
International Journal of Parallel Programming, Vol. 17, No. 1, 1988

Two Algorithms for Barrier
Synchronization
Debra Hensgen, 1 Raphael Finkel, 1 and Udi Manber 2

Received March 1988; Revised July 1988

We describe two new algorithms for implementing barrier synchronization on a
shared-memory multicomputer. Both algorithms are based on a method due to
Brooks. We first improve Brooks' algorithm by introducing double buffering.
Our dissemination algorithm replaces Brooks' communication pattern with an
information dissemination algorithm described by Han and Finkel. Our tour-
nament algorithm Uses a different communication pattern and generally requires
fewer total instructions. The resulting algorithms improve Brooks' original
barrier by a factor of two when the number of processes is a power of two.
When the number of processes is not a power of two, these algorithms improve
even more upon Brooks' algorithm because absent processes need not be
simulated. These algorithms share with Brooks' barrier the limitation that each
of the n processes meeting at the barrier must be assigned identifiers i such that
O<~i<n.

KEY WORDS: Barrier; broadcast; distributed; parallel; synchronization;
shared memory.

1. I N T R O D U C T I O N

This paper presents two new algorithms for barriers. A barrier is a tool for
synchronizing processes on a shared memory machine. No process may
pass the barrier until all other processes have arrived at it. We will call the
execution of the barrier synchronization code an episode. We define the
execution of the code before a barrier to be an epoch. Epochs are said to be
adjacent if they are separated by only one episode. Similarly, adjacent

1 University of Kentucky, Lexington, Kentucky 40506-0027.
2 University of Arizona, Tucson, Arizona 85721.

1

0885-7458/88/0200-0001506.00/0 �9 1988 Plenum Publishing Corporation

828/17/1-1

2 Hensgen, Finkel, and Manber

episodes are separated by a single epoch. These definitions are pictured in
Fig. 1.

Episodes prevent any process from proceeding to the next epoch
before all processes have made the corresponding barrier call. Thus, a
correct implementation of a barrier prevents two processes from executing
in adjacent epochs. Two processes may, however, be executing in adjacent
episodes. A correct implementation must also ensure that all processes
make progress. By progress we mean that once all processes enter an
episode, they will all exit the episode in a finite amount of time.

An algorithm due to Brooks makes use of shared memory without
locks to implement barriers. (1) We will present this algorithm shortly. Two
drawbacks to Brooks' algorithm are that it performs extra work during
episodes and is unnecessarily expensive when the number of processes
meeting at the barrier is not a power of two.

In the next section, we discuss four algorithms for implementing
barriers. The first is a straightforward algorithm that uses locks, the second
is Brooks' algorithm, and the third and fourth are our new versions. We
compare the algorithms theoretically using a parallel machine model that
allows concurrent reads and one write, but not concurrent writes. In
Section 3, we conclude with a summary of timings based on our implemen-
tation on a Sequent Balance 21000 multicomputer.

2. FOUR A L G O R I T H M S

2.1. Exclusive Access to Shared Variable

The obvious implementation of a barrier is for each process meeting at
the barrier to acquire exclusive write access to a shared counter and

barrier call adjacent episodes

epoch e episode e epoch e + l episode e+l

adjacent epochs

time

Fig. 1. Basic definitions.

T
barrier call

I,

Two Algorithms for Barrier Synchronization 3

decrement it. Then these processes release exclusive write access and wait
until the counter reaches zero, at which point the episode is finished. There
are two problems with this algorithm:

�9 It is centralized, limiting concurrency. If n processes synchronize,
O(n) time is required. We call this the concurrency problem.

�9 It is difficult to reinitialize the counter. The process that
reinitializes must be sure that all other processes know that the
counter has reached the desired value. Otherwise they will remain
in the episode, violating the progress criterion. We call this the
reinitialization problem.

Lubachevsky ~2) provides a version of this algorithm meant to run on a
shared-memory computer enhanced with hardware fetch-and-add. This
version can be executed in O(log n) time using only one shared variable.
Unfortunately, fetch-and-add is not yet available for any computer on the
market.

2.2. Brooks" Barr ier

Brooks bases the n-process barrier on a two-process barrier using two
shared variables/1) The two-process barrier solves the reinitialization
problem and avoids locks. Its algorithm is as follows:

Process 1
(i) while SetByProcessl do wait;
(2) SetByProcessl :=true;
(3) while not SetByProcess2 do wait;
(4) SetByProcess2 :=false;

Process 2
while SetByProcess2 do wait;
SetByProcess2 := true;
while not SetByProcessl do wait;
SetByProcessl := false;

We will call an execution of these four lines an instance. Line (4)
reinitializes the barrier for the next episode, solving the reinitialization
problem. Line (1) assures a process executing in episode e + 1 that the
other process has completed episode e. Lines (2) and (3) can be understood
to say, "I am here; I'I1 wait for you."

Because we rely on this algorithm later, we provide a correctness proof
for it along the lines of Lamport's informal multiprocess correctness
proofs/3) Figure 2 shows the invariants for process 1 in parentheses. The
invariants for process 2 are analogous.

Act and Bct are pseudo-variables added to count the number of
barriers completed by processes 1 and 2, respectively. Adone and Bdone
are pseudo-variables that indicate whether a specific instantiation of the
epoch has terminated. The safety criterion is that both processes are either

4 Hensgen, Finkel, and Manber

loopl

loop2

epoch code

Adone<-true

true

SetByl <- lrue

5 ~ true

SetBy2 <- false

6 ~,

Act++

7

Adone<-false

8 1

Process 1

Act=Bct=0 and not SetByl and not SetBy2

Act<=Bct or (Act-l=Bct and Bdone)

Act<=Bct or (Act-l=Bct and Bdone)

SetBy2 and (Act<Bct or (Act=Bct and Bdone))

Act<=Bct or (Act-l=Bct and Bdone)

Act<=Bct or (Act-l=Bct and Bdone)

Fig. 2. Invariants for an instance.

in the same epoch or episode (Act = Bct) or in adjacent episodes. In the
latter case, the slower process must have completed the previous epoch
((Act - 1 = Bct) and Bdone) or ((B c t - 1 = Act) and Adone)). The liveness
criterion is that both processes will not remain in loops 1 or 2.

Due to symmetry between the processes, to show the safety criterion
we need only show that either ((Act - 1 = Bct) and Bdone) or (Act ~< Bct).
The initial invariant and the invariant at location 8 imply that the
invariant at location 1 holds, since the epoch code does not affect these
variables and process 2 may only increase Bct. Process 1 does not change
Bct at all and does not change Act between locations 1 and 5, and
process 2 only increments Bct, so the invariant at location 4 holds. To
prove the invariant at location 5, we split the argument into two cases. If

Two Algorithms for Barrier Synchronization 5

Act = Bct = 0, then process 2 must have set SetBy2, so it must have com-
pleted epoch 0, in which case Bdone is true. If Act = n, then process 1 had
seen SetBy2 was true n times and cleared it exactly n times before it entered
the current episode. Upon reaching location 5, process 1 sees SetBy2 true
for the n + 1st time, so process 2 has set SetBy2 n + 1 times and hence has
completed epoch n. The invariants at locations 7 and 8 are a direct
consequence of incrementing Act.

The liveness criterion can be verified by showing that no case exists
that contains an infinite loop.

�9 Both processes are in loopl. The fact that they are looping implies
that both SetByl and SetBy2 are true. However, the last
assignments to those variables would have been at location 6,
where they are set to false. So this case is impossible.

�9 Process 1 is in loopl and process 2 is in loop2. The fact that
process 1 is in loopl implies SetByt is true. The fact that process 2
is in loop2 implies SetByl is false. So this case in impossible.

�9 Process 1 is in loop2 and process 2 is in loopl. This case is iden-
tical to the previous case by symmetry.

�9 Both processes are in loop 2. The fact that they are looping implies
that both SetByl and SetBy2 are false. However, the last
assignments to those variables would have been at location 3,
where they are set to true. So this case is impossible.

Brooks borrows from the butterfly connection startegy to increase
concurrency in an n-process barrier. We first present the case where n is a
power of two. Each episode is composed of log 2 n instances, during each of
which all processes execute the 4-line algorithm with different variables.
Figure 3 shows the pairing of instances for eight processes.

A good way to view an instance is as a message/4) Each instance
conveys information about the sender's experience so far during the current
episode. For example, when process 2 communicates with process 6 in
instance 2, it is saying "I am in episode e, I have heard from process 3 that
it is also, and I have heard from process 0 that both process 0 and process
1 are also. I am waiting for you to send me a message indicating that you
have heard from all of the processes that you expected to hear from." By
the time process p has finished that last instance, it has heard that all n
processes have entered the current episode.

When the number of processes is not a power of two, Brooks'
algorithm chooses n, the next larger power of two, and uses existing
processes to simulate absent ones. Brooks suggests a method for
determining which processes should simulate the absent ones. The most

6 Hensgen, Finkel, and Manber

episode e

instance 0 ~-

instance 1

instance 2

1
P R O C E S S E S

2 3 4 5 6 7

I

~ ~

Fig. 3. Communication structure for Brooks' algorithm,

straightforward way is to have process p simulate process n - 1 - p when
process n - 1 - p is absent. Brooks points out that some instances can be
avoided in this case by more carefully choosing the simulators. Unfor-
tunately, Brooks does not give an algorithm for choosing better simulators,
and it appears that they must be chosen on a case-by-case basis for each
odd n. (Simulations for even n can be derived from simulations for n/2.)

The communication pattern requires that each process have a unique
identifier in the range 0 to n - 1 . If different processes participate in
different episodes, they must agree on such a numbering for each episode.
The same warning applies to the new algorithms we will present shortly.

This algorithm requires O(n log n) space for the shared variables, since
each instance in the episode uses a different set of variables. Assuming n
concurrent processes and the time for one instance to b e / , the total time
required is Ilog2 n, when n is a power of two; otherwise the total time is
between I[-log 2 n 7 and 2I[-logz n7.

2.3. Shortening an Instance

Before we turn to our first new algorithm, we will improve Brooks'
algorithm by shortening the code executed during an instance. Obviously,
lines (2) and (3) are necessary because they simulate the actual sending and
receiving of the information. Below we discuss the importance of lines (1)
and (4) in order to eliminate them.

Line (4) seems necessary for each instance, since without it a process
in episode e expecting to hear from process p could see the appropriate
variable still set from episode e - 1. Line (1) seems to be required because

Two Algorithms for Barrier Synchronization 7

processes might be executing in adjacent episodes. Process p could be in
episode e + 1, instance i, wanting to tell process q that it has entered
episode e + 1. Meanwhile, process q might still be in episode e, instance i,
just about to execute line (3). If process p skipped line (1) and executed
line (2), then process q would complete episode e, but would be blocked in
episode e + 1.

This discussion shows that the importance of line (1) is to prevent a
process executing in one episode from confusing another process executing
in the previous episode. Line (4) is needed to prevent a process from
viewing an old value previously set by another process.

Line (1) can be obviated by a double-buffering scheme whereby
processes use alternate arrays for the shared variables. That is, episode e
uses buffer set e rood 2. Using alternating arrays of shared variables
prevents processes in adjacent episodes from blocking each other.

We can eliminate line (4) similarly by having processes alternate
between setting the shared variables to true and to false. We call this
technique sense switching. Assume that all shared variables in one array are
initialized to false. During the first episode that uses that array, processes
set variables to true and wait to see variables set to true. The next time that
array is used in an episode, processes set variables to false and wait to see
variables set to false. After that the variables are set to true and so on.
Sence switching would not work without double buffering, because then
process p could be in episode e setting the variable to be read by process q
to false, and process q could be in episode e - 1 just about to check
whether this variable had been set to true. With double buffering the only
confusion would be between processes simultaneously in episodes e and
e + 2, but processes may only be up to one episode apart.

We can now remove lines (1) and (4) from each instance in the
episode. We must also change the instance so that variables will be alter-
nately set to true and false. We will call this shortened instance a modified
instance. Brooks' algorithm (and the ones we will present shortly) can use
the modified instance only when the number of cooperating processes is
fixed; a modified instance cannot be used when a different number of
processes meet at subsequent barriers because there is no explicit
reinitialization. The following algorithm is for a modified instance.

/* per-episode variables */
OddOrEven = episode mod 2; /* which array should be used */
signal = (episode div 2) mod 2; /* which signal */

shared AnswersOdd [NPROCS] [LogNPROCS]: integer;
shared AnswersEven [NPROCS] [LogNPROCS]: integer;
OddOrEven = episode rood 2;

8 Hensgen, Finkel, and Manber

signal = (episode div 2) mod 2;
procedure Modifiedlnstance(OddOrEven, signal, instance);
var OddOrEven, signal, instance: integer;
begin

if OddOrEven = 0 then
AnswersEven[intended[myid] [instance]][instance] := signal;
while not AnswersEven[myid][instance] = signal do wait;

e l s e / * OddOrEven = 1 */
AnswersOdd[intended[myid] [instance]] [instance] := signal;
while not AnswersOdd[myid] [instance] = signal do wait;

end
end Modifiedlnstance;

2.4. The Dissemination Algorithm

An algorithm described by Han and Finkel <5'6) and others/7) achieves
complete dissemination of information among n processes in I-log 2 n-] syn-
chronized rounds. For our purposes it is sufficient to think of a round as a
simultaneous set of instances, one instance being executed by each process.
During round i, process p sends all of the information that it knows to
process 2 i+ p (mod n). If a process waits to receive the message sent to it
during round i and incorporates that message into its own message for all
subsequent rounds starting with round i + 1, then all processes receive

episode e

PROCESSES

-- 0 1 2 3 4 5

instance 0
zl

i n s t a n c e 1

I
I
I instance 2

i

I

J

J

Fig. 4. Communication structure for the dissemination
algorithm.

Two Algorithms for Barrier Synchronization 9

information originating at all other processes in exactly Flog2 n-] rounds.
Line (2) of an instance is equivalent to sending information and line (3) to
waiting for and receiving information.

We extend the two-process barrier using this algorithm. Figure 4
shows the instances needed in the 6-process case.

Here, the message from process 2 to process 0 in instance 2 says,
"I have entered episode e, I have heard from process 1 that it has also and
I have heard from you that both you and process 5 have also." During this
same instance, process 2 hears from 4 that 4, 3, 2, and 1 have also entered
the episode. Therefore, process 2 knows that all the processes have entered
episode e when it completes its last instance.

Pseudo-code implementing this algorithm is shown below. The
dissemination algorithm may use a modified instance if the same number of
processes participate in each episode. For clarity we use the original, not
the modified, instance.

define NPROCS 20/* or any other size > 0 */
define LogNPROCS 5

shared Answers [NPROCS] [LogNPROCS]: Boolean;
/* Answers[p, i] is the variable process p waits on in instance i */
/* this wait appears in line (3) of the two-process barrier */

shared intended[NPROCS] [LogNPROCS]: integer;
/* intended[p, i] is destination for process p in instance i */

procedure InitBarrier;
vat power, instance, process: integer;
begin

power := 1;
for instance := 0 to LogNPROCS-1 do

for process := 0 to NPROCS-1 do
intended [process] [instance] := (power + process) rood

NPROCS;
Answers[process] [instance] := false;

end
power := power*2;

end
end InitBarrier;

procedure Barrier(myid: integer);
var instance: integer;
begin

for instance := 0 to LogNPROCS-1 do
while Answers[intended[myid] [instance]] [instance] do

wait;

10 Hensgen, Finkel, and Manber

Answers [intended [myid] [instance]] [instance] : - true;
while not Answers [myid] [instance] do wait;
Answers [myid] [instance] := false;

end
end Barrier;

InitBarrier is calied only once, after which Barrier may be called any
number of times without reinitialization.

Theorem. This algorithm correctly implements a barrier for n
processes.

Proof . We assume the correctness of the two-process protocol shown
in Section 2.2. We need to show that no process will proceed to a sub-
sequent epoch until all have finished the current epoch and that all
processes will make progress.

First we show that if process p is executing in epoch e then no process
has finished episode e (which follows epoch e). Since process p is in epoch
e, it has not set the variable it was to set in instance i of episode e for any i
in {0, 1, 2,..., I-log 2 n-] - 1 }. Any process id m between 0 and n - 1 may be
written as m = p + ~_.O<i<[-log2n q ai2i(mod n) where ai is chosen from the set
{0, 1}. Let m be a process id and define mw~it,r~= { j j a j = 1}. If j is in
m wai, then there will be process waiting in instance j on a variable to be
set by process p or by another process that is waiting in an earlier instance
k also in m w~ters. Finally, if m r p then m will be waiting in instance
max(mw~i,ers). Since it is waiting, m has not finished the current episode.

Now we must show that once all processes enter an episode, they will
all exit it. We proceed by induction on the instance number i. Process p
can continue past instance i = 0 because its partner, process p - 1 (rood n),
has also arrived at the episode. Similarly, process p will eventually continue
past an arbitrary instance i because its partner, p - 2 i (mod n), will also
eventually finish instance i - 1 (by induction) and will therefore arrive at
instance i. []

2.5. The T o u r n a m e n t A l g o r i t h m

We can view the barrier requirement as a tournament. Only one
process from each two-process game will continue to the next round. This
asymmetry and the fact that we can decide in advance which process will
win allow us to write a fairly simple two-process game:

Process Winner Process Loser
(1) while not SetByLoser do wait; SetByLoser := true;
(2) SetByLoser := false; while not SetByChampion do wait;

Two Algorithms for Barrier Synchronization 11

The barrier is a tournament with n processes. The overall winner
announces the end of the contest by setting a shared variable.

Process OverallWinner
(3) SetByChampion :=true;

After losing, a process continues to read this variable until it is set. At this
point, all the contestants are finished with the tournament. Reinitializing
the global variable after each episode can be achieved by double buffering
or eliminated by sense switching.

There are [log2n] rounds, as in the dissemination algorithm. As
before, the instances that constitute each round involve different variables.
However, there are only n - 1 games (after losing, a process sits out the
rest of the tournament), so only n - 1 variables are needed. Only O(n)
instructions are performed overall, as opposed to O(nlogn) in the
dissemination algorithm.

The communication pattern of the tournament algorithm is shown in
Fig. 5 for 7 processes.

Below is pseudo-code for this n-process barrier.

define NPROCS 20/* or any other size > 0 */
define LogNPROCS 5
define CHAMPION 0
shared Answers[NPROCS][LogNPROCS]: Boolean;

/* Answers are the variables waited on during the games */
/* This wait appears in line (1) of the two-process game */

game 0

g ~ e l

game 2

Fig. 5.

[J
w~

episode e

P R O C E S S E S

2 3

Jt

/

4 5 6

2 ait lit

/

set
notice notice notice notice notice notice

Communication structure for the tournament algorithm.

12 Hensgen, Finkel, and Manber

shared Announcement [2]: Boolean;
/* global announcement that tournament is over */

shared Opponent [NPROCS] [LogNPROCS]: integer;
/* Opponent[p, i] is opponent of process p in game i. */

shared BarrierCount: 0.. 1;
/* which announcement? */

procedure InitBarrier;
var power, instance, process: integer;
begin

power := l;
for instance := 0 to LogNPROCS-1 do

for process := 0 to NPROCS-1 do
Opponent[process][instance] :--process xor power;
Answers[process] [instance] :-- false;

end
power := power*2;

end
Announcement [0] := Announcement [11 := false;
BarrierCount :-- 0;

end InitBarrier;

procedure Barrier(myid: integer);
vat instance: integer;

LocalBarrierCount: 0.. 1;
begin

LocalBarrierCount :-- BarrierCount;
for instance := 0 to LogNPROCS-1 do

if (myid mod 2 inst ~ 0) then
break; /* break out of loop; we are no longer active */

end;
if (myid > Opponent[myid] [instance]) then/* loser */

Answers [Opponent [myid] [instance]] [instance] :=
true;

elslf Opponent[myid] [-instance] >~ NPROCS then
/* win by default if no opponent */

e lse/* winner */
while not Answers[Opponent[myid] [instance]]

[instance] do wait;
Answers[Opponent [myid] [instance]] [instance] :=

false;/* reinit */
end;

end;/* for all instances */

Two Algorithms for Barrier Synchronization 13

if (myid = C H A M P I O N) then
BarrierCount := (BarrierCount + 1) mod 2;
Announcement [Barr ierCount] := false; /* reinit */
Announcement[LocalBarr ierCount l := t rue ; /* all may
proceed */

e lse /* not the champion */
while not Announcement[LocalBarrierCount] do wait;

end;
end Barrier;

Once again, InitBarrier must be called only once, after which Barrier may
be called any number of times without explicit reinitialization.

We now argue that this algorithm correctly implements a barrier. Two
invariants hold whenever any process exits Barrier or InitBarrier.

�9 The elements of array Answers are all false.

�9 The Announcement element to be used in the next episode is false.

The safety criterion is that no two processes may be in adjacent
epochs. Suppose one process remains in epoch e. We need to show that no
other process can finish the following episode e. If process 0 is the process
in epoch e, then all other processes will eventually wait in episode e for
Announcement[LocalBarr ierCount] to be set. Suppose process m remains
in epoch e, where m = ~2o<~<~-~og2~ ai 2i, and at least one of the ai is non-
zero. Let b0, bl,..., bk be the values of i for which ai is nonzero, listed in
increasing order. In game b0, m's partner ml = m - 2 b~ will block waiting
for m. In game bl, ml 's partner m ~ - 2 bl will block waiting for ml. More
and more processes will wait; at game bk, process 0 will itself block
waiting for 2 bk. Therefore, process 0 will never set Announcement
[LocalBarr ierCount] , and no other process will leave the current episode.

We now need to show that once all processes enter an episode, they
will all exit it in a finite amount of time. If all processes exit the for loop in
a finite amount of time, then all processes will complete the episode
because one will set the Announcement variable to true and all of the rest
will see it. We will show that all processes p = '~-~0~<i<[-log2 nq aiU, p :~ 0, exit
the for loop by induction on L, the smallest i such that ai is nonzero. Then
we will show that process 0 exits. All processes with L = 0 exit the loop
because they set a variable to true and exit. Suppose all processes with
L = m have exited the loop. Then all processes with L = m + 1 will be
looking at only variables set by processes with L <~ m before they can set a
variable to true and exit instance m + 1. But these watched variables have
already been set to true (and cannot have been set back to false since
process identifiers are unique), so those processes with L = m + 1 will exit

14 Hensgen, Finkel, and Manber

the loop. Since process p = 2 rt~ ~ exits the ioop by the above argument,
then process p - - 0 will also.

If the same number of processes participate in each barrier, then the
second line of the winner's game can be removed by sense switching. We
will call the resulting game a modified instance to maintain consistency
with our previous terminology.

2.6. Discussion

Given a computer architecture with fetch-and-add, the best algori thm
costs O (l o g n) time and uses only 1 variable. The following discussion
assumes a model that allows concurrent reads and one write to the same
variable, but not concurrent write to the same variable. (This model is
weaker than CRCW, which allows concurrent writes.) The solution that
uses exclusive access to a shared variable requires O(n) time and 1 variable.
The other solutions all require [log2 n7 instances, each of a constant time,
so they (like fetch-and-add) require O(log n) time. They differ with respect
to the cost of an instance. Table I shows the number of reads and writes
needed by the two partners to an instance under various situations. This
number dictates how long an instance will take. The total instances column
indicates the produc t of instances and active processes summed over an
episode.

3. T I M I N G S

Figures 6 and 7 show the timings on a Sequent Balance 21000 for
2 ~< n ~< 20 under the various methods. We wrote generator programs to
construct the programs used in making the timings. These generator

Table I

Situation Algorithm Reads Wites Total instances

ordinary instance Brooks, n = 2 i 2/2 2/2 n I-log2 n-]
Brooks, n ~ 2 i 4/4 4/4 n{-log 2 n~
Dissemination 2/2 2/2 n I-log2 n]
Tournament 1/1 1/1 n - 1

modified instance Brooks, n = 2 e 1/1 1/1 n[-log2 nq
Books, n r 2 i 2/2 2/2 n[log2 n-]
Dissemination 1 / 1 1/1 n (- log z n-]
Tournament 1/1 0/1 n - 1

Two Algorithms for Barrier Synchronization 15

0.40

0.30

ms 0.20

0.10

0.00
0

/ accumulating counter

/ f

Brooks : /
/ . . , , . " . . ' . : /

/ :" �9

' disse m i n a t i o n j / ~
. . - . , :: __ /~ -I~

, - . ; / / - ~ . . _ _ v _ ~ o u mame n t

z

, I , i i L i i i i i J i i i

5 10 15
Number of processes

20

Fig. 6. T imings for the original instance.

programs take the number of processes to meet at the barrier and produce
appropriate barrier code with all indices of the shared arrays reduced to
constants. Loops are unrolled and macros used as in Brooks' timings. The
code for method 1, exclusive access, uses double buffering to solve the
reinitialization problem: every time an episode finishes using one counter,
the other counter is reinitialized.

It is worth noting that Brooks' algorithm is identical in cost to the
dissemination algorithm when the number of processes is a power of two.
A glance at the code explains this result. Processes access the same number
of variables in this case, but those variables have different array indices.

The curves for our algorithms appear more linear than logarithmic. As
expected, the curves rise most sharply as the number of processes rises past
a power of two due to the extra instance. The gradual linear rise can be
attributed to linear-cost bus contention due to the write-through cache on
the Sequent Balance 21000.

When different numbers of processes meet at different barriers, we
must use an original instance. In this case, the tournament algorithm is the
clear choice. When the same number of processes meet at all of the

16 Hensgen, Finkel, and Manber

0.30-

0.20

m s

0.10

0.00

B r o o k s

tournament, original instance

~ dissemination

; F - / : /
............ : / tournament , �9 .)/

, , . , . - - . . . ,./
�9 ~.a,

i i i , i i ~ , i i ~ , , i i , i

5 10 15 20

Number of processes

Fig. 7. Timings for the modified instance.

barriers, the modified instance may be used. When the number of processes
is less than 16, the dissemination algorithm is competitive with the tour-
nament algorithm. The extra code at the end of the tournament algorithm
to notice that the global variable has been set incurs a small cost. This cost
is not offset by improvement in bus contention when n is small. However,
the difference between the number of writes in the dissemination algorithm
(2nFlog2n-]) and the tournament algorithm (n - l) becomes more
significant for larger n.

REFERENCES

1. Eugene D. Brooks III, The Butterfly Barrier, International Journal of Parallel Programming
15:295-307 (1986).

2. Boris D. Luhachevsky, An Approach to Automating the Verification of Compact Parallel
Coordination Programs, Acta Informatica, pp. 125-169 (1984).

3. Leslie Lamport, On the Correctness of Multiprocess Programs, IEEE Transactions on
Software Engineering SE-3(2):125-143 (Match 1977).

4. Hugh C. Lauer and Roger M. Needham, On the Duality of Operating System Structures,
Operating Systems Review, pp. 3-19 (April 1979). Originally printed in the Proceedings of
the Second International Symposium on Operating Systems, IRIA (October 1978).

Two Algorithms for Barrier Synchronization 17

5. Yijie Han and Raphael Finkel, An Optimal Scheme for Disseminating Information,
Technical Report 106-88, Computer Sciences Department, University of Kentucky (1988).

6. Y. Han and R. Finkel, An optimal scheme for disseminating information, Proceedings of
the 1988 International Conference on Parallel Processing II:198-203 (August, 1988).

7. N. Alon, A. Barak, and U. Manber, On Disseminating Information Reliably without
Broadcasting, The 7th International Conference on Distributed Computing Systems,
pp. 74-81 (September 1987).

828/17/1-2

