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I. Introduction 

A primary aim of an operating system is to share a 
computer installation among many programs making 
unpredictable demands upon its resources• A primary 
task of its designer is therefore to construct resource 
allocation (or scheduling) algorithms for resources of 
various kinds (main store, drum store, magnetic tape 
handlers, consoles, etc.). In order to simplify his task, he 
should try to construct separate schedulers for each class 
of resource. Each scheduler will consist of a certain 
amount of local administrative data, together with some 
procedures and functions which are called by programs 
wishing to acquire and release resources. Such a collec- 
tion of associated data and procedures is known as a 
moni tor;  and a suitable notation can be based on the 
class notation of sIrvtULA67 [6]. 

monit orname : monitor 
begin..,  declarations of data local to the monitor; 

procedure procname (. . .  formal parameters...) ; 
begin.. ,  procedure body. . ,  end; 

•. .  declarations of other procedures local to the monitor; 
• . .  initialization of local data of the monitor... 

end; 

Note that the procedure bodies may have local data, in 
the normal way. 

In order to call a procedure of a monitor, it is neces- 
sary to give the name of the monitor as well as the name 
of the desired procedure, separating them by a dot: 

monitorname.procname(.., actual parameters...) ; 

In an operating system it is sometimes desirable to 
declare several monitors with identical structure and 
behavior, for example to schedule two similar resources• 
In such cases, the declaration shown above will be 
preceded by the word class, and the separate momtors 
will be declared to belong to this class: 

monitor I, monitor 2: classname; 

Thus the structure of a class of monitors is identical to 
that described for a data representation in [13], except 
for addition of the basic word moni tor .  Brinch-Hansen 
uses the word shared for  the same purpose [3]. 

The procedures of a monitor are common to all 
running programs, in the sense that any program may at 
any time attempt to call such a procedure• However, it is 
essential that only one program at a time actually 
succeed in entering a monitor procedure, and any sub- 
sequent call must be held up until the previous call has 
been completed. Otherwise, if two procedure bodies 
were in simultaneous execution, the effects on the local 
variables of the monitor could be chaotic• The proce- 
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dures local to a moni tor  should not access any nonlocal 
variables other than those local to the same monitor,  
and these variables of  the monitor  should be inaccessible 
f rom outside the monitor.  I f  these restrictions are im- 
posed, it is possible to guarantee against certain of  the 
more obscure forms of time-dependent coding error; 
and this guarantee could be underwritten by a visual 
scan of the text of  the program, which could readily be 
automated in a compiler. 

Any dynamic resource allocator will sometimes need 
to delay a program wishing to acquire a resource which 
is not currently available, and to resume that program 
after some other program has released the resource 
required. We therefore need: a "wai t"  operation, issued 
f rom inside a procedure of the monitor,  which causes 
the calling program to be delayed; and a "signal" opera- 
tion, also issued f rom inside a procedure of  the same 
monitor,  which causes exactly one of the waiting pro- 
grams to be resumed immediately. I f  there are no wait- 
ing programs, the signal has no effect. In order to enable 
other programs to release resources during a wait, a wait 
operation must relinquish the exclusion which would 
otherwise prevent entry to the releasing procedure. 
However,  we decree that a signal operation be followed 
immediately by resumption of a waiting program, with- 
out possibility of  an intervening procedure call f rom yet 
a third program. I t  is only in this way that a waiting 
program has an absolute guarantee that it can acquire 
the resource just released by the signalling program 
without any danger that a third program will interpose a 
monitor  entry and seize the resource instead. 

In many  cases, there may be more than one reason 
for waiting, and these need to be distinguished by both 
the waiting and the signalling operation. We therefore 
introduce a new type of "var iable"  known as a "condi- 
t ion";  and the writer of  a {nonitor should declare a 
variable of  type condition for each reason why a pro- 
gram might have to wait. Then the wait and signal 
operations should be preceded by the name of the 
relevant condition variable, separated f rom it by a dot: 

condvariable, wait; 
eondvariable, signal; 

Note that a condition "var iable"  is neither true nor 
false; indeed, it does not have any stored value accessible 
to the program. In practice, a condition variable will be 
represented by an (initially empty) queue of processes 
which are currently waiting on the condition; but this 
queue is invisible both to waiters and signallers. This 
design of the condition variable has been deliberately 
kept as primitive and rudimentary as possible, so that it 
may '  be implemented efficiently and used flexibly to 
achieve a wide variety of  effects. There is a great temp- 
tation to introduce a more complex synchronization 
primitive, which may be easier to use for many  purposes. 
We shall resist this temptat ion for a while. 

As the simplest example of  a monitor,  we will design 
a scheduling algorithm for a single resource, which is 

dynamically acquired and released by an unknown 
number  of  customer processes by calls on procedures 

procedure acquire; 
procedure release; 

A variable 1 

busy: Boolean 

determines whether or not the resource is in use. I f  an 
at tempt is made to acquire the resource when it is busy, 
the attempting program must be delayed by waiting on 
a variable 

nonbusy : condition 

which is signalled by the next subsequent release. The 
initial value of busy is false. These design decisions lead 
to the following code for the monitor:  

single resource:monitor 
begin busy: Boolean; 

nonbusy : condition; 
procedure acquire; 

begin if busy then nonbusy, wa#; 
busy : = true 

end; 
procedure release; 

begin busy := false; 
nonbusy, signal 

end; 
busy : = false; comment initial value; 

end single resource 

Notes  
1. In designing a monitor,  it seems natural to design 
the procedure headings, the data, the conditions, and 
the procedure bodies, in that order. All subsequent  
examples will be designed in this way. 
2. The acquire procedure does not have to retest that  
busy has gone false when it resumes after its wait, since 
the release procedure has guaranteed that this is so; and 
as mentioned before, no other program can intervene 
between the signal and the continuation of exactly one 
waiting program. 
3. I f  more than one program is waiting on a condition, 
we postulate that  the signal operation will reactivate the 
longest waiting program. This gives a simple neutral 
queuing discipline which ensures that  every waiting 
program will eventually get its turn. 
4. The single resource monitor  simulates a Boolean 
semaphore [7] with acquire and release used for P and V 
respectively. This is a simple proof  that the moni to r /  
condition concepts are not in principle less powerful 
than semaphores, and that they can be used for all the 
same purposes. 

1 As in PASCAL [15], a variable declaration is of the form: 
(variable identifier) : (type); 
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2. Interpretation 

Having proved that semaphores can be implemented 
by a monitor,  the next task is to prove that monitors can 
be implemented by semaphores. 

Obviously, we shall require for each monitor  a 
Boolean semaphore " r n u t e x "  to ensure that the bodies 
of  the local procedures exclude each other. The sema- 
phore is initialized to 1 ; a P ( m u t e x )  must be executed on 
entry to each local procedure, and a V ( m u t e x )  must 
usually be executed on exit f rom it. 

When a process signals a condition on which another 
process is waiting, the signalling process must wait until 
the resumed process permits it to proceed. We therefore 
introduce for each monitor  a second semaphore 
" u r g e n t "  (initialized to 0), on which signalling processes 
suspend themselves by the operation P(urgen t ) .  Before 
releasing exclusion, each process must test whether any 
other process is waiting on urgent ,  and if so, must release 
it instead by a V(urgen t )  instruction. We therefore need 
to count the number  of  processes waiting on urgent ,  in 
an integer " u r g e n t c o u n t "  (initially zero). Thus each exit 
f rom a procedure of a monitor  should be coded: 

if urgentcount > 0 then V(urgent) else V(mutex) 

Finally, for each condition local to the monitor, we 
introduce a semaphore " c o n d s e m "  (initialized to 0), on 
which a process desiring to wait suspends itself by a 
P(condsem )  operation. Since a process signalling this 
condition needs to know whether anybody is waiting, we 
also need a count of  the number  of  waiting processes 
held in an integer variable "condcoun t "  (initially 0). The 
operation "cond .  wa i t "  may now be implemented as 
follows (recall that a waiting program must release ex- 
clusion before suspending itself): 

condcount := condcount -Jr- 1; 
if urgentcount > 0 then V(urgent) else V(mutex) ; 
P(condsem) ; 
comment This will always wait; 
condcount := condcount - 1 

The signal operation may be coded: 

urgentcount : = urgentcount -}- 1 ; 
if condcount > 0 then { V(condsem) ; P(urgent) } ; 
urgentcount := urgentcount -- 1 

In this implementation, possession of the monitor  is 
regarded as a privilege which is explicitly passed from 
one process to another. Only when no one further wants 
the privilege is m u t e x  finally released. 

This solution is not intended to correspond to rec- 
ommended "style" in the use of  semaphores. The con- 
cept of  a condition-variable is intended as a substitute 
for semaphores, and has its own style of usage, in the 
same way that while-loops or coroutines are intended as 
a substitute for jumps. 

In many cases, the generality of  this solution is un- 
necessary, and a significant improvement  in efficiency is 
possible. 
1. When a procedure body in a monitor  contains no 
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wait or signal, exit f rom the body can be coded by a 
simple V ( m u t e x ) ,  since urgentcount  cannot have changed 
during the execution of the body. 
2. I f  a cond . s igna l  is the last operation of a procedure 
body, it can be combined with moni tor  exit as follows: 

if condcount > 0 then V(condsem) 
else if urgentcount > 0 then V(urgent) 

rise V(mutex) 

3. I f  there is no other wait or signal in the procedure 
body, the second line shown above can also be omitted. 
4. I f  every  signal occurs as the last operation of its 
procedure body, the variables urgen tcount  and urgent  
can be omitted, together with all operations upon them. 
This is such a simplification that O-J. Dahl suggests that 
signals should always be the last operation of a monitor  
procedure; in fact, this restriction is a very natural one, 
which has been unwittingly observed in all examples of  
this paper. 

Significant improvements in effÉciency may also be 
obtained by avoiding the use of  semaphores, and by 
implementing conditions directly in hardware, or at the 
lowest and most uninterruptible level of  software (e.g. 
supervisor mode). In this case, the following optimiza- 
tions are possible. 
1. urgen tcount  and condcount  can be abolished, since 
the fact that someone is waiting can be established by 
examining the representation of the semaphore, which 
cannot change surreptitiously within noninterruptible 
mode. 
2. Many monitors are very short and contain no calls 
to other monitors. Such monitors can be executed 
wholly in noninterruptible mode, using, as it were, the 
common exclusion mechanism provided by hardware. 
This will often involve less time in noninterruptible 
mode than the establishment of  separate exclusion for 
each monitor. 

I am grateful to J. Bezivin, J. Horning, and R.M. 
McKeag for assisting in the discovery of this algorithm. 

3. Proof  Rules 

The analogy between a monitor  and a data repre- 
sentation has been noted in the introduction. The mu- 
tual exclusion on the code of a moni tor  ensures that 
procedure calls follow each other in time, just as they do 
in sequential programming;  and the same restrictions 
are placed on access to nonlocal data. These are the 
reasons why the same proof  rules can be applied to 
monitors as to data representations. 

As with a data representation, the programmer  may 
associate an invariant ~ with the local data of a monitor,  
to describe some condition which will be true of this data 
before and after every procedure call. ~ must also be 
made true after initialization of the data, and before 
e v e r y  wait instruction; otherwise the next following 
procedure call will not find the local data in a state 
which it expects. 
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With each condition variable b the programmer may 
associate an assertion B which describes the condition 
under which a program waiting on b wishes to be re- 
sumed. Since other programs may invoke a monitor  
procedure during a wait, a waiting program must ensure 
that the invariant ~ for the monitor  is true beforehand. 
This gives the proof  rule for waits: 

{ b . w a i t }  ~ & B  

Since a signal can cause immediate resumption of a wait- 
ing program, the conditions ~&B which are expected by 
that program must be made true before the signal; and 
since B may be made false again by the resumed pro- 
gram, only ~ may be assumed true afterwards. Thus the 
proof  rule for a signal is: 

~ & B { b . s i g n a l } ~  

This exhibits a pleasing symmetry with the rule for 
waiting. 

The introduction of condition variables makes it 
possible to write monitors subject to the risk of deadly 
embrace [7]. It  is the responsibility of  the programmer  
to avoid this risk, together with other scheduling disasters 
(thrashing, indefinitely repeated overtaking, etc. [11]). 
Assertion-oriented proof  methods cannot prove absence 
of  such risks; perhaps it is better to use less formal  
methods for such proofs. 

Finally, in many cases an operating system monitor  
constructs some "vir tual"  resource which is used 
in place of  actual resources by its "cus tomer"  pro- 
grams. This virtual resource is an abstraction f rom 
the set of  local variables of the monitor. The program 
prover should therefore define this abstraction in terms 
of its concrete representation, and then express the in- 
tended effect of  each of the procedure bodies in terms of 
the abstraction. This proof  method is described in detail 
in [13]. 

4. Example: Bounded Buffer 

A bounded buffer is a concrete representation of the 
abstract  idea of a sequence of portions. The sequence is 
accessible to two programs running in parallel: the first 
of  these (the producer) updates the sequence by append- 
ing a new portion x at the end; and the second (the 
consumer) updates it by removing the first portion. The 
initial value of the sequence is empty. We thus require 
two operations: 

(1) append(x:portion) ; 

which should be equivalent to the abstract operation 

sequence := sequence n (x); 

where (x) is the sequence whose only item is x and n de- 
notes concatenation of two sequences. 

(2) remove(result x: portion) ; 

which should be equivalent to the abstract operations 

x := first(sequence); sequence := rest(sequence); 

where f i r s t  selects the first item of a sequence and res t  
denotes the sequence with its first item removed. Ob- 
viously, if the sequence is empty, f i r s t  is undefined; and 
in this case we want to ensure that the consumer waits 
until the producer has made the sequence nonempty.  

We shall assume that the amount  of  time taken to 
produce a portion or consume it is large in comparison 
with the time taken to append or remove it f rom the 
sequence. We may therefore be justified in making a 
design in which producer and consumer can both update 
the sequence, but not simultaneously• 

The sequence is represented by an array: 

buffer :array 0..N -- 1 of portion; 

and two variables: 

(1) l a s tpo in t e r :O . .N -  1; 

which points to the buffer position into which the next 
append operation will put a new item, and 

(2) count:O..N; 

which always holds the length of the sequence (initially 
0). 

We define the function 

seq (b,l,c) =dS if C = 0 then empty 
else seq(b, lOl ,c-  1) n(b[lG1]) 

where the circled operations are taken modulo N. Note  
that  i f c  ~ O, 

first(seq(b,l,c) ) = b[l~c] 

and 

rest(seq( b,l,c) ) = seq(b,l ,c- 1) 

The definition of the abstract  sequence in terms of its 
concrete representation may now be given: 

sequence =as seq(buffer, lastpointer, count) 

Less formally, this may be written 

sequence =as (buffer[last pointerOcount ], 
buffer[lastpointerOcountQ1 ], 

buffe r[lastpointerO 1 ]) 

Another way of conveying this information would be by 
an example and a picture, which would be even less 
formal. 

The invariant for the moni tor  is: 

0 <_ count < N & 0 <_ lastpointer < N -- 1 

There are two reasons for waiting, which must be 
represented by condition variables: 

nonem pty : condition; 

means that the count is greater than 0, and 

non full: condition; 

means that the count is less than N. 
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With this constructive approach to the design [8], it 
is relatively easy to code the monitor  without error. 

bounded buffer:monitor 
begin buffer:array 0..N -- 1 of portion; 

lastpointer:O. . N  -- 1 ; 
count'.O. .N;  
nonempty ,non full  : condition; 

procedure append(x : portion) ; 
begin if count = N then nonfull, wait; 

note 0 < count < N; 
buffer[lastpointer] := x; 
lastpointer := lastpointer @ 1; 
count : = count--}- 1 ; 
nonempty, signal 

end append; 
procedure remove(result x :portion) ; 

begin if count = 0 then nonempty, wait; 
note 0 < count < N; 
x := buffer[lastpointerOeount]; 
non full .  signal 

end remove; 
count := 0; lastpointer := 0; 

end bounded buffer; 

A formal proof  of the correctness of this monitor  
with respect to the stated abstraction and invariant can 
be given if desired by techniques described in [13]. How- 
ever, these techniques seem not capable of  dealing with 
subsequent examples of this paper. 

Single-buffered input and output may be regarded as 
a special case of  the bounded buffer with N = I. In this 
ease, the array can be replaced by a single variable, the 
l a s t p o i n t e r  is redundant,  and we get: 

iostream : monitor 
begin buffer:portion; 

count: O.. l ; 
nonempty,nonfull: condition; 

procedure append(x :portion) ; 
begin if count = 1 then non full .  wait; 

buffer := x; 
count : = 1; 
nonempty, signal 

end append; 
procedure remove(result x :portion) ; 

begin if count = 0 then nonempty.wait; 
x := buffer; 
count := 0; 
non full .  signal 

end remove; 
count := 0; 

end iostream; 

I f  physical output is carried out by a separate special 
purpose channel, then the interrupt f rom the channel 
should simulate a call of  i o s t r e a m . r e m o v e ( x ) ;  and 
similarly for physical input, simulating a call of 
i o s t r e a m  . a p p e n d ( x ) .  

5. Scheduled Waits  

Up to this point, we have assumed that when more 
than one program is waiting for the same condition, a 
signal will cause the longest waiting program to be 
resumed. This is a good simple scheduling strategy, 

which precludes indefinite overtaking of a waiting 
process. 

However, in the design of an operating system, there 
are many cases when such simple scheduling on the 
basis of first-come-first-served is not adequate. In order 
to give a closer control over scheduling strategy, we 
introduce a further feature of  a conditional wait, which 
makes it possible to specify as a parameter  of  the wait 
some indication of the priority of the waiting program, 
e.g.: 

busy . wait (p); 

When the condition is signalled, it is the program that 
specified the lowest value of p that is resumed. In using 
this facility, the designer of  a monitor  must take care to 
avoid the risk of  indefinite overtaking; and often it is 
advisable to make priority a nondecreasing function of 
the time at which the wait commences. 

This introduction of a "scheduled wait" concedes to 
the temptation to make the condition concept more 
elaborate. The main justifications are: 
1. It  has no effect whatsoever on the log ic  of a program, 
or on the formal proof  rules. Any program which works 
without a scheduled wait will work with it, but possibly 
with better timing characteristics. 
2. The automatic ordering of the queue of  waiting 
processes is a simple fast scheduling technique, except 
when the queue is exceptionally l ong- -and  when it is, 
cer.~ral processor time is not the major  bottleneck. 
3. The maximum amount  of  storage required is one 
word per process. Without such a built-in scheduling 
method, each monitor  may have to allocate storage pro- 
portional to the number  of its customers; the alternative 
of  dynamic storage allocation in small chunks is un- 
attractive at the low level of an operating system where 
moni tors  are found. 

I shall yield to one further temptation, to introduce a 
Boolean function of conditions: 

condname, queue 

which yields the value true if anyone is waiting on 
c o n d n a m e  and false otherwise. This can obviously be 
easily implemented by a couple of instructions, and 
affords valuable information which could otherwise be 
obtained only at the expense of extra storage, time, and 
trouble. 

A trivially simple example is an a l a r m c l o c k  monitor,  
which enables a calling program to delay itself for a 
stated number  n of  time-units, or " t i c k s " .  There are two 
entries: 

procedure wakeme (n: integer) ; 
procedure tick; 

The second of these is invoked by hardware (e.g. an 
interrupt) at regular intervals, say ten times per second. 
Local variables are 

now: integer; 
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which records the current time (initially zero) and 

wakeup : condition; 

on which sleeping programs wait. But the a l a r m s e t t i n g  

at which these programs will be aroused is known at the 
time when they start the wait; and this can be used to 
determine the correct sequence of waking up. 

alarmclock : monitor 
begin now: integer; 

wakeup: condition; 
procedure wakeme(n: integer) ; 

begin alarmsetting: integer; 
alarmsetting := now -]- n; 
while now < alarmsetting do wakeup,  wait(alarmsetting) ; 
wakeup, signal; 
comment In case the next process is due to wake up at the 
same time; 

end; 
procedure tick; 

begin now := now -q- 1; 
wakeup,  signal 

end; 
nOW : :  0 

end alarmclock 

In the program given above, the next candidate for 
wakening is actually woken at every tick of the clock. 
This will not matter  if the frequency of ticking is low 
enough, and the overhead of an accepted signal is not 
too high. 

I am grateful to A. Ballard and J. Horning for posing 
this problem. 

6. Further Examples  

In proposing a new feature for a high level language 
it is very difficult to make a convincing case that the 
feature will be both easy to use efficiently and easy to 
implement efficiently. Quality of  implementation can be 
proved by a single good example, but ease and efficiency 
of  use require a great number  of  realistic examples; 
otherwise it can appear that the new feature has been 
specially designed to suit the examples, or vice versa• 
This section contains a number  of  additional examples 
of  solutions of  familiar problems• Further examples may 
be found in [14]. 

6.1 Buffer Allocation 
The bounded buffer described in Section 4 was 

designed to be suitable only for seque.nces with small 
portions, for example, message queues• I f  the buffers 
contain high volume information (for example, files for 
pseudo offline input and output), the bounded buffer 
may still be used to store the a d d r e s s e s  of  the buffers 
which are being used to hold the information. In this 
way, the producer can be filling one buffer while the 
consumer is emptying another buffer of  the same se- 
quence. But this requires an allocator for dynamic 
acquisition and relinquishment of  b u f f e r  a d d r e s s e s .  

These may be declared as a type 

type bufferaddress = 1 . . B ;  

where B is the number of buffers available for allocation. 
The buffer allocator has two entries: 

procedure acquire (result b: buf f  e raddress) ; 

which delivers a free b u f f e r  a d d r e s s  b;  and 

procedure release(b : bufferaddress) ; 

which returns a b u f f e r a d d r e s s  when it is no longer re- 
quired. In order to keep a record of free buffer addresses 
the monitor  will need: 

f reepool: powerset bufferaddress; 

which uses the P A S C A L  powerset facility to define a 
variable whose values range over all sets of  b u f f e r  

a d d r e s s e s ,  f rom the empty set to the set containing all 
b u f f e r  a d d r e s s e s .  I t  should be implemented as a b i t m a p  

of B consecutive bits, where the ith bit is 1 if and only if 
i is in the set. There is only one condition variable 
needed: 

nonempty : condition 

which means that f r e e p o o l  ~ e m p t y .  The code for the 
allocator is: 

buffer allocator: monitor 
begin freepool: powerset bufferaddress; 

nonempty  : condition; 
procedure acquire (result b: bufferaddress) ; 

begin i f  f reepool  = empty  then nonempty .wai t ;  
b := f irst(freepool) ; 
comment Any one would do; 
freepool  : = freepool  --  { b } ; 
comment Set subtraction; 

end acquire; 
procedure release(b :bufferaddress) ; 

begin f reepool  : = f reepool  --  { b } ; 
nonempty ,  signal 

end release; 
f reepool  := all buffer addresses 

end buffer allocator 

The action of a producer and consumer may  be 
summarized: 

producer: begin b :bufferaddress; . . .  
while not f inished do 

begin bufferallocator, acquire(b) ; 
• . .  f i l l  buffer b . . . ;  
bounded buffer, append(b) 

end; . . .  
end producer; 

consumer: begin b: bufferaddress; . . .  
while not f inished do 

begin bounded buffer, remove(b) ; 
• . . empty  buffer b . . . ; 
buffer allocator, release(b) 

end; . . .  
end consumer; 

This buffer allocator would appear  to be usable to 
share the buffers among several streams, each with its 
own producer and its own consumer, and its own in- 
stance of a bounded buffer monitor.  Unfortunately,  
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when the streams operate at widely varying speeds, and 
when the freepool is empty, the scheduling algorithm 
can exhibit persistent undesirable behavior. I f  two pro- 
ducers are competing for each buffer as it becomes free, 
a first-come-first-served discipline of  allocation will 
ensure (apparently fairly) that each gets alternate 
buffers; and they will consequently begin to produce at 
equal speeds. But if one consumer is a 1000 lines/min 
printer and the other is a 10 lines/min teletype, the 
faster consumer will be eventually reduced to the speed 
of  the slower, since it cannot  forever go faster than its 
producer. At this stage nearly all buffers will belong to 
the slower stream, so the situation could take a long 
time to clear. 

A solution to this is to use a scheduled wait, to 
ensure that in heavy load conditions the available buffers 
will be shared reasonably fairly between the streams that 
are competing for them. Of  course, inactive streams 
need not be considered, and streams for which the con- 
sumer is currently faster than the producer will never 
ask for more than two buffers anyway. In order to 
achieve fairness in allocation, it is sufficient to allocate a 
newly freed buffer to that one among the competing 
producers whose stream currently owns fewest buffers. 
Thus the system will seek a point as far away from the 
undesirable extreme as possible. 

For  this reason, the entries to the allocator shotild 
indicate for what stream the buffer is to be (or has been) 
used, and the allocator must keep a count of  the current 
allocation to each stream in an array: 

count: array stream of integer; 

The new version of the allocator is: 

bufferallocator: monitor 
begin freepool: powerset bufferaddress; 

nonempty : condition 
count: array stream of integer; 

procedure acquire(result b:bufferaddress; s:stream) ; 
begin i f  freepool = empty then nonempty.wait(count[s]) ; 

count[s] := count[s] + 1; 
b : = firstOCreepool) ; 
freepool := freepool -- {b} 

end acquire; 
procedure release(b:bufferaddress; s:stream) 

begin count[s] := count[s] -- 1; 
freepool := freepool -- {b}; 
nonempty, signal 

en d; 
freepool : = all buffer addresses; 
for s:stream do count[s] := 0 

end bufferallocator 

Of course, if a consumer stops altogether, perhaps 
owing to mechanical failure, the producer must also be 
halted before it has acquired too many buffers, even if 
no one else currently wants them. This can perhaps be 
most  easily accomplished by appropriate  fixing of the 
size of  the bounded buffer for that stream and /o r  by 
ensuring that at least two buffers are reserved for each 
stream, even when inactive. It  is an interesting comment  
on dynamic resource allocation that, as soon as re- 

sources  are heavily loaded, the system must be designed 
to fall back toward a more static regime. 

I am grateful to E.W. Dijkstra for pointing out this 
problem and its solution [10]. 

6.2 D i s k  H e a d  Scheduler  
On a moving head disk, the time taken to move the 

heads increases monotonically with the distance 
traveled. I f  several programs wish to move the heads, the 
average waiting time can be reduced by selecting, first, 
the program which wishes to move them the shortest 
distance. But unfortunately this policy is subject to an 
instability, since a program wishing to access a cylinder 
at one edge of the disk can be indefinitely overtaken by 
programs operating at the other edge or the middle. 

A solution to this is to minimize the frequency of 
change of direction of movement  of  the heads. At any 
time, the heads are kept moving in a given direction, 
and they service the program requesting the nearest 
cylinder in that direction. I f  there is no such request, the 
direction changes, and the heads make another sweep 
across the surface of the disk. This may be called the 
"elevator"  algorithm, since it simulates the behavior of  
a lift in a multi-storey building. 

There are two entries to a disk head scheduler: 

(1) request(dest :cylinder) ; 

where 

type cylinder = O. • cylmax; 

which is entered by a p rogram just b e f o r e  issuing the 
instruction to move the heads to cylinder dest .  

(2) release; 

which is entered by a program when it has made all the 
transfers it needs on the current cylinder. 

The local data of the moni tor  must include a record 
o f  the current headposition, h e a d p o s ,  the current direc- 
tion o f  s w e e p ,  and whether the disk is b u s y :  

headpos: cylinder; 
direction: (up, down) ; 
busy: Boolean 

We need two conditions, one for requests waiting for an 
u p s w e e p  and the other for requests waiting for a d o w n -  

s w e e p :  

upsweep, downsweep:condition 

disehead : monitor 
begin headpos:cylinder; 

direction: (up, down) ; 
busy: Boolean; 
upsweep ,downsweep : condition; 

procedure request (dest : cylinder) ; 
begin if busy then 

{if headpos < dest V headpos = dest & direction = up 
then upsweep, wait(dest) 
else downsweep, wait ( c ylmax-dest ) } ; 

busy := true; headpos := dest 
end request; 
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procedure release; 
begin busy := false; 

if direction = up then 
{if upsweep, queue then upsweep, signal 

else {direction := down; 
downsweep, signal} } 

else if downsweep.queue then downsweep, signal 
else {direction := up; 

upsweep, signal} 
end release; 
headpos := 0; direction := up; busy := false 

end dischead; 

6.3 Readers and Writers 

As a more significant example, we take a problem 
which arises in on-line real-time applications such as 
airspace control. Suppose that each aircraft is repre- 
sented by a record, and that this record is kept up to 
date by a number  of  "wri ter"  processes and accessed by 
a number  of  " reader"  processes. Any number  of  
" reader"  processes may simultaneously access the same 
record, but obviously any process which is updating 
(writing) the individual components  of the record must 
have exclusive access to it, or chaos will ensue. Thus we 
need a class of monitors;  an instance of this class local 
to e a c h  individual aircraft record will enforce the re- 
quired discipline for that record. I f  there are many air- 
craft, there is a strong motivation for minimizing local 
data of  the monitor;  and if each read or write operation 
is brief, we should also minimize the time taken by each 
monitor  entry. 

When many  readers are interested in a single aircraft 
record, there is a danger that a writer will be indefinitely 
prevented f rom keeping that record up to date. We 
therefore decide that a new reader should not be per- 
mitted to start if there is a writer waiting. Similarly, to 
avoid the danger of indefinite exclusion of readers, all 
readers waiting at the end of a write should have priority 
over the next writer. Note that this is a very different 
scheduling rule f rom that propounded in [4], and does 
not seem to require such subtlety in implementation. 
Nevertheless, it may be more suited to this kind of 
application, where it is better to read stale information 
than to wait indefinitely! 

The monitor  obviously requires four local proce- 
dures: 

startread entered by reader who wishes to read. 
endread entered by reader who has finished reading. 
startwrite entered by writer who wishes to write. 
endwrite entered by writer who has finished writing. 

We need to keep a count of  the number  of users who are 
reading, so that the last reader to finish will know this 
fact: 

readercount : integer 

We also need a B o o l e a n  to indicate that someone is 
actually writing: 

busy: Boolean; 

We introduce separate conditions for readers and 

writers to wait on: 

OKtoread, OKtowrite:conditionl; 

The following annotation is relevant: 

OKtoread -~ -7 busy 
OKtowrite ~ --1 busy & readercount = 0 
invariant: busy ~ readercount = 0 

class readers and writers: monitor 
begin readercount : integer; 

busy: Boolean; 
OKtoread, OKtowrite:condition; 

procedure startread; 
begin if busy V OKtowrite .queue then OKtoread. wait; 

readercount := readercount d- 1; 
OKtoread.  signal; 
comment Once one reader can start, they all can; 

end startread; 
procedure endread; 

begin readercount : = readercount -- 1 ; 
if readercount = 0 then OKtowrite .  signal 

end endread; 
procedure startwrite; 

begin 
if readercount ~ 0 V busy then OKtowrite .  wait 
busy := true 

end startwrite; 
procedure endwrite; 

begin busy := false; 
if OKtoread.queue then OKtoread.s ignal  

else OKtowri te .s ignal  
end endwrite; 

readercount := 0; 
busy := false; 

end readers and writers; 

I am grateful to Dave Gorman  for assisting in the 
discovery of this solution. 

7. Conclusion 

This paper suggests that  an appropriate  structure for 
a module of  an operating system, which schedules re- 
sources for parallel user processes, is very similar to that 
of  a data representation used by a sequential program. 
However,  in the case of  monitors,  the bodies of  the 
procedures must be protected against re-entrance by 
being implemented as critical regions. The textual group- 
ing of critical regions together with the data which they 
update seems much superior to critical regions scattered 
through the user program, as described in [7, 12]. It  also 
corresponds to the traditional practice of  the writers of  
operating system supervisors. It  can be recommended 
without reservation. 

However, it is much more difficult to be confident 
about  the condition concept as a synchronizing primi- 
tive. The synchronizing facility which is easiest to use is 
probably  the conditional w a i t  [2, 12] : 

wait(B) ; 

where B is a general Boolean expression (it causes the 
given process to wait until B becomes true) ; but this may  
be too inefficient for general use in operating systems, 
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because its implementation requires re-evaluation of the 
expression B after every exit f rom a procedure of  the 
monitor.  The condition variable gives the programmer  
better control over efficiency and over scheduling; it was 
designed to be very primitive, and to have a simple proof  
rule. But perhaps some other compromise between 
convenience and efficiency might be better. The question 
whether the signal should always be the last operation 
of a monitor  procedure is still open. These problems will 
be studied in the design and implementation of a pilot 
project operating system, currently enjoying the support  
of  the Science Research Council of  Great  Britain. 

Another question which will be studied will be that 
of  the disjointness of monitors:  Is it possible to design a 
separate isolated monitor  for each kind of resource, so 
that it will make sensible scheduling decisions for that 
resource, using only the minimal information about  the 
utilization of that resource, and using no information 
about  the utilization of any resource administered by 
other monitors? In principle, it would seem that, when 
more knowledge of the status of the entire system is 
available, it should be easier to take decisions nearer to 
optimality. Furthermore,  in principle, independent 
scheduling of different kinds of resource can lead to 
deadly embrace. These considerations would lead to the 
design of a traditional "monoli thic"  monitor,  maintain- 
ing large system tables, all of  which can be accessed and 
updated by any of the procedures of the monitor.  

There is no a priori reason why the at tempt to split 
the functions of  an operating system into a number  of  
isolated disjoint monitors should succeed. It  can be 
made to succeed only by discovering and implementing 
good scheduling algorithms in each monitor. In order to 
avoid undesirable interactions between the separate 
scheduling algorithms, it appears necessary to observe 
the following principles: 
1. Never seek to make an optimal decision ; merely seek 
to avoid persistently pessimal decisions. 
2. Do not seek to present the user with a virtual ma- 
chine which is better than the actual hardware; merely 
seek to pass on the speed, size, and flat unopiniated 
structure of a simple hardware design. 
3. Use preemptive techniques in preference to non- 
preemptive ones where possible. 
4. Use "grain of  t ime" [9] methods to secure independ- 
ence of scheduling strategies. 
5. Keep a low variance (as well as a low mean) on 
waiting times. 
6. Avoid fixed priorities; instead, try to ensure that 
every program in the system makes reasonably steady 
progress. In particular, avoid indefinite overtaking. 
7. Ensure that when demand for resources outstrips 
the supply (i.e. in overload conditions), the behavior of  
the scheduler is satisfactory (i.e. thrashing is avoided). 
8. Make rules for the correct and sensible use of moni- 
tor calls, and assume that user programs will obey 
them. Any checking which is necessary should be done 
not by a central shared monitor,  but rather by an 

algorithm (called "user envelope") which is local to 
each process executing a user program. This algorithm 
should be implemented at least partially in the hardware 
(e.g. base and range registers, address translation mech- 
anisms, capabilities, etc.). 

It is the possibility of  constructing separate monitors 
for different purposes, and of separating the scheduling 
decisions embodied in monitors f rom the checking 
embodied in user envelopes, that may justify a hope 
that monitors are an appropriate concept for the struc- 
turing of an operating system. 
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