω

= +

= + +

= + + {1} {0,1}
1 3 2()xxω = +

{1,3} {0,1}
4 3' ()learn akk x xω ω= = +

Lintao Zhang

MV-Conflict Analysis
The learned clause is strictly “stronger” than the cut
clause

Cut clause forbids:

Learned clause forbids:

As if decisions were:

{1,3}
4

{0,1}
3()learn x xω = +

{1,2,3} {0,1,
4 3

2}()cut x xω = +

Never visited
before

4 3{0} {3}x x= ∧ =

4 3{0} {3},x x= ∧ =

4 3{2} {3}x x= ∧ =
4 3{0} {2},x x= ∧ =

4 3{2} {2},x x= ∧ =

4 2{0, }@ 1;x d= 3 { , 22 3}@x d=

Bigger
search space

Lintao Zhang

Pseudo Boolean Constraints
and Multi-Value Constraints

They REALLY look like Boolean
Satisfiability Solvers!!!

Lintao Zhang

QBF: Quantified Boolean
Formula

Quantified Boolean Formula
Q1x1……Qnxn ϕ

Example:
∀ x∃ y(x+y’)(x’+y)

∃ de∀ xyz∃ abc f(a,b,c,d,e,x,y,z)
QBF Problem:
Is F satisfiable?

Lintao Zhang

Why Bother
P-Space Complete, theoretically harder than NP-Complete
problems such as SAT.
Has practical Applications:

AI Planning
Sequential Circuit Verification

Similarities with SAT
Leverage SAT techniques

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

Unknown

True (1)

False(0)

Backtrack

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

y = 1

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

y = 1 y = 0

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

y = 1 y = 0

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∃ x∀ y (x + y)(x’ + y’)

x = 1

y = 1

x = 0

y = 1 y = 0

False

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0

x = 0

y = 1

Lintao Zhang

Basic DLL Flow for QBF

∀ x∃ y (x + y)(x’ + y’)

Unknown

True (1)

False(0)

x = 1

y = 1 y = 0

x = 0

y = 1

True

Lintao Zhang

QBF: Conclusions
QBF solving is much more difficult than SAT

No existing QBF solver is of much practical use
It’s possible to incorporate learning and non-chronological
backtracking into a DLL based QBF solver
Unlike SAT, where DLL seems to be the predominant solution, it’s
still unclear what is the most efficient approach to QBF
Attracted a lot of interest recently, much more research effort is
needed to make QBF solving practical

Chicken egg problem

