
A Generic Algorithm Template for Divide-and-conquer in Multicore Systems

Carlos H. González and Basilio B. Fraguela
Depto. de Electrónica e Sistemas

Universidade da Coruña
A Coruña, Spain

{cgonzalezv, basilio.fraguela}@udc.es

Abstract—The divide-and-conquer pattern of parallelism is
a powerful approach to organize parallelism on problems that
are expressed naturally in a recursive way. In fact, recent tools
such as Intel Threading Building Blocks (TBB), which has
received much attention, go further and make extensive usage
of this pattern to parallelize problems that other approaches
parallelize following other strategies. In this paper we discuss
the limitations to express divide-and-conquer parallelism with
the algorithm templates provided by the TBB. Based on our
observations, we propose a new algorithm template imple-
mented on top of TBB that improves the programmability of
many problems that fit this pattern, while providing a similar
performance. This is demonstrated with a comparison both in
terms of performance and programmability.

Keywords-productivity; programmability; parallel skeletons;
template meta-programming; libraries; patterns

I. INTRODUCTION

The divide-and-conquer strategy appears in many prob-
lems [1]. It is applicable whenever the solution to a problem
can be found by dividing it into smaller subproblems, which
can be solved separately, and merging somehow the partial
results to such subproblems into a global solution for the ini-
tial problem. This strategy can be often applied recursively
to the subproblems until a base or indivisible one is reached,
which is then solved directly. The recursivity of an algorithm
sometimes is given by the data structure on which it works,
as is the case of algorithms on trees, and very often it is
the most natural description of the algorithm. Just to cite a
few examples, cache oblivious algorithms [2], many signal-
processing algorithms such as discrete Fourier transforms,
or the linear algebra algorithms produced by FLAME [3]
are usually recursive algorithms that follow a divide-and-
conquer strategy. As for parallelism, the independence in
the resolution of the subproblems in which a problem has
been partitioned leads to concurrency, giving place to the
divide-and-conquer pattern of parallelism [4].

Fostered by the increase of processors available in current
systems, extensive research is being made on the best ways
to express parallelism. The large base of existing legacy
codes, the inherent learning curve and the requirement
of compiler support have traditionally made difficult the
widespread adoption of new languages focused on paral-
lelism. As for compiler directives, OpenMP [5] is well es-
tablished in the field of multicore systems. While it is mainly

designed to parallelize regular loops, its scope of application
has been extended thanks to the addition of a task-enqueuing
mechanism in its latest specification [6]. Compiler directives
unfortunately require compiler support and they do not
provide as much structure and functionality to applications
as libraries of skeletal operations [7]. Skeletons build on
parallel design patterns, which provide a clean specification
to the flow of execution, parallelism, synchronization and
data communications of typical strategies for the parallel
resolution of problems. Divide-and-conquer has been in
fact identified as one of the basic skeletons of parallel
programming [8]. Libraries of parallel skeletons can be
thus a very good approach to develop parallel applications
thanks to the higher degree of abstraction they provide. A
recent example of library that provides parallel skeletons
for multicore systems is Intel Threading Building Blocks
(TBB) [9], which relies on recursive decomposition and task
stealing. Although there have been other libraries of skeletal
operations before TBB, this library has become the most
popular and widely adopted. Thus we think it is interesting
to analyze how TBB adapts to the parallelization of typical
classes of problems and propose ways to improve it. This
way, in this paper (1) we discuss the weaknesses of TBB
algorithm templates to parallelize applications that are natu-
rally fit for the divide-and-conquer pattern of parallelism, (2)
we propose a new template built on TBB to express these
problems, and (3) we perform a comparison both in terms
of programmability and performance.

The rest of this paper is organized as follows. The next
section introduces the TBB, focusing on its ability to express
the divide-and-conquer pattern of parallelism, which is ex-
emplified with small codes in Section III. Our proposal to
express this pattern of parallelism is presented in Section IV
and evaluated in Section V. Related work is discussed in
Section VI, followed by our conclusions in Section VII.

II. THE INTEL TBB LIBRARY

Intel Threading Building Blocks (TBB) [9] is a C++
library developed by Intel for the programming of multi-
threaded applications. It provides from atomic operations
and mutexes to containers specially designed for parallel
operation. Still, its main mechanism to express parallelism
are algorithm templates that provide generic parallel al-

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.24

79

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.24

79

gorithms. The most important TBB algorithm templates
are parallel for and parallel reduce, which express
element-by-element independent computations and a parallel
reduction, respectively. These algorithm templates have two
compulsory parameters. The first one is a range that defines
a problem that can be recursively subdivided into smaller
subproblems that can be solved in parallel. The second one,
called body, provides the computation to perform on the
range. The requirements of the classes of these two objects
are now discussed briefly.

The ranges used in the algorithm templates provided by
the TBB must model the Range concept, which represents
a recursively divisible set of values. The class must provide

• a copy constructor
• an empty method to indicate when a range is empty,
• an is divisible method to inform whether the range

can be partitioned into two subranges whose processing
in parallel is more efficient than the sequential process-
ing of the whole range,

• a splitting constructor that splits a range r in two. By
convention this constructor builds the second part of the
range, and updates r (which is an input by reference)
to be the first half. Both halves should be as similar as
possible in size in order to attain the best performance.

TBB algorithm templates use these methods to partition
recursively the initial range into smaller subranges that are
processed in parallel. This process, which is transparent to
the user, seeks to generate enough tasks of an adequate size
to parallelize optimally the computation on the initial range.
Thus, TBB makes extensive usage of a divide-and-conquer
approach to achieve parallelism with its templates. This
recursive decomposition is complemented by a task-stealing
scheduling that balances the load among the existing threads,
generating and moving subtasks among them as needed.

The body class has different requirements depending
on the algorithm template. This way, parallel for
only requires that it has a copy constructor and over-
loads the operator() method on the range class used.
The parallel computation is performed in this method.
parallel reduce requires additionally a splitting con-
structor and a join method. The splitting constructor is used
to build copies of the body object for the different threads
that participate in the reduction. The join method has as
input a rhs body that contains the reduction of a subrange
just to the right of (i.e following) the subrange reduced in
the current body. The method must update the object on
which it is invoked to represent the accumulated result for its
reduction and the one in rhs, that is, left.join(right) should
update left to be the result of left reduced with right. The
reduction operation should be associative, but it need not be
commutative. It is important that a new body is created only
if a range is split, but the converse is not true. This means
that a range can be subdivided in several smaller subranges

which are all reduced by the same body. When this happens,
the body always evaluates the subranges in left to right order,
so that non commutative operations are not endangered.

TBB algorithm templates have a third optional parameter,
called the partitioner, which indicates the policy followed
to generate new parallel tasks. When not provided, it
defaults to the simple partitioner, which recursively
splits the ranges giving place to new subtasks until their
is divisible method returns false. Thus, with it the pro-
grammer fully controls the generation of parallel tasks. The
auto partitioner lets the TBB library decide whether
the ranges must be split to balance load. The library can
decide not to split a range even if it is divisible be-
cause its division is not needed to balance load. Finally,
affinity partitioner applies to algorithms that are per-
formed several times on the same data and these data fit in
the caches. It tries to assign the same iterations of loops to
the same threads that run them in a past execution.

III. DIVIDE-AND-CONQUER WITH THE TBB

This Section analyzes the programmability of the divide-
and-conquer pattern of parallelism using the TBB algorithm
templates through a series of examples of increasing com-
plexity. This analysis motivates and leads to the design of
the alternative that will be presented in the next Section.

A. Fibonacci numbers

The simplest program we consider is the recursive com-
putation of the nth Fibonacci number. While this is an
inefficient method to compute this value, our interest at this
point is on the expressiveness of the library, and this problem
is ideal because of its simplicity. The sequential version is

int fib(int n) {
if (n < 2) return n;
else return fib(n − 1) + fib(n − 2);

}

which clearly shows all the basic elements of a divide-and-
conquer algorithm:

• the identification of a base case (when n < 2)
• the resolution of the base case (simply return n)
• the partition in several subproblems otherwise (fib(n -

1) and fib(n - 2))
• the combination of the results of the subproblems (here

simply adding their outcomes)
The simplest implementation of this algorithm based on

TBB algorithm templates, shown in Figure 1, relies on
parallel reduce and it indeed follows a recursive divide-
and-conquer approach. The FibRange class, which stores
in n the Fibonacci number to compute, provides the range
object required by this template. The initial range is built
in the invocation to parallel reduce in line 36 using the
constructor in lines 4-5. The template generates internally
new ranges using the splitting constructor in lines 7-9, which
is identified by its second dummy argument of type split.

8080

1 struct FibRange {
2 int n ;
3
4 FibRange(int n)
5 : n (n) { }
6
7 FibRange(FibRange& other, split)
8 : n (other.n − 2)
9 { other.n = other.n − 1; }

10
11 bool is divisible() const { return (n > 1); }
12
13 bool empty() const { return n < 0; };
14 };
15
16 struct Fib {
17 int fsum ;
18
19 Fib()
20 : fsum (0) { }
21
22 Fib(Fib& other, split)
23 : fsum (0) { }
24
25 void operator() (FibRange& range) { fsum += fib(range.n); }
26
27 int fib(int n) {
28 if (n < 2) return n;
29 else return fib(n − 1) + fib(n − 2);
30 }
31
32 void join(Fib& rhs) { fsum += rhs.fsum ; };
33 };
34 ...
35 Fib f();
36 parallel reduce(FibRange(n), f, auto partitioner());
37 int result = f.fsum ;

Figure 1. Computation of the n-th Fibonacci number using TBB’s
parallel reduce

This method splits the computation of the n-th Fibonacci
number in the computation of the n − 1th and n − 2th
numbers. Concretely, line 8 fills in the new range built to
represent the n − 2th number, while the input FibRange
which is being split, called other in the code, in updated to
represent the n−1th number in line 9. The class is completed
with the is disivible and empty methods required, with
the semantics explained in the previous Section.

The body object belongs to the Fib class and performs
the actual computation. It stores in fsum the reduction
(addition) of the values of the Fibonacci numbers corre-
sponding to the ranges it has reduced. The initial body is
built in line 35 with the default constructor (lines 19-20).
The template builds new bodies so that different ranges
can be evaluated and reduced in parallel using the splitting
constructor in lines 22-23, which simply initializes fsum
to 0. The operator() of the body (line 25) is where the
Fibonacci numbers indicated by the input FibRange are
computed by invoking the sequential fib method in lines
27-30. Notice that operator() must support any value in
the input range, and not just a not divisible one (0 or
1). The reason is that the auto partitioner is being
used (line 36) to avoid generating too many tasks, so
bodies can receive divisible ranges to evaluate. The default

simple partitioner would have generated a new task for
every step of the recursion, which would have been very
inefficient. Finally, method join in line 32 accumulates the
results of the current body and the rhs one in the current
one, which is simply a matter of adding their fsum fields.

The Fib class must have a state for three reasons. First,
the same body can be applied to several ranges, so it
must accumulate the results of their reductions. Second,
bodies must also accumulate the results of the reductions of
other bodies in their join method. Third, TBB algorithm
templates have no return type, thus body objects must
store the results of the reductions. This gives place to the
invocation we see in lines 35-37. The topmost Fib object
must be created before the usage of parallel reduce so
that when it finishes the result can be retrieved from it.

Altogether, even when the problem suits well the TBB
algorithm templates, we have gone from 4 source lines of
code (SLOC) in the sequential version to 26 (empty lines
and comments are are not counted) in the parallel one.

B. Tree reduction

TBB ranges can only be split in two subranges in each
subdivision, while sometimes it would be desirable to divide
them in more subranges. For example, the natural represen-
tation of a subproblem in an operation on a tree is a range
that stores a node. When this range is processed by the
body of the algorithm template, the node and its children
are processed. In a parallel operation on a 3-ary tree, each
one of these ranges would naturally be subdivided in 3
subtasks/ranges, one per direct child. The TBB restriction
to two subranges in each partition forces the programmer
to build a more complex representation of the problem so
that there are range objects that represent a single child
node, while others keep two children nodes. As a result,
the construction and splitting conditions for both kinds
of ranges will be different, implying a more complicated
implementation of the methods of the range. Moreover, the
operator() method of the body will have to be written to
deal correctly with both kinds of ranges.

Figure 2 exemplifies this with the TBB implementation
of a reduction on a 3-ary tree. The initial range stores the
root of the tree in r1 , while r2 is set to 0 (lines 5-6). The
splitting constructor operates in a different way depending
on whether the range other to split has a single node or
two (line 9). If it has a single node, the new range takes
its two last children and stores that its parent is other.r1 .
The input range other is then updated to store its first child.
When other has two nodes, the new range takes the second
one and zeroes it from other. The operator() of the body
has to take into account whether the input range has one or
two nodes, and also whether a parent node is carried.

This example also points out another two problems of
this approach. Although a task that can be subdivided in
N > 2 subtasks can always be subdivided only in two,

8181

1 struct TreeAddRange {
2 tree t ∗ r1 , ∗r2 ;
3 tree t ∗ parent ;
4
5 TreeAddRange(tree t ∗root)
6 : r1 (root), r2 (0), parent (0) { }
7
8 TreeAddRange(TreeAddRange& other, split) {
9 if(other.r2 == 0) { //other only has a node

10 r1 = other.r1 −>child[1];
11 r2 = other.r1 −>child[2];
12 parent = other.r1 ;
13 other.r1 = other.r1 −>child[0];
14 } else { //other has two nodes
15 parent = 0;
16 r1 = other.r2 ;
17 r2 = 0;
18 other.r2 = 0;
19 }
20 }
21
22 bool empty() const { return r1 == 0; }
23
24 bool is divisible() const { return !empty(); }
25 };
26
27 struct TreeAddReduce {
28 int sum ;
29
30 TreeAddReduce()
31 : sum (0) { }
32
33 TreeAddReduce(TreeAddReduce& other, split)
34 : sum (0) { }
35
36 void operator()(TreeAddRange &range) {
37 sum += TreeAdd(range.r1);
38 if(range.r2 != 0)
39 sum += TreeAdd(range.r2);
40 if (range.parent != 0)
41 sum += range.parent −>val;
42 }
43
44 void join(TreeAddReduce& rhs) {
45 sum += rhs.sum ;
46 }
47 };
48 ...
49 TreeAddReduce tar;
50 parallel reduce(TreeAddRange(root), tar, auto partitioner());
51 int r = tar.sum ;

Figure 2. Reduction on a 3-ary tree using TBB’s parallel reduce

those two subproblems may have necessarily a very different
granularity. In this example, one of the two children ranges
of a 3-ary node is twice larger than the other one. This can
lead to a poor load balancing, since the TBB recommends
the subdivisions to be as even as possible. This problem
can be alleviated by further subdividing the ranges and
relying on the work-stealing scheduler of the TBB, which
can move tasks from loaded processors to idle ones. Still, the
TBB does not provide a mechanism to specify which ranges
should be subdivided with greater priority, but just a boolean
flag that indicates whether a range can be subdivided or not.
Moreover, when automatic partitioning is used, the library
may not split a range even if it is divisible. For these reasons,
allowing to subdivide in N subranges at once improves
both the programmability and the potential performance of
divide-and-conquer problems.

The last problem is the difficulty to handle pieces of a
problem which are not a natural part of the representation
of its children subproblems, but which are required in the
reduction stage. In this code this is reflected by the clumsy
treatment of the inner nodes of the tree, which must be stored
in the parent field of the ranges taking care that none is
either lost or stored in several ranges. Additionally, the fact
that some ranges carry an inner node in this field while
others do not complicates the operator() of the body.

C. Traveling salesman problem

The TBB algorithm templates require the reduction opera-
tions to be associative. This complicates the implementation
of the algorithms in which the solution to a given problem
at any level of decomposition requires merging exactly the
solutions to its children subproblems. An algorithm of this
kind is the recursive partitioning algorithm for the traveling
salesman in [10], an implementation of which is the tsp
Olden benchmark [11]. The program first builds a binary
space partitioning tree with a city in each node. Then the
solution is built traversing the tree with the function

Tree tsp(Tree t, int sz) {
if (t−>sz <= sz) return conquer(t);
Tree leftval = tsp(t−>left, sz);
Tree rightval = tsp(t−>right, sz);
return merge(leftval, rightval, t);

}

which follows a divide-and-conquer strategy. The base case,
found when the problem is smaller than a size sz, is solved
with the function conquer. Otherwise the two children
can be processed in parallel applying tsp recursively. The
solution is obtained joining their solutions with the merge
function, which requires inserting their parent node t.

This structure fits well the parallel reduce template
in many aspects. Figure 3 shows the range and body classes
used for the parallelization with this algorithm template.
The range contains a node, and splitting it returns the
two children subtrees. The is divisible method checks
whether the subtree is smaller than sz, when the recursion
stops. The operator() of the body applies the original tsp
function on the node taken from the range.

The problems arise when the application of the merge
function is considered. First, a stack must be added to the
range for two reasons. One is to identify when two ranges
are children of the same parent and can thus be merged. This
is expressed by function mergeable (lines 22-25). The other
reason is that this parent is actually required by merge.

Reductions take place in two places. First, a body
operator() can be applied to several consecutive ranges in
left to right order, and must reduce their results. This way,
when tsp is applied to the node in the input range (line
36), the result is stored again in this range and an attempt
to merge it with the results of ranges previously processed
is done in method mergeTSPRange (lines 40-47). The body
keeps a list lresults of ranges already processed with

8282

1 struct TSPRange {
2 static int sz ;
3 stack<Tree> ancestry ;
4 Tree t ;
5
6 TSPRange(Tree t, int sz)
7 : t (t)
8 { sz = sz; }
9

10 TSPRange(TSPRange& other, split)
11 : t (other.t −>right), ancestry (other.ancestry)
12 {
13 ancestry .push(other.t);
14 other.ancestry .push(other.t);
15 other.t = other.t −>left;
16 }
17
18 bool empty() const { return t == 0; }
19
20 bool is divisible() const { return (t −>sz > sz); }
21
22 bool mergeable(const TSPRange& rhs) const {
23 return !ancestry .empty() && !rhs.ancestry .empty() &&
24 (ancestry .top() == rhs.ancestry .top());
25 }
26 };
27
28 struct TSPBody {
29 list<TSPRange> lresults ;
30
31 TSPBody() { }
32
33 TSPBody(TSPBody& other, split) { }
34
35 void operator() (TSPRange& range) {
36 range.t = tsp(range.t , range.sz);
37 mergeTSPRange(range);
38 }
39
40 void mergeTSPRange(TSPRange& range) {
41 while (!lresults .empty() && lresults .back().mergeable(range)) {
42 range.t = merge(lresults .back().t , range.t , range.ancestry .top());
43 range.ancestry .pop();
44 lresults .pop back();
45 }
46 lresults .push back(range);
47 }
48
49 void join(TSPBody& rhs) {
50 list<TSPRange>::iterator itend = rhs.lresults .end();
51 for(list<TSPRange>::iterator it = rhs.lresults .begin(); it != itend; ++it){
52 mergeTSPRange(∗it);
53 }
54 }
55 };
56 ...
57 parallel reduce(TSPRange(root, sz), TSPBody(), auto patitioner());

Figure 3. Range and body for the Olden tsp parallelization using TBB’s
parallel reduce

their solution. The method repetitively checks whether the
rightmost range in the list can be merged with the input
range. In this case, merge reduces them into the input range,
and the range just merged is removed from the list. In the
end, the input range is added at the right end of the list.
Reductions also take place when different bodies are accu-
mulated in a single one through their join method. Namely,
left.join(right) accumulates in the left body its results with
those of the right body received as argument. This can be
achieved applying mergeTSPRange to the ranges in the list
of results of the rhs body from left to right (lines 49-54).

IV. AN ALGORITHM TEMPLATE FOR
DIVIDE-AND-CONQUER PROBLEMS

The preceding Section has illustrated the limitations of
TBBs to express divide-and-conquer problems. Not surpris-
ingly, the restriction to binary subdivisions and associative
reductions impact negatively on programmability. But even
problems that seem to fit well the TBB paradigm such as the
recursive computation of the Fibonacci numbers have a large
parallelization overhead, as several kinds of constructors are
required, reductions can take place in several places, bodies
must keep a state to perform those reductions, etc.

The components of a divide-and-conquer algorithm are
the identification of the base case, its resolution, the partition
in subproblems of a non-base problem, and the combination
of the results of the subproblems. Thus we should try to
enable to express these problems using just one method
for each one of these components. In order to increase the
flexibility, the partition of a non-base problem could be split
in two subtasks: calculating the number of children, so that
it need not be fixed, and building these children. These tasks
could be performed in a method with two outputs, but we
feel it is cleaner to use two separate methods for them.

The subtasks identified in the implementation of a divide-
and-conquer algorithm can be grouped in two sets, giving
place to two classes. The decision on whether a problem is
the base case, the calculation of the number of subproblems
of non-base problems, and the splitting of a problem depend
only on the input problem. They conform thus an object with
a role similar to the range in the TBB algorithm templates.
We will call this object the info object because it provides
information on the problem. Contrary to the TBB ranges, we
choose not to encapsulate the problem data inside the info
object. This reduces the programmer burden by avoiding the
need to write a constructor for this object for most problems.

The processing of the base case and the combination of
the solutions of the subproblems of a given problem are
responsibility of a second object analogous to the body
of the TBB algorithm templates, thus we will call it also
body. Many divide-and-conquer algorithms process an input
problem of type T to get a solution of type S, so the body
must support the data types for both concepts, although of
course S and T could be the same. We have found that in
some cases it is useful to perform some processing on the
input before checking its divisibility and the corresponding
base case computation or recursion. Thus the body of our
algorithm template requires a method pre, which can be
empty, which is applied to the input problem before any
check on it is performed. As for the method that combines
the solutions of the subproblems, which we will call post,
its inputs will be an object of type T, defining the problem
at a point of the recursion, and a pointer to a vector with
the solutions to its subproblems, so that a variable number
of children subproblems is easily supported. The reason for

8383

template<typename T, int N>
struct Info : Arity<N> {

bool is base(const T& t) const; //is t the base case of the recursion?
int num children(const T& t) const; //number of subproblems of t
T child(int i, const T& t) const; //get i−th subproblem of t

};

template<typename T, typename S>
struct Body : EmptyBody<T, S> {

void pre(T& t); //preprocessing of t before partition
S base(T& t); //solve base case
S post(T& t, S ∗r); //combine children solutions

};

Figure 4. Templates that provide the pseudo-signatures for the info and
body objects used by parallel_recursion

requiring the input problem is that, as we have seen in
Sections III-B and III-C, in many cases it has data which
are not found in any of its children and which are required
to compute the solution.

Figure 4 shows templates that describe the info and body
objects required by the algorithm template we propose.
The info class must be derived from class Arity < N >,
where N is either the number of children of each non base
subproblem, when this value is a constant, or the identifier
UNKNOWN if there is not a fixed number of subproblems in the
partitions. This class provides a method num children if N
is a constant. As for the body, it can be optionally derived
from the class EmptyBody < T, S >, which provides shell
(empty) methods for all the methods a body requires. Thus
inheriting from it can avoid writing unneeded methods.

Figure 5 shows the pseudocode for the operation
of the algorithm template we propose, which is called
parallel recursion for similarity with the names of the
standard TBB algorithm templates. Its arguments are the
representation of the input problem, the info object, the body
object, and optionally a partitioner that defines the policy
to spawn parallel subtasks. The figure illustrates the usage
of all the methods in the info and body classes, I and B
in the figure, respectively. Contrary to the TBB algorithm
templates, ours returns a value which has type S, the type
of the solution. A specialization of the template allows a
return type void.

From the pseudocode we see that Info :: is base is not
the exact opposite of the is divisible method of the TBB
ranges. TBB uses is divisible to express divisibility of
the range, but also whether it is more efficient to split
the range and process the subranges in parallel than to
process the range sequentially. Even if the user writes
is divisible to return true for all non base cases, the
library can ignore it and stop partitioning even if it indicates
divisibility if the auto partitioner is used. For these
reasons, the operator() of a standard body should be
able to process both base and non base instances of the
range. This makes it different from the Body :: base method
in Figure 4, which processes the problem if and only if

1 template<typename T, typename S, typename I, typename B, typename P>
2 S parallel recursion(T& t, I& i, B& b, P& p) {
3 b.pre(t);
4 if(i.is base(t)) return b.base(t);
5 else {
6 const int n = i.num children(t);
7 S result[n];
8 if(p.do parallel(i, t))
9 parallel for(int j = 0; j < n ; j++)

10 result[j] = parallel recursion(i.child(j, t), i, b, p)
11 else
12 for(int j = 0; j < n ; j++)
13 result[j] = parallel recursion(i.child(j, t), i, b, p);
14 }
15 return b.post(t, result);
16 }
17 }

Figure 5. Pseudocode of the parallel_recursion algorithm template

Info :: is base is true, as line 4 in Figure 5 shows.
The decision on whether the processing of the children

subproblems is made sequentially or in parallel is up to
the partitioner in parallel recursion (lines 8-14 in Fig-
ure 5). The behavior of the partitioners is as follows. The
simple partitioner generates a parallel subtask for each
child generated in every level of the recursion, very much
as it does in the standard TBB templates.This is the default
partitioner. The auto partitioner works slightly different
from the standard templates. In them this partitioner can stop
splitting the range, even if is divisible is true, in order
to balance optimally the load. In parallel recursion
this partitioner also seeks to balance load automatically.
Nevertheless, it does not stop the recursion in the sub-
division of the problem, but just the parallelization in
the processing of the subtasks. This way the problem is
split always that Info :: is base is false. Finally, we pro-
vide a new partitioner called custom partitioner which
takes its decision on parallelization based on an optional
Info :: do parallel(const T& t) method supplied by the
user. If this method returns true, the children of t are pro-
cessed in parallel, otherwise they are processed sequentially.

Let us now review the implementation of the examples
discussed in Section III using this proposal.

A. Examples of usage

Figure 6 shows the code to compute the n-th Fibonacci
number using parallel recursion. Compared to the 26
SLOC of the implementation based on parallel reduce
in Figure 1, this implementation only has 9. This code has
the virtue that it not only parallelizes the computation, it
even makes unnecessary the original sequential fib function
thanks to the power of parallel recursion to fully
express problems that are solved recursively.

The addition of the values in the nodes of a 3-ary tree,
which required 41 SLOC in Figure 2, is expressed using
9 SLOC with parallel recursion in Figure 7. In fact,
the version in Figure 2 is a bit longer because it uses
the sequential function TreeAdd, not shown, to perform

8484

1 struct FibInfo : public Arity<2> {
2 bool is base(const int i) const { return i <= 1; }
3
4 int child(const int i, const int c) const { return c − i − 1; }
5 };
6
7 struct Fib: public EmptyBody<int, int> {
8 int base(int i) { return i; }
9

10 int post(int i, int ∗ r) { return r[0] + r[1]; }
11 };
12 ...
13 int result = parallel recursion<int> (n, FibInfo(), Fib(), auto partitioner());

Figure 6. Computation of the n-th Fibonacci number using
parallel_recursion

1 struct TreeAddInfo : public Arity<3> {
2 bool is base(const tree t ∗t) const { return t == 0; }
3
4 tree t ∗child(int i, const tree t ∗t) const { return t−>child[i]; }
5 };
6
7 struct TreeAddBody : public EmptyBody<tree t ∗, int> {
8 int base(tree t ∗ t) { return 0; }
9

10 int post(tree t ∗ t, int ∗r) { return r[0] + r[1] + r[2] + t−>val; }
11 };
12 ...
13 int r = parallel recursion<int> (root, TreeAddInfo(), TreeAddBody(),

auto partitioner());

Figure 7. Reduction on a 3-ary tree using parallel recursion

the reduction of a subtree in the operator() of the body.
This function is not needed by the implementation based
on parallel recursion, which can perform the reduction
just using the template.

Our last example, the traveling salesman problem imple-
mented in the tsp Olden benchmark, is parallelized with
parallel recursion in Figure 8. The facts that the post
method that combines the solutions obtained in each level
of the recursion is guaranteed to be applied to the solutions
of the children subproblems generated by a given problem
and that this parent problem is also an input to the method
simplify extraordinarily the implementation. Concretely, the
code goes from 45 SLOC using parallel reduce in
Figure 3 to 12 using parallel recursion.

V. EVALUATION

We now compare the implementation of several divide-
and-conquer algorithms using parallel recursion, the
TBB algorithm templates and OpenMP both in terms of
programmability and performance. OpenMP is not directly
comparable to the skeleton libraries, as it relies on compiler
support. It has been included in this study as a baseline that
approaches the minimum overhead in the parallelization of
applications for multicores, since the insertion of compiler
directives in a program usually requires less restructur-
ing than the definition of the classes that object-oriented
skeletons use. This way the comparison of standard TBB
and the parallel recursion skeletons with respect to

1 struct TSPInfo: public Arity<2> {
2 static int sz ;
3
4 TSPInfo(int sz)
5 { sz = sz; }
6
7 bool is base(const Tree t) const { return (t−>sz <= sz); }
8
9 Tree child(int i, const Tree t) const { return (i == 0) ? t−>left : t−>right;}

10 };
11
12 struct TSPBody : public EmptyBody<Tree, Tree> {
13 Tree base(Tree t) { return conquer(t); }
14
15 Tree post(Tree t, Tree ∗ results) { return merge(results[0], results[1], t); }
16 };
17 ...
18 parallel recursion<Tree>(root, TSPInfo(sz), TSPBody(), auto patitioner());

Figure 8. Olden tsp parallelization using parallel recursion

the OpenMP version helps measure the relative effort of
parallelization that both kinds of skeletons imply.

The algorithms used in this evaluation are the computation
of the n-th Fibonacci number from Section III-A (fib), the
merge of two sorted sequences of integers into a single
sorted sequence (merge), the sorting of a vector of integers
by quicksort (qsort), the computation of the number of solu-
tions to the N Queens problem (nqueens) and four tree-based
Olden benchmarks [11]. The first one is treeadd, which adds
values in the nodes of a binary tree. It is similar to the
example in Section III-B, but since the tree is binary, it is
much easier to implement using TBB’s parallel reduce.
The sorting of a balanced binary tree (bisort), a simulation
of a hierarchical health system (health), and the traveling
salesman problem (tsp) from Section III-C complete the list.

Table I provides the problem sizes, the number of sub-
problems in which each problem can be divided (arity) and
whether the combination of the results of the subproblems is
associative or not, or even not needed. It also shows the value
of the metrics that will be used in Section V-A to evaluate
the programmability for a baseline version parallelized with
OpenMP. All the algorithms but nqueens and health are
naturally expressed splitting each problem in two, which
fits the TBB algorithm templates. Nqueens tries all the
locations of queens in the i-th row of the board that do
not conflict with the queens already placed in the top i− 1
rows. Each possible location gives place to a child problem
which proceeds to examine the placements in the next row.
This way the number of children problems at each step
varies from 0 to the board size. Health operates on a 4-ary
tree, thus four is its natural number of subproblems. The
subnodes of each node are stored in a vector. This benefits
the TBB algorithm templates, as this enables using as
range a blocked range, which is a built-in TBB class that
defines a one-dimensional iteration space, ideal to parallelize
operations on vectors.

8585

Table I
BENCHMARKS USED

Name Description Arity Assoc SLOC Effort V
fib recursive computation of 43rd Fibonacci number 2 Yes 37 31707 5
merge merge two sorted sequences of 100 million integers each 2 - 62 143004 6
qsort quicksort of 10 million integers 2 - 71 119908 11
nqueens N Queens solution count in 14× 14 board var Yes 82 192727 17
treeadd add values in binary tree with 24 levels 2 Yes 92 179387 9
bisort sort balanced binary tree with 22 levels 2 No 227 822032 20
health 2000 simulation steps in 4-ary tree with 6 levels 4 No 346 1945582 34
tsp traveling salesman problem on binary tree with 23 levels 2 No 370 2065129 40

fib merge qsort nqueens treeadd bisort health tsp

−20

0

20

40

60

80

100

120

140

%
 i
n

c
re

a
s
e

 o
v
e

r
O

p
e

n
M

P

SLOC TBB
SLOC pr
eff TBB
eff pr
cn TBB
cn pr

Figure 9. Productivity statistics with respect to the OpenMP baseline version of TBB based (TBB) and parallel recursion based (pr) implementations.
SLOC stands for source lines of code, eff for the programming effort and cn for the cyclomatic number.

A. Programmability

The impact of the use of an approach on the ease
of programming is not easy to measure. In this section
three quantitative metrics are used for this purpose: the
SLOC (source lines of code excluding comments and empty
lines), the programming effort [12], and the cyclomatic
number [13]. The SLOC is more dependent on the user
programming style than the other two metrics. The program-
ming effort is a function of the number of unique operands,
unique operators, total operands and total operators found
in a program. The operands correspond to the constants
and identifiers, while symbols or combinations of symbols
that affect the value or ordering of operands constitute the
operators. According to [12] the programming effort metric
calculated from these values is approximately proportional to
the programming effort required to implement an algorithm.
Finally, the cyclomatic number [13] is V = P +1, where P
is the number of decision points or predicates in a program.
The smaller V , the less complex the program is.

Figure 9 shows the SLOC, programming effort and cy-
clomatic number increase over an OpenMP baseline version
for each code when using a suitable TBB algorithm tem-
plate (TBB) or parallel recursion (pr). The statistics
were collected automatically on each whole application
globally. Had we tried to isolate manually the portions
specifically related to the parallelization, the advantage of
parallel recursion over TBB would have often grown
to the levels seen in the examples discussed in the preceding
sections. We did not do this because sometimes it may not
be clear whether some portions of code must be counted as

part of the parallelization effort or not, so we measured the
whole program as a neutral approach.

The mostly positive values indicate that, as expected,
OpenMP has the smallest programming overhead, at least
when counted with SLOCs or programming effort. Nev-
ertheless, parallel recursion is the global winner for
the cyclomatic number. The reason is that many of the
conditionals and loops (they involve conditions to detect
their termination) found in divide-and-conquer algorithms
are subsumed in the parallel recursion skeleton, while
the other approaches leave them exposed in the program-
mer code more often. parallel recursion requires fewer
SLOC, effort and conditionals than the TBB algorithm
templates in all the codes but merge and qsort. According
to the programming effort indicator, programs parallelized
with the TBB templates require 64.6% more effort than
OpenMP, while those based on parallel recursion re-
quire on average 33.3% more effort than OpenMP. This is a
reduction of nearly 50% in relative terms. Interestingly, the
situation is the opposite for merge and qsort, in which the
average effort overhead over the OpenMP version is 13.4%
for the codes that use parallel for and 30.1% for the
parallel recursion codes. These are the only bench-
marks in which there is no need to combine the result of the
solution of the problems: they only require the division in
subproblems that can be solved in parallel. They are also the
two benchmarks purely based on arrays, where the concept
of Range around which the TBB algorithm templates are
designed fits better. Thus when these conditions hold, we
may prefer to try the standard TBB skeletons.

8686

0 1 2 3 4
0

1

2

3

4

5

6

7

8

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 10. Performance of fib

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 11. Performance of merge

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 12. Performance of quick-
sort

0 1 2 3 4
0

2

4

6

8

10

12

14

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 13. Performance of
nqueens

0 1 2 3 4
0

20

40

60

80

100

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 14. Performance of
treeadd

0 1 2 3 4
0

1

2

3

4

5

6

7

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 15. Performance of bisort

0 1 2 3 4
0

20

40

60

80

100

120

140

160

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 16. Performance of health

0 1 2 3 4
0

5

10

15

20

25

30

35

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 17. Performance of tsp

B. Performance

The performance of these approaches is compared now
using the Intel icpc compiler V 11.0 with optimization
level O3 in two platforms. One is a server with 4 Intel
Xeon hexa-core 2.40GHz E7450 CPUs, whose results are
labeled with X. The other is an HP Integrity rx7640 server
with 8 dual-core 1.6 GHz Itanium Montvale processors,
whose results are labeled with I. Figures 10 to 17 show the
performance of the three implementations of the benchmarks
on both systems. Automatic partitioning is used in the
standard TBB and parallel recursion based codes. Fib
and nqueens use little memory and thus scale well in both
systems. The scaling of the other benchmarks is affected
by the lack of memory bandwidth as the number of cores
increases, particularly in our Xeon-based system, whose
memory bandwidth is up to 5 times smaller than that of the
rx7640 server when 16 cores are used. This results in small
to null performance improvements when we go from 8 to 16
cores in this system. Benchmark health is also affected by
very frequent memory allocations with malloc that become
a source of contention due to the associated lock.

Since parallel recursion is built on top of the TBB
one could expect its codes to be slower than those based
on parallel for or parallel reduce. This is not the
case because our template is built directly on the low level
task API provided by the TBB. Also, it follows different
policies to decide to spawn tasks and has different syn-
chronization and data structure support requirements as we
have seen. This makes it possible for parallel recursion
to be competitive with the native TBB version, and even

win systematically in benchmarks like fib. In other bench-
marks like merge in the Xeon or quicksort in the Itanium
parallel recursion is non negligibly slower than the
standard TBB when few cores are used, but the difference
vanishes as the number of cores increases. The slowdowns
of parallel recursion in these two codes are due to
operations repeated in each invocation to child to generate
a subproblem. Generating at once a vector with all the
children tasks could avoid this. Evaluating this option is
part of our future work. The behavior of tsp in the Itanium
is due to the compiler, as with g++ 4.1.2 with the same
flags the performance of all the implementations is very
similar. Over all the benchmarks and numbers of cores, on
average parallel recursion is 0.3% and 19.7% faster
than the TBB algorithm templates in the Xeon and in the
Itanium, respectively. If tsp is ignored in the Itanium due
to its strange behavior, parallel recursion advantage is
still 9% in this platform. Its speedups over OpenMP are
2.5% and 30.5% in the Xeon and the Itanium, respectively;
21.4% in the latter without tsp.

Finally, we also experimented with the partitioners that
allow to control manually the subdivision of tasks in the
runs with 16 cores. With the best parameters we found,
standard TBB based codes were on average 6.5% faster than
the parallel recursion based ones in the Xeon, while
parallel recursion continued to lead the performance in
the Itanium platform by 8%, or 2.4% if tsp is not counted.

8787

VI. RELATED WORK

While TBB is probably the most widespread library of
skeletal operations nowadays, it is not the only one. The
eSkel library [7] offers parallel skeletal operations for C
on top of MPI. Its API is somewhat low-level, with many
MPI-specific implementation details. Since C is not object
oriented, it cannot exploit the advantages of objects for en-
capsulation, polymorphism, and generic programming where
available, as is the case of C++. A step in this direction was
Muesli [14], which is also oriented to distributed memory,
being centered around distributed containers and skeleton
classes that define process topologies. Muesli relies on
runtime polymorphic calls, which generate potentially large
overheads. This way [15] reports 20% to 100% overheads for
simple applications. Lithium [16] is a Java library oriented
to distributed memory that exploits a macro data flow
implementation schema instead of the more usual implemen-
tation templates, but it also relies extensively on runtime
polymorphism. Quaff [17] avoids this following the same
approach as the TBB and our proposal, namely relying on
C++ template metaprogramming to resolve polymorphism
at compile time. Quaff’s most distinctive feature is that
it leads the programmer to encode the task graph of the
application by means of type definitions which are processed
at compile time to produce optimized message-passing code.
As a result, while it allows skeleton nesting, this nesting
must be statically defined, just as type definitions must be.
Thus tasks cannot be generated dynamically at arbitrary
levels of recursion and problem subdivision as the TBBs
do. This is quite sensible, since Quaff works on top of MPI,
being mostly oriented to distributed memory systems. For
this reason its scm (split-compute-merge) skeleton, which
is the most appropriate one to express divide-and-conquer
algorithms, differs substantially from the TBB standard
algorithm templates and parallel recursion.

VII. CONCLUSIONS

We have reviewed the limitations of the skeletal operations
of the TBB library, a recent popular tool, to express the
divide-and-conquer pattern of parallelism. This analysis has
led us to design a new algorithm template that overcomes
these problems. We have also implemented it on top of
the task API of the TBB so that it is compatible with all
the TBB library and it benefits from the load balancing
of the TBB scheduler. Our implementation uses template
metaprogramming very much as the standard TBB in order
to provide efficient polymorphism resolved at compile time.

The examples in the paper and an evaluation using several
productivity measures indicate that our algorithm template
indeed adapts to a wide variety of problems and it can often
improve substantially the programmer productivity when
expressing divide-and-conquer parallelism. As for perfor-
mance, our proposal is on average somewhat faster than the
TBB templates when automatic partitioning is used. There

is not a clear winner when the granularity of the parallel
tasks is adjusted manually.

As future work, we want to evaluate small variations in
the interface and to develop an extension that is suitable for
distributed memory systems.

ACKNOWLEDGEMENTS

This work was supported by the Xunta de Galicia under
project INCITE08PXIB105161PR and the Ministry of Sci-
ence and Innovation, cofunded by the FEDER funds of the
European Union, under the grant TIN2007-67536-C03-02.
We also acknowledge the Centro de Supercomputación de
Galicia (CESGA) for the usage of its supercomputers.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in FOCS ’99: Procs. 40th
Annual Symp. on Foundations of Computer Science, 1999,
p. 285.

[3] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-
Ortı́, and R. A. van de Geijn, “The Science of Deriving
Dense Linear Algebra Algorithms,” ACM Trans. Math. Softw.,
vol. 31, no. 1, pp. 1–26, Mar. 2005.

[4] T. Mattson, B. Sanders, and B. Massingill, Patterns for
parallel programming. Addison-Wesley Professional, 2004.

[5] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
and R. Menon, Parallel programming in OpenMP. Morgan
Kaufmann Publishers Inc., 2001.

[6] OpenMP Architecture Review Board, “OpenMP Program
Interface Version 3.0,” May 2008.

[7] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Parallel Com-
puting, vol. 30, no. 3, pp. 389–406, 2004.

[8] ——, Algorithmic skeletons: structured management of par-
allel computation. MIT Press, 1991.

[9] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism. O’Reilly, July 2007.

[10] R. M. Karp, “Probabilistic analysis of partitioning algorithms
for the traveling-salesman problem in the plane.” Math. of
Operations Research, vol. 2, no. 3, pp. 209–224, 1977.

[11] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hen-
dren, “Supporting Dynamic Data Structures on Distributed-
Memory Machines,” ACM Trans. on Programming Languages
and Systems, vol. 17, no. 2, pp. 233–263, March 1995.

[12] M. H. Halstead, Elements of Software Science. Elsevier,
1977.

[13] McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, pp. 308–320, 1976.

[14] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Münster
Skeleton Library Muesli - A Comprehensive Overview,” Univ.
of Münster, Tech. Rep. Working Papers, ERCIS No. 7, 2009.

[15] H. Kuchen, “A skeleton library,” in Proc. 8th Intl. Euro-Par
Conf. on Parallel Processing, 2002, pp. 620–629.

[16] M. Aldinucci, M. Danelutto, and P. Teti, “An advanced
environment supporting structured parallel programming in
Java,” Future Gener. Comput. Syst., vol. 19, no. 5, pp. 611–
626, 2003.

[17] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté, “Quaff:
efficient C++ design for parallel skeletons,” Parallel Comput-
ing, vol. 32, no. 7-8, pp. 604–615, 2006.

8888

